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Abstract. We describe singular homology of a manifold X via simplices
σ : ∆d → X that satisfy Stokes’ formula with respect to all differential
forms. The notion is geared to the case of tame geometry (definable
manifolds with respect to an o-minimal structure), where it gives a
description of the period pairing with de Rham cohomology via definable
σ’s.

In this note we close a gap in the literature on the period pairing. If X is
a differentiable manifold, there is a canonical isomorphism between de Rham
cohomology and singular cohomology. It is induced from the period pairing
between de Rham cohomology and singular homology. The pairing has a
good description by integration

(σ, ω) 7→
∫

∆d

σ∗ω.

In order for this formula to make sense, the map σ has to have good regularity
properties. A good choice is to restrict to smooth maps. If X is a definable
manifold for some o-minimal structure, e.g., if X ⊂ RN is semi-algebraic,
then the integral is absolutely convergent without any regularity assumptions.
In [HMS17], this was used to give an alternative description of the set of
period numbers in terms of semi-algebraic sets. Indeed, such a description is
used as a definition for the notion of a period number in [KZ01].

There are two problems that were not addressed in [HMS17]:

(1) in order to get a well-defined pairing on homology, we need to establish
Stokes’ formula for semi-algebraic σ;

(2) in order to show that the two pairings agree, we need to compare
smooth and semi-algebraic σ’s.

The same problems also appear in the setting of exponential periods treated
in [CHH20], where it was side-stepped, see also Remark 5.5 below. We now
present a conceptually clean solution. As in [CHH20], we use input from the
structure theory of definable sets: the existence of triangulations that are
globally of class C1 shown by Czapla-Pawlucki in [CP18]. (An alternative
is to apply the panel meating method of Ohmoto-Shiota [OS17] instead.
It allows us to reparametrise a given semi-algebraic simplex as a C1-map.
There are some problems with this approach, see [CHH20, Section 7].)

In the present note, we solve the two problems by introducing the notion
of a simplex satisfying Stokes. They are C1 along open faces, all periods
integrals converge and satisfy Stokes’ formula. We show that the complex
built from these simplices computes singular homology.
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We also check the transformation rule and Stoke’s formula for definable
simplices without any regularity assumptions. This allows us to make the
comparison we wanted.

Acknowledgement: This note can be read as an addendum to the paper
[CHH20] with Johan Commelin and Philipp Habegger. I thank them for
many discussions on issues related with period integrals and tame geometry.
I am also indebted to my collegue Sebastian Goette for help with integrability
computations. The construction in the appendix is joint work with Johan
Commelin. I thank him for allowing me to add it to the paper.

1. Set-up

Following [War83], we define the standard d-simplex as

∆d =
{

(a1, . . . , ad) ∈ Rd|ai ≥ 0,
∑

ai ≤ 1
}
.

By an open face of ∆d, we mean the interior of a face (of any dimension) of
∆d. Throughout we are going to consider continuous maps

σ : ∆d → RN

whose restriction to each open face is of class C1.
Most arguments center on the following extension, see [War83, p. 194]:

σ̂ : ∆d+1 → RN ;

(a0, a1, . . . , ad) 7→ Aσ(a1/A, . . . , ad/A), A =

d∑
i=0

ai.

The simplex σ̂ has a vertex at 0 and the opposite face equal to σ. It
interpolates linearly in between. The map is again continuous (even for
A→ 0) and C1 on all open faces. This simplicial version of a homotopy can
also be described via

σ̄ : [0, 1]×∆d → RN

σ̄ : (t, b1, . . . , bd) 7→ (1− t)σ(b1, . . . , bd).

Consider

q : [0, 1]×∆d → ∆d+1

(t, b1, . . . , bd) 7→ ((1− t)(1−
d∑
i=1

bi), (1− t)b1, . . . , (1− t)bd).

We have σ̄ = σ̂ ◦ q because A =
∑d

i=0 ai = 1− t.
Note that q admits the partial inverse i : ∆d+1 r 0→ [0, 1)×∆d by

i : (a0, a1, . . . , ad) 7→ (A, a1/A, . . . ad/A)

It is a diffeomorphism.
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2. Finite volume

Let σ : ∆d → RN be as fixed in the last section.

Definition 2.1. We say that σ has finite volume if∫
∆d

σ∗ω

converges absolutely for every continuous d-form ω on σ(∆d).

Remark 2.2. The pull-back of ω to the interior of ∆d is a continuous d-
form. The integral exists locally. Global existence, i.e, convergence when
approaching the boundary, is the issue. The condition is equivalent to
integrability (in the measure theoretic sense) of σ∗ω, in other words, it is L1.

Lemma 2.3. It suffices to check the assumption for the standard d-forms
dxi1 ∧ · · · ∧ dxid for all {i1, . . . , id} ⊂ {1, . . . , N}.

Proof. We write

ω =
∑
I

aI dxI

where the sum is over multi-indices of length d. By assumption the aI are
continuous on σ(∆), in particular bounded. The pull-back is

σ∗(ω) = ai ◦ σ · σ∗( dxI).

By assumption, all σ∗( dxI) are integrable. The ai ◦ σ are bounded and
continuous. This makes the sum integrable. �

Remark 2.4. In particular, it does not matter if the convergence condition
is imposed for C∞ differential forms or continuous forms. If d = N , then our
condition is indeed equivalent to finiteness of vol(σ(∆n)).

Example 2.5. (1) If σ is C1 globally on ∆d, then σ∗( dxI) is C0, in
particular integrable.

(2) If σ is semi-algebraic, or more generally definable in some o-minimal
structure, then ∫

∆d

σ∗( dxI) =

∫
σ(∆d)

dxI

converges, see [CHH20, Theorem 3.22] (actually a lot easier).

The notion extends immediately to manifolds.

Definition 2.6. Let X be an N -dimensional C1-manifold with corners,
σ : ∆d → X continuous and C1 on all open faces. We say that σ has finite
volume, if there is a subdivison of σ such that the pieces are contained in a
single chart each and have finite volume there.

Corollary 2.7. The condition is independent of the choice of subdivison
and charts.

Proof. Independence of the subdivision is obvious. Assume without loss of
generality that σ(∆d) is contained in two charts φi : Ui → Vi ⊂ RN . Let
φ12 = φ2 ◦ φ−1

1 be the transition map where it is defined. By assumption it
is C1.
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Suppose that φ1 ◦ σ has finite volume. We have to check that φ2 ◦ σ has
finite volume. By Lemma 2.3 it suffices to consider

σ∗φ∗2(ω) = σ∗φ∗1φ
∗
12ω

for all smooth forms ω on V2. The pull-back φ∗12ω is a C0-form on V1. By
assumption, its pull-back to ∆d is integrable. �

Lemma 2.8. A measurable differential form ω on ∆d+1 is integrable if and
only if q∗ω is integrable on [0, 1]×∆d.

Proof. The map q is a diffeomorphism up to a set of measure 0. The sign
of the Jacobian determinant cannot change because it does not vanish for
diffeomorphisms. One of the integrals is finite if and only if the other is. �

We need to check that the notion is stable under homotopies.

Proposition 2.9. If σ has finite volume, then so does the cone σ̂.

Proof. By the last lemma it suffices to establish finiteness for σ̄. Let ω =
dx1 ∧ · · · ∧ dxd+1 and ωj the wedge product with the factor dxj dropped.
We compute:

∂

∂t
σ̄j = −σj

∂

∂ai
σ̄j = (1− t) ∂

∂ai
σj

These are the entries of the Jacobian matrix. Hence

σ̄∗ω =
d+1∑
j=1

−(−1)j(1− t)dσjσ∗(ωj).

It suffices to treat each summand separately. By assumption σ∗(ωj) is
integrable. The function σj is continuous, making σjσ

∗(ωj) integrable on

∆d. By Fubini this makes (1− t)dσjσ∗(ωj) integrable on [0, 1]×∆d. �

Corollary 2.10. Let X be a C1-manifold with corners. Then the complex of
singular simplices σ such that all faces have finite volume computes singular
homology.

Proof. The assumption is stable under the boundary map, so we get a well-
defined complex. To see that the subcomplex computes singular homology,
we go through the argument in [War83, Section 5.31].

Locally in each ball, the complex is contractible. The simplicial homotopy
in [War83, p. 194]is given by σ 7→ σ̂. The faces of σ̂ are σ and faces of the
form τ̂ for a face τ of σ. By the proposition, they all have finite volume,
making the homotopy well-defined. �

3. Stokes

Let X be a C1-manifold with corners.

Definition 3.1. We say that σ : ∆d → X satisfies Stokes if σ and ∂σ have
finite volume and for every smooth (d− 1)-form ω on a neighbourhood of
σ(∆d) we have the formula∫

∆d

σ∗( dω) =

∫
∂∆d

σ∗(ω).
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Again we want to check that the condition is well-behaved under our
homotopies.

Lemma 3.2. Assume that σ and ∂σ have finite volume. Let ω be a (d+ 1)-
form on a neighbourhood of σ̂(∆d+1). Then σ̂ satisfies Stokes on ∆d+1 if
and only if σ̄ satisfies Stokes on [0, 1]×∆d+1.

Proof. We compare the contributions on [0, 1] × ∆d and ∆d+1. By the
transformation formula and the arguments that we used in order to show
convergence, they match up. The only exception is the face {1} ×∆d which
does not show up in ∂∆d+1. However, its image in RN is constant, hence
the pull-back of dω to this face vanishes. It does not contribute to the sum
in Stokes’ formula. �

We work on I ×∆d from now on (where I = [0, 1]) and think of the first
coordinate as time. The computation becomes clearer when we allow slightly
more generality than σ̄.

Lemma 3.3. Let σ : ∆d → Rn be continuous and C1 on all open faces,
f : I → R a C1-function, and τ : I ×∆d → Rn given by

τ(t, b1, . . . , bd) = f(t)σ(b1, . . . , bn).

Let
η = hdx1 ∧ · · · ∧ dxd

with a continuous function h. Then

τ∗η = A+B

where

A = τ∗(h)fdω

B = dt ∧ τ∗C

C = h
∑
i

(−1)i−1xi
∂f

∂t
dx1 ∧ · · · ∧ ˙dxi · · · ∧ dxd.

The restriction to the faces of I ×∆d are

τ∗η|{0,1}×∆d
= A|{0,1}×∆d

and
τ∗ηI×F = B|I×F

for all (d− 1)-faces F of ∆d.

Proof. We have τi = f(t)σi and hence

dτi =
∂f

∂t
σi dt+ f(t) dσi

This implies

dτ1 ∧ · · · ∧ dτd

= f(t)d dσ1∧· · ·∧ dσd+
∑
i

(−1)i−1∂f

∂t
f(t)d−1σi dt∧ dσ1∧· · ·∧ dσ̇i · · ·∧ dσd

where σ̇i means that we omit this factor. We introduce

ω = dσ1 ∧ · · · ∧ dσd, ωi = dσ1 ∧ · · · ∧ dσ̇i · · · ∧ dσd



6 ANNETTE HUBER

This allows us to write

dτ1 ∧ · · · ∧ dτd = f(t)dω +
∑
i

(−1)i−1∂f

∂t
f(t)d−1σi dt ∧ ωi

and hence

τ∗η = (h ◦ τ)

(
f(t)dω +

∑
i

(−1)i−1∂f

∂t
f(t)d−1σi dt ∧ ωi

)
.

We define the firsts summand as A and the second of B. We then have

B = dT ∧ τ∗C
as claimed.

We now restrict to faces. The restriction of τ∗η to t = 0 is

τ∗(h)|{0}×∆d
d(f(0)σ1) ∧ · · · ∧ d(f(0)σd) = τ∗(h)|{0}×∆d

f(0)dω = A|{0}×∆d
.

Let F be a (d− 1)-face of ∆d. Then

A|I×F = (τ∗(h)fd))|I×Fω|F = 0

because ω is a d-form on a (d− 1)-dimensional face. �

Proposition 3.4. If σ satisfies Stokes, so does σ̂.

Proof. As in the previous section, it suffices to consider σ̄. We write d =
dt + ds for the decomposition into the time and space derivative on I ×∆d.
Passing to barycentric subdivisions if necessary, we may assume that σ(∆d)
is contained in a chart. Without loss of generality X = RN . Every smooth
d-form on RN decomposes as ∑

I

hIdxI .

It suffices to consider each summand separately. Without loss of generality
it suffices to verify the formula for

η = hdx1 ∧ · · · ∧ dxd

with smooth h. We apply the last lemma to f(t) = (1− t) and τ = σ̄.
We claim that ∫

I×∆d

dτ∗η =

∫
∂I×∆d

τ∗η.

Under the decomposition of τ∗η in the last lemma, this is equivalent to∫
I×∆d

dA =

∫
(∂I)×∆d

A

and ∫
I×∆d

dB =

∫
I×(∂∆d)

B.

We have

dA = dt(τ
∗h · fd) ∧ ω =

∂(τ∗h · fd)
∂t

dt ∧ ω.

The partial derivative is continuous on I because f and h are C1 (actually

smooth) and ∂τi
∂t = ∂f

∂t σi is continuous. (Note that σi does not depend on
t!) By assumption ω is integrable and independent of t. This makes dt ∧ ω
and then dA integrable and we may apply Fubini. We first integrate in
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time direction, then in the spatial direction. By the fundamental theorem of
calculus we may evaluate∫

I×∆d

dA =

∫
∆d

∫
I
dt(τ

∗hfd) ∧ ω

=

∫
∆d

(τ∗hfd)|{1}×∆d
ω −

∫
∆d

(τ∗hfd)|{0}×∆d
ω

=

∫
(∂I)×∆

A.

We write

B = dt ∧ τ∗C, dB = dt ∧ τ∗ dsC.

Again we may apply Fubini because dB = dτ∗η−dA is integrable. This time
we take the integral in the spatial direction first. For fixed t, the differential
form Ct on RN is smooth. By assumption, σ satisfies Stokes, hence∫

{t}×∆d

(τ∗ dsC)t =

∫
∆d

σ∗dsC
t =

∫
∂∆d

σ∗Ct.

This yields ∫
I×∆d

dB =

∫
I×(∂∆d)

B.

�

We have treated differential forms on RN above, but the notion immediately
generalises to smooth manifolds.

Corollary 3.5. Let X be a C1-manifold with corners. The complex with
simplices σ s.t. all faces satisfy Stokes computes singular homology.

Proof. The same argument as for the proof of Corollary 2.10 shows that the
subcomplex computes singular homology. �

4. The tame case

We fix an o-minimal structure on RN , e.g., the theory of semi-algebraic
sets defined over a subfield of R. This means that we have chosen a system
of definable subsets of Rn for all n, satisfying certain axioms, see [vdD98].
Our discussion was chosen to apply to this case.

In [CHH20, Chapter 3], we introduced the notion of a definable Cp-
manifold (with corners) for ∞ ≥ p ≥ 0 and the basics of integration theory
for differentiable forms. We will restrict to manifolds without boundary or
corners in this chapter for ease of exposition. Everything would work in the
general case.

Let X be a definable manifold and G ⊂ X a definable subset of dimension
d. We denote by Regd(G) the locus where G is a Cp-submanifold of X.
By [CHH20, Lemma 3.8], the subset is definable and the complement has
dimension strictly less than d. A pseudo-orientation on G is the choice
of a definable open subset U ⊂ Regd(G) such that dim(G − U) < dimG
together with an orientation on U , see [CHH20, Definition 3.14]. Two such



8 ANNETTE HUBER

pseudo-orientations are equivalent if they agree on the intersection of the
open sets. If ω is a continuous d-form on G, then we can define∫

G
ω :=

∫
U
ω.

The value only depends on the equivalence class of the pseudo-orientation.
If G is compact, then the integral is absolutely convergent, see [CHH20,
Theorem 3.22].

We now show that standard properties of integration extend. Our first
aim is the transformation rule.

Definition 4.1. Let p ≥ 1. Let X1, X2 be definable Cp-manifolds, G1 ⊂ X1

a definable subset of dimension d. Let f : G1 → X2 be a continuous definable
map. We put

Reg(f) = {x ∈ Regd(G1)|f is Cp near x}.

Lemma 4.2. The subset Reg(f) ⊂ G1 is open, definable and dim(G1 −
Reg(f)) < d.

Proof. The condition is open. By [vdDM96, B.7] the set is definable. It
remains to check the dimension property. By [CHH20, Lemma 3.8], the set
G1 − Regd(G1) has dimension smaller than d. We replace G1 by Regd(G1).
By [vdDM96, C.2] there is an open subset V (indeed, a union of cells) of G1

such that dim(G1 − V ) < d and f |V is Cp. �

Definition 4.3. Let p ≥ 1. Let G1 ⊂ X1 and G2 ⊂ X2 be pseudo-oriented
definable subsets of dimension d in definable Cp-manifolds, with orientations
defined on U1 and U2. A continuous definable map f : G1 → G2 is compatible
with orientations if there is a definable open U ⊂ U1 ∩ Reg(f) ∩ f−1(U2)
such that the map U → U2 is orientable and dim(f(G1 − U)) < d.

Remark 4.4. Here Reg(f) refers to the regularity locus of the composition
G1 → G2 → X2. On the set U1 ∩ f−1(U2) ∩ Reg(f), the induced map is
Cp. By admitting the smaller set U , the notion becomes independent of the
choice of representative for the pseudo-orientations.

Proposition 4.5. Let f : G1 → G2 be a continuous definable map between
pseudo-oriented definable subsets of definable Cp-manifolds. Then the trans-
formation rule holds, i.e., for any continuous differential form ω on G2, we
have ∫

G1

f∗ω =

∫
f(G1)

ω

where f(G1) is pseudo-oriented as a subset of G2.

Remark 4.6. If f(G1) has empty interior in G2, then the statement has
to be understood as saying that the left hand side vanishes, see [CHH20,
Remark 3.15].

Proof. Neither value changes if we replace G1 by an open subset such that
the complement has measure 0. Without loss of generality, G1 = Reg(f) and
G1 is oriented. Let U ⊂ G1 be as in the definition of compatiblity of f with
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orientation. By the usual transformation formula for differentiable maps, we
have ∫

U
f∗ω =

∫
f(U)

ω.

Let G′ = G1 − U . As dim(f(G′)) < d, we also have∫
f(U)

ω =

∫
f(G1)

ω.

Moreover, all fibres of f : G′ → X2 have positive dimension, hence the
Jacobian does not have full rank. This implies f∗ω|G′ = 0 and hence∫

U
f∗ω =

∫
G1

f∗ω.

�

Lemma 4.7. Let f : G1 → G2 be a definable homeomorphism between
definable subsets of definable manifolds. Given a pseudo-orientation on
G1 there is a unique pseudo-orientation on G2 making f compatible with
orientations, and conversely.

Proof. We may remove the complements of Regd(G1) and Regd(G2) as well
as Reg(f) and Reg(f−1) from the situation. So without loss of generality
G1 and G2 are manifolds and f is a diffeomorphism. We can then use f to
transport the orientation. �

Remark 4.8. The result is completely standard for oriented manifolds, even
with boundary. Even though we usually think of orientations in terms of the
tangent bundle, it is actually a completely topological notion that can be
determined in terms of homology, see [Hat02, Section 3.3].

Proposition 4.9. Let X be definable manifold with corners, and σ : ∆d → X
be a definable continuous map, ω a C1-form on a neighbourhood of σ(∆d).
Then Stokes’ formula holds:∫

∆d

σ∗( dω) =

∫
∂∆d

σ∗ω.

Proof. We begin with the case X = RN . Let Γ ⊂ ∆d × RN be the graph
of σ. We choose a definable triangulation of Γ that is globally C1. It
exists by Czapla-Pawlucki [CP18]. The projection to the first factor is a
triangulation (K,Φ) of ∆d such that both Φ and σ ◦ Φ are globally C1. The
orientation on ∆d defines an orientation on |K| and all simplices in K. By
the transformation rule for Φ∫

|K|
Φ∗σ∗ dω =

∫
∆d

σ∗ dω,

∫
∂|K|

Φ∗σ∗ω =

∫
∂∆d

σ∗ω.

Let
τ = σ ◦ Φ : ∆d → RN

be a simplex in this triangulation. The map is C1 (globally, not only on
open faces). By Stokes’ theorem (in the C1-version of Whitney of [Whi57],
see also [CHH20, Theorem 1.4]) we have∫

∆d

τ∗( dω) =

∫
∂∆d

τ∗(ω).
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We sum over all d-simplices in K. The open subset
⋃
τ τ(∆d) is open and

dense in |K|, hence the sum is ∫
|K|

Φ∗σ∗ dω.

Now consider the sum over the boundaries. Two things can happen: If F is
an open (d− 1)-simplex of K, then it is either fully contained in the interior
of |K| or fully contained in ∂|K|. In the first case, there is a second d-simplex
with face F , but opposite orientation. These contributions cancel. In the
second case, F is part of a triangulation of ∂|K|. The sum gives∑

Kd−1

∫
∆d−1

τ∗ω =

∫
∂|K|

τ∗ω.

Putting the equalities together, we have Stokes’ formula for σ in the affine
case.

For general X, we may apply repeated barycentric subdivison such that
the image of smaller simplex is contained in a single chart. �

5. Period isomorphisms

We are now ready to show that the period pairing for definable manifolds
can be computed via definable simplices. Throughout this section, let X be
smooth definable manifold with corners.

Definition 5.1. We set:

• Ssing
d (X) the free abelian group with basis continuous maps σ : ∆d →
X;
• S∞d (X) the free abelian group with basis smooth maps σ : ∆d → X;

• SStokes
d (X) the free abelian group with basis continuous maps σ :

∆d(X) which are C1 on all open faces and such that all faces have fi-
nite volume (see Definition 2.1) and satisfy Stokes (see Definition 3.1);

• Sdef,C1

d (X) the free abelian group with basis definable continuous
maps σ : ∆d → X which are C1 on all open faces;
• Sdef

d (X) the free abelian group with basis definable continuous maps
σ : ∆d → X;
• Ad(X) the space of all smooth d-forms on X.

In each case, the groups organise into a complex with the standard differ-
ential for singular homology, and de Rham cohomology, respectively. The
complexes Sdef

∗ (X) are functorial for all continuous definable maps between
definable manifolds with corners. In applications, it is often helpful to pass
to a subcomplex with a finite basis, even if functoriality is lost. This is
were simplicial homology comes in. Definable triangulations exist, see the
discussion in the appendix.

Definition 5.2. Let (K,Φ) be a definable triangulation of X. We set

• S∆
d (X) the free abelian group with basis the elements of Kd.

We obtain a complex S∆
∗ (X) with the differential of simplicial homology.

It computes singular homology of X.
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Corollary 5.3. The inclusions

Ssing
∗ (X)

Sdef
∗ (X)

+ �

99

SStokes
∗ (X)
3 S

ff

S∆
∗ (X)

, �

::

Sdef,C1

∗

3 S

ee

+ �

88

S∞∗ (X)
3 S

ee

are natural quasi-isomorphisms.

Proof. All complexes compute singular homology. For the Stokes version we
pointed this out before. The case of S∞∗ (X) is in [War83, Section 5.31]. The
same argument also gives the definable case. This uses that fact that if σ is
definable, then so is σ̂. �

The period pairing

S∞d (X)×Ad(X)→ R, (σ, ω)→
∫

∆d

σ∗ω

induces a pairing of complexes by Stoke’s theorem. Stokes’s theorem also

holds for SStokes
∗ (X), its subcomplex Sdef,C1

(X) and for Sdef
∗ (X). We also

get well-defined pairings of complexes in these cases.

Theorem 5.4. Let X be a definable manifold with corners and (K,h) a
definable triangulation of X. Then the period pairing can be computed by
integration on continuous definable simplices. In other workds, the pairing

extends to a pairing of complexes of A∗(X) with SStokes
∗ (X), Sdef,C1

∗ (X),
Sdef
∗ (X) and S∆

∗ (X) in a compatible way with the quasi-isomorphisms

Sdef
∗ (X) SStokes

∗ (X)

S∆
∗ (X)

, �

::

Sdef,C1

∗

2 R

dd

+ �

99

S∞∗ (X)
3 S

ee

Proof. In each case, the pairing is given by integration. This means that the
pairings are compatible.

To make the pairings well-defined as pairings of complexes, we have to
check Stokes’ formula. For SStokes

∗ (X) it holds by assumption. For its

subcomplex Sdef,C1
(X) and the full Sdef

∗ (X) it holds by Proposition 4.9. �

Remark 5.5. In [CHH20], we describe singular homology with simplices
σ : ∆d → X which are globally C1-simplices, not only on open faces.
No definability assumptions are made. We still need to show that every
homology class is represented by definable simplices. For this fact we exploit
the full strength of [CP18] to construct a definable C1-triangulation of X,
see [CHH20, Proposition 7.6]. Theorem 5.4 is conceptually clearer and more
flexible.
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Appendix A. Existence of triangulations

This appendix is joint work with Johan Commelin. As in Section 4 we
work in the setting of definable manifolds in a fixed o-minimal structure.
The existence of triangulations is known for definable sets. We extend this
to the manifold setting.

Remark A.1. In the semi-algebraic case, every semi-algebraic manifold is
affine, that is, there is a semi-algebraic homeomorphism onto a subset of Rn.
This is due to [Rob83]. In particular, a semi-algebraic triangulation exists.
By [CHH20, Proposition 7.6] the result can be strengthened to make the
triangulation globally C1 or (with the same proof) Cp along all open faces.
Note that these additional regularity facts are ot needed in the main text.

It is likely that Robson’s result generalises to all o-minimal structures, but
we are not aware of a reference. We use an alternative argument instead.

Lemma A.2. Let p ≥ 0. Let X1 and X2 be compact definable subsets of
some ambient definable Cp-manifold with corners. Denote by X the union
X1 ∪X2 and by B = X1 ∩X2. Let A ⊂ X be definable subset. Assume that
X1 has a definable triangulation relative to B and A∩X1 which is Cp on all
open faces of simplices. Assume that X2 is affine. Then there is a definable
triangulation of X relative to Arelative to A which is Cp on all open faces
of simplices.

Proof. We start with a definable triangulation T1 = (h1,K1) of X1 relative
to B which is Cp on open faces.

Note that for every set of vertices v0, . . . , vn ∈ K1 there is at most one
open n-simplex with these vertices because this is the case for a simplicial
complex. We will write (v0, . . . , vn) for this simplex and (h1(v0), . . . , h1(vn))
for its image in X1. Without loss of generality we may assume that for
every simplex (v0, . . . , vn) in K1 such that h1(v0), . . . , h1(vn) lie in B the
entire simplex (v0, . . . , vn) lies in B (pass to the barycentric subdivision if
necessary). Now choose a triangulation T2 = (h2,K2) of X2 relative to the
images of elements of T1|B that is Cp on closed simplices. It exists by [vdD98,
Chapter 8] because X2 is affine. Again we may assume that if the images of
the vertices of a simplex are in B, then so is the image of the simplex. On
B, the triangulation T2 “subdivides” T1. It remains to modify T1 on X1 rB
such that the triangulations become compatible.

We will now construct a set K ⊂ K1 ×K2 of simplices, as follows. For
every simplex

σ = (v0, . . . , vm, b0, . . . , bn) ∈ K1

with h1(b0), . . . , h1(bn) in B and h1(v0), . . . , h1(vm) /∈ B, and for every
simplex τ = (w0, . . . , ws) ∈ T2|h1(b0),...,h1(bn)) we add (v0, . . . , vm, w0, . . . , ws)
to K.

We make some remarks about this construction:

• The condition τ ∈ T2|(h1(b0),...,h1(bn)) is meaningful, because the im-
age of the entire simplex (h1(b0), . . . , h1(bn)) is contained in B, by
assumption. In particular, we get a triangulation of h1(σ̄) that is
also compatible with the same construction on the faces of σ.
• By taking m = 0, we see that K contains all simplices of K2.
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• Similarly, by taking n = 0, we see that K contains all simplices of K1

that do not have faces in B.

The next step is to define the triangulation map h : |K| → X. We do this
on closed simplices such that the definition is compatible with restriction to
the faces. We fix σ and τ .

Since X1 is compact, the closed simplex σ̄ ∈ K1 can be identified with the
standard simplex. We are given a k̃-semi-algebraic map h1|σ̄ : ∆̄m+n+1 →
X1 that is a homeomorphism onto its image. The simplex τ gives a k̃-
semi-algebraic map h2|τ̄ : ∆̄s → B, again a homeomorphism onto its image.
Consider g = h1|−1

σ̄ ◦ h2|τ̄ : ∆̄s → ∆̄m+n+1. We define a new map h :
∆̄s+m+1 → X1 by mapping

s+m+1∑
i=0

aiei 7→ h1|σ̄

(
m∑
i=0

aiei + ag

(
1

a

s∑
i=0

ai+m+1ei

))
.

where the scaling factor a is defined to be
∑s−1

i=0 ai+m+1. For this, we check
the limit when a tends to 0. The value of g is bounded, hence ag(·) tends to
0, when a→ 0. We apply the continuous function h1, so the limit is

h1|σ̄

(
m∑
i=0

aiei

)
.

The map h takes the vertex vi (identified with ei in the formula) to h1(vi)
and the vertex wj (identified with ej+m+1 in the formula) to h2(wj). The
map is clearly definable and Cp on all open faces. �

Proposition A.3. Let X be a compact semi-algebraic Cp-manifold with
corners, A1, . . . , AM definable subsets of X. Then there is a definable tri-
angulation of X relative to A1, . . . , AM which is Cp on open faces and such
that every simplex is contained in an affine chart.

Proof. Let U1, . . . , Un ⊂ X be an open cover of an atlas, φi : Ui → Vi the
charts with Vi ⊂ Rni

≥0 × Rmi open definable. In particular, the transition
maps are Cp and definable.

For every P ∈ X there is a compact semi-algebraic neighbourhood XP

contained in one of the Ui. Finitely many of these suffice to cover X. Let
X1, . . . , Xm be such a cover. We start with a definable triangulation on X1

relative to Ai ∩ X1 and relative to all X1 ∩ XI for XI =
⋂
i∈I Xi for all

I ⊂ {2, . . . , n}, and assume that is Cp on all open faces. By the preceding
proposition, we obtain a definable triangulation on X1 ∪ X2 relative to
Ai ∩ (X1 ∪ X2) and (X1 ∪ X2) ∩ XI for all I, that is also Cp on all open
faces. We proceed inductively until we have found the desired triangulation
of X. �

Remark A.4. In the case of an o-minimal structure where every definable
subset of RN admits a partition into smooth cells, e.g., in the semi-algebraic
case, the construction gives a triangulation of compact manifolds by simplices
which are smooth on all faces.
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