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Abstract. In this paper, we provide criteria for fibre sequences of sim-
plicial sheaves to be preserved by nullifications. This generalizes a result
of Berrick and Dror Farjoun and allows a better understanding of un-
stable A

1-homotopy theory.
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1. Introduction

In this paper, we discuss aspects of Bousfield localization for simplicial
sheaves. One of the main phenomena of interest is the behaviour of fibre
sequences under a Bousfield localization. In general, fibre sequences are not
preserved by a Bousfield localization, and it is an interesting question to find
suitable criteria under which they are preserved. An extensive discussion
of issues related to this can be found in [DF96]. A general criterion for
nullifications has been obtained by Berrick and Dror Farjoun in [BF03].
The main goal of this paper is to provide a generalization of this result to
the setting of simplicial sheaves.

One of the technical tools used in [BF03] is the fibrewise localization in
the context of simplicial sets. For a discussion of fibrewise localization of
simplicial sets resp. topological spaces, see [DF96] or [Hir03]. A construction
of fibrewise localization for model categories satisfying certain axioms was
provided in [CS06]. We explain why the result of Chataur and Scherer
holds for model structures on categories of simplicial sheaves. With this
technical tool available, the proofs from [BF03] can be carried over without
much problems. The main theorem is then the following, cf. Theorem 5.2,
generalizing [BF03, Theorem 4.1].
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Theorem 1. Let T be a site, and let f : X → Y be a null-homotopic

morphism of simplicial sheaves in ∆opShv(T ). Furthermore, let F → E
p
→

B be a fibre sequence.
Let LfF → E → B be a fibrewise localization of p, and let LfF → E′ →

ALf
B be the pullback of this fibrewise localization of p to ALf

B = hofib(B →
LfB). Then the following are equivalent:

(i) The fibre sequence p is preserved by Lf .
(ii) E′ ≃ LfF × ALf

B and therefore there is an f -local weak equivalence

E′ ≃ LfF .
(iii) The following composition of morphisms is null-homotopic:

ALf
B → B

p
−→ BfF → BfLfF.

Note that (iii) only applies in situations where there is a classifying space
available. By the results from [Wen09], this is the case e.g. if the fibre
sequence is locally trivial in some refinement of the topology of T .

As an interesting application, we arrive at conditions when morphisms
induce fibre sequences in A

1-homotopy theory. In the case where the mor-
phisms are locally trivial in the Nisnevich topology, the homotopy theory cri-
teria reduce to a simple condition on the sheaf of homotopy self-equivalences
of the fibre.

Theorem 2. Let F be a simplicial sheaf on Smk. If π0 hAut• LA1F is a
strongly A

1-invariant sheaf of groups, then any morphism p : E → B which
is locally trivial in the Nisnevich topology with fibre F induces an A

1-local
fibre sequence F → E → B.

Structure of the Paper: The paper is structured as follows: in Section
2, we repeat preliminaries on Bousfield localization for simplicial sheaves.
Then Section 3 recalls the construction of fibrewise localization by Chataur
and Scherer. In Section 4, we give a characterization of nullification functors.
In Section 5, we prove the criterion for fibre sequences to be preserved by
a nullification. Some remarks on properness of the local model structure
are provided in Section 6. Finally, the locality of classifying spaces in A

1-
homotopy theory is discussed in Section 7.

Acknowledgements: The results presented here are taken from my PhD
thesis [Wen07] which was supervised by Annette Huber-Klawitter. I would
like to use the opportunity to thank her for her encouragement and interest
in my work. I would also like to thank Denis-Charles Cisinski for interesting
remarks on the relation between the results presented here and properness
of the local model structure.

2. Localization Functors for Simplicial Sheaves

This section collects elementary facts concerning localizations and nullifi-
cations of simplicial sheaves. These facts are well-known for simplicial sets
resp. topological spaces and proofs mostly carry over directly. Most of the
basic properties are formal, once the theorem on existence, universality and
continuity of localization functors is established. This theorem is proven in
[GJ98].
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There are two approaches to localizations in the literature for simplicial
sets: on the one hand, the whole book [DF96] does not require a single word
on model categories, and defines localizations as certain homotopy-universal
coaugmented functors. On the other hand, starting from a proper, simplicial,
cofibrantly generated model structure on the category C, it is possible to
define a new model structure by keeping the cofibrations, and defining a new
class of local weak equivalences. The relation between the two approaches
is easily described: The proof of existence of localization functors in [DF96]
is the same as the small object argument proving that Quillen’s axioms
hold for the local model structure. On the other hand, assuming known the
existence of this model structure, the localization functor is basically the
fibrant replacement in the local model structure.

2.1. Model Categories of Simplicial Sheaves: We will be working in
categories of simplicial sheaves. The underlying site is usually denoted by
T , the category of sheaves on it by Shv(T ), and the category of simplicial
sheaves by ∆opShv(T ). On this category, there are several model structures
all yielding the same homotopy theory. We will use the injective model
structure, cf. [Jar96, Theorems 18 and 27].

Theorem 2.1. Let E be a topos. Then the category ∆opE of simplicial
objects in E has a model structure, where the

(i) cofibrations are monomorphisms,
(ii) weak equivalences are detected on a fixed Boolean localization,
(iii) fibrations are determined by the right lifting property.

Moreover, the above definition of weak equivalences does not depend on
the Boolean localization.

The following proposition recalls the basic properties of this model struc-
ture.

Proposition 2.2. Let T be any Grothendieck site. Then the injective model
structure of Jardine on the category of (pre-)sheaves of simplicial sets on T

is a proper simplicial and cellular model structure.

Next, we repeat several basic statements on the behaviour of homotopy
limits and colimits in categories of simplicial sheaves. Results and prelimi-
naries can be found in [Wen09, Section 3].

Corollary 2.3 (Mather’s Cube Theorem). Let E be any Grothendieck topos.
Consider the following diagram of simplicial objects in E:

X1

��

}}||
||

||
||

// X2

��

}}||
||

||
||

X3

��

// X4

��

Y1

}}||
||

||
||

// Y2

}}||
||

||
||

Y3
// Y4
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Assume that the bottom face, i.e. the one consisting of the spaces Yi, is a
homotopy pushout, and that all the vertical faces are homotopy pullbacks.
Then the top face is a homotopy pushout.

Moreover, taking the homotopy fibre commutes with homotopy pushouts:
For a commutative diagram

E2

p2

��

E0
oo

p0

��

// E1

p1

��

B2 B0
oo // B1

in which the squares are homotopy pullbacks, we have weak equivalences

hofib pi

∼=
−−−→ hofib(p : E1 ∪

h
E0

E2 → B1 ∪
h
B0

B2).

Proposition 2.4 (Puppe’s Theorem). Let E be a Grothendieck topos, and
let X : I → ∆opE be a diagram of simplicial objects over a fixed base sim-
plicial object Y , i.e. the following diagram commutes for every α : i→ j in
I:

X (i)
X (α)

//

!!C
CC

CC
CC

C
X (j)

}}zz
zz

zz
zz

Y

There is an associated diagram of homotopy fibres

F : I → ∆opE : i 7→ hofib(X (i)→ Y )

Denoting X = hocolimI X and F = hocolimI F , we have a weak equivalence
hofib(X → Y ) ≃ F .

2.2. Internal Mapping Spaces: We recall basic facts on mapping spaces.
In a general model category, one can only consider homotopy classes of
maps homHo C(X,Y ). If the model category is simplicial, one can define
mapping spaces Hom(X,Y ) which are simplicial sets. Categories of sheaves
are cartesian closed, and this implies that we indeed have internal mapping
spaces, i.e. for any two simplicial sheaves X and Y , there is a simplicial
sheaf Hom(X,Y ).

In a category of simplicial sheaves, these mapping spaces can be defined
as follows: Let T be a site, and let X be a fibrant simplicial sheaf. By
Proposition 2.2, the simplicial sheaves on T form a simplicial model cate-
gory, hence for any two simplicial sheaves X,Y there is a simplicial set, the
function complex Hom(X,Y ), whose n-simplices are given by

Hom∆opShv(T )(X ×∆n, Y ).

We have a contravariant functor

T op → ∆opSet : (U ∈ T ) 7→ Hom∆opShv(T )(X × U, Y ).

This functor is representable by a simplicial sheaf which we again denote by
Hom∆opShv(T )(X,Y ). This is discussed in [MV99].

As the internal mapping spaces play a fundamental role in the description
of localizations, we recall some details and the difference between pointed
and unpointed mapping spaces.
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There are versions of internal mapping spaces for both unpointed and
pointed categories, and their relation is given by the following is a fibration
sequence:

Hom∗(X,Y )→ Hom(X,Y )→ Y.

For simplicial sheaves X and Y on a site T with enough points, this can
be easily proven using the above fibre sequence for simplicial sets [DF96,
Definition 1.A.1], the fact that the internal mapping spaces at the points
are given by the simplicial set mapping spaces, and then putting everything
together using [Wen09, Proposition 3.17]. This implies that if we use the
pointed mapping spaces in the definition of localization, only the connected
component of the chosen base point will be localized, the others remain
unchanged. This is one reason for connectivity restrictions on fibrewise
localizations using pointed functors in Section 3.

2.3. Bousfield Localization: We repeat the standard definitions of lo-
cal objects and local weak equivalences. These definitions can be found in
[DF96, Hir03] for the case of simplicial sets, and in [MV99] for the case of
simplicial sheaves.

Let C be a model category, and let f : A→ B be a morphism of cofibrant
objects.

Definition 2.5 (Local Objects, Weak Equivalences). An object X ∈ C is
called f -local if X is fibrant and the following morphism is a bijection for
each Y ∈ Ho C:

homHoC(Y ×B,X)→ homHo C(Y ×A,X).

A morphism g : X → Y ∈ C is called an f -local weak equivalence if for
any f -local object Z, the following morphism is a bijection:

homHo C(Y,Z)→ homHo C(X,Z).

Remark 2.6. (i) The above is the definition of local given in [MV99]. It
is easy to check that it coincides with the definition in [GJ98], where
one requires a weak equivalence of simplicial sets:

Hom(Y,Z)→ Hom(X,Z).

This in turn is equivalent to requiring weak equivalences on internal
homs:

Hom(Y,Z)→ Hom(X,Z).

(ii) Note that there is a difference between pointed and unpointed. The
definition above is for a general model category, using unpointed map-
ping spaces. In a pointed model category, one uses the pointed mapping
spaces. For connected spaces both notions coincide.

Of course, one can consider more general localizations, i.e. localizations
with respect to a set of maps as in [MV99, Section 2.2], or homology local-
ization as in [GJ98, Section 3]. If f is null-homotopic such a localization
is also called nullification, and we also use LW to denote the corresponding
localization functor. The most important applications we have in mind are
the A

1-nullification functors LA1 on ∆opShv(SmS).
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2.4. Localization Functors: This paragraph repeats the theorem on exis-
tence and universality of localization functors for simplicial sheaves. Most of
the elementary facts in this section are easy consequences of this theorem,
which is proved in [MV99, Theorem 2.2.5] and in similar form in [GJ98,
Theorem 4.4].

We start recalling the definition of localization functor in a general model
category.

Definition 2.7. A functor F : C → C is called coaugmented if there is
a natural transformation j : idC → F . A coaugmented functor F is called
idempotent if the two natural maps jFX , F jX : FX ⇉ FFX are weak
equivalences and homotopic to each other. The coaugmentation map jX

is homotopy universal with respect to maps into local spaces if any map
X → T into a local space T factors uniquely (up to homotopy) through
jX : X → FX. The functor F is called simplicial if it is compatible with the
simplicial structure, i.e. if there exist functorial morphisms σ : (FX)⊗K →
F (X⊗K) for any object X ∈ C and any simplicial set K. These morphisms
have to satisfy some rather obvious conditions described in [DF96, Definition
1.C.8]. The functor F is called continuous if it induces a morphism on inner
function spaces

Hom(X,Y )→ Hom(FX,FY ),

which is compatible with composition.

We recall the existence of localizations for simplicial sheaf categories from
[GJ98, Theorem 4.4], which is the proper generalization of [DF96, Theorem
A.3]. The existence of the f -local model structure is proven in [GJ98, The-
orem 4.8]. Note that the existence of localizations for simplicial sheaves is a
global result, in the sense that it does not simply follow from the existence
of localizations of simplicial sets by looking at the points of the topos.

Theorem 2.8. Let f : A→ B be any cofibration in ∆opShv(T ) and suppose
α is an infinite cardinal which is an upper bound for the cardinalities of
both B and the set of morphisms of T . Then there exists a functor Lf ,
called the f -localization functor, which is coaugmented and homotopically
idempotent. Any two such functors are naturally weakly equivalent to each
other. The map X → LfX is a homotopically universal map to f -local
spaces. Moreover, Lf can be chosen to be simplicial and continuous.

There is a simplicial model structure on ∆opShv(T ) where the cofibrations
are monomorphisms, weak equivalences are f -local weak equivalences and
fibrations are defined via the right lifting property.

Remark 2.9 (Properness). In [Hir03, Chapter 3], Bousfield localizations of
general model categories are investigated. As shown in [Hir03, Proposition
3.4.4 and Theorem 4.1.1], left Bousfield localizations preserve left properness,
i.e. the left Bousfield localization of a left proper model category is again left
proper.

The f -local model structure for a morphism f : A → B is not in gen-
eral right proper. It is known [Jar00, Theorem A.5], that the f -local model
structure is proper if f is of the form ∗ → I. A special case of this is the
properness of the homotopy theory of a site with interval, which is proved in
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[MV99, Theorem 2.2.7 and Section 2.3]. Note however that in the formula-
tion of the theorem left and right properness have to be interchanged.

2.5. Elementary facts concerning f -local spaces and Lf : There is
a collection of elementary facts concerning localization functors in [DF96].
These also hold for localization functors on categories of simplicial sheaves.
We will neither state nor prove all of them, we only discuss those that are
directly relevant to fibre sequences.

Proposition 2.10. Any homotopy limit of f -local simplicial sheaves is
again f -local. In particular, we have the following conclusions:

(i) The homotopy fibre of a morphism of f -local simplicial sheaves is f -
local.

(ii) The product of any family of f -local simplicial sheaves is f -local. The
morphism

Lf (X × Y )→ LfX × LfY

is a homotopy equivalence.
(iii) For f -local Y and cofibrant X, the simplicial sheaves Hom(X,Y ) and

Hom∗(X,Y ) are f -local. Therefore, the loop spaces ΩnY are f -local
for f -local Y .

Proof. Let T be a Grothendieck site, and let I be a small category. Further-
more, let X : I → ∆opShv(T ) be a diagram of f -local simplicial sheaves.
We want to show that

Hom(f,holim
I

X ) : Hom(B,holim
I

X )→ Hom(A,holim
I

X )

is a weak equivalence. By [MV99, Lemma 2.1.19], this map is the same as
the map holimI Hom(f,X ). By assumption, the map

Hom(f,X (i)) : Hom(B,X (i))→ Hom(A,X (i))

is a weak equivalence for any i ∈ I. By homotopy invariance, cf. [Hir03,
Theorem 18.5.3], this implies that holimI Hom(f,X ) is a weak equivalence
as well.

(i) and (ii) are then clear by applying the above to the relevant diagrams,
and the homotopy equivalence Lf (X × Y ) → LfX × LfY follows from
universality and adjointness, cf. [DF96, Section 1.G].

For (iii), we have by adjointness and locality of Y the weak equivalences:

Hom(A,Hom(X,Y )) ≃ Hom(X,Hom(A,Y ))

≃ Hom(X,Hom(B,Y ))

≃ Hom(B,Hom(X,Y )).

The statement on loop spaces is a consequence of this. �

2.6. Interaction of Localization and Homotopy Colimits:

Proposition 2.11 ([DF96], Proposition 1.D.2). Let T be a site, let I be
a small category and let f : A → B be a morphism of cofibrant spaces.
Furthermore, let g : X → Y be an I-diagram of cofibrant objects of simplicial
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sheaves in ∆opShv(T ). Assume that for any i ∈ I the morphism g(i) :
X (i)→ Y(i) is an Lf -equivalence. Then

hocolim
I

g : hocolim
I

X → hocolim
I

Y

is also an Lf -equivalence for both pointed and unpointed homotopy colimits.

Proof. Using [MV99, Proposition 2.2.9], it suffices to show for any f -local
object Z that

Hom(hocolim
I

g, Z) : Hom(hocolim
I

X , Z)→ Hom(hocolim
I

Y, Z)

is a weak equivalence. Using [MV99, Lemma 2.1.19], it suffices to show that
the morphism holimI Hom(g, Z) is a weak equivalence. By assumptions the
objects Hom(X (i), Z) resp. Hom(Y(i), Z) are fibrant and Hom(g(i), Z)
is a weak equivalence for any i ∈ I. Therefore, using homotopy invari-
ance of holim, we conclude that the morphism holimI Hom(g, Z) is a weak
equivalence. �

Applying the above to the diagram of augmentation maps g : X → LfX ,
we obtain that

Lf (hocolim
I

g) : Lf hocolim
I

X → Lf hocolim
I

LfX

is a weak equivalence, generalizing [DF96, Theorem D.3]. In particular we
get Lf (X ∨ Y ) ≃ Lf (LfX ∨ LfY ). Note that a homotopy colimit of local
spaces need not be local again. Note also that the interaction of homo-
topy limits and localizations is not as easy as the homotopy colimit case.
Although we have seen in Proposition 2.10, that the homotopy fibre of a
morphism of local spaces is local, it is not the case that the homotopy fi-
bre of the localization of a morphism g is the localization of the homotopy
fibre of g. The rest of this paper is devoted to studying under which circum-
stances a homotopy pullback diagram in ∆opShv(T ) is a homotopy pullback
diagram in a localization of ∆opShv(T ).

3. Fibrewise Localization for Simplicial Sheaves

In this section, we recall the existence of fibrewise versions of simplicial
coaugmented functors in categories of simplicial sheaves. For a treatment of
fibrewise localization for simplicial sets resp. topological spaces, see [DF96,
Section 1.F] and [Hir03, Chapter 6].

3.1. Fibrewise Localization: The main motivation for studying fibrewise
localization is a gain of control on the behaviour of a fibration under a lo-
calization functor. For a locally trivial morphism f : E → B of topological
spaces with fibre F , one can explain quite easily how to construct the fi-
brewise localization: Take a trivialization of f , i.e. a covering Ui of X over
which f |Ui

: E×B Ui
∼= Ui×F → Ui. Then apply the simplicial coaugmented

functor: On the level of the trivialization one simply replaces the space F

by the space LF . On the level of transition morphisms, one applies the
functor L to the transition map. For this to work we need the functor L to
be continuous. This produces an explicit recipe to construct an LF -bundle
over B.
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In this section we recall the construction of fibrewise localizations for
general model categories of simplicial sheaves. We first define precisely what
we mean by fibrewise application of functors.

Definition 3.1. Let L be a simplicial coaugmented functor on ∆opShv(T ).
We say that L can be applied fibrewise resp. that there is a fibrewise version
of L, if every fibre sequence of simplicial sheaves F → E → B can be mapped
via a homotopy commutative diagram

F //

��

E //

��

B

��

LF // E // B

to a fibre sequence with fibre LF over B.
Let Lf be a localization functor. Then we say that Lf admits a fibrewise

version, if there exists a homotopy commutative diagram as above, where the
morphism E → E is an f -local weak equivalence.

Remark 3.2. There is a difference between the above notion of fibrewise
localization and the one used in [DF96]. Whereas Dror Farjoun requires a
concrete model for the fibrewise localization, the morphism E → B being a
fibration with fibre LF , we only require the existence of a fibre sequence. This
is weaker, in that LF need not actually be the fibre of a fibrant replacement
of E → B. For the homotopy groups this is not essential.

We want to note that pointed and unpointed simplicial sets behave rather
differently with respect to fibrewise localization. For unpointed simplicial
sets, one can construct fibrewise localizations in various different ways,
whereas for pointed simplicial sets, one always has to make special con-
nectivity assumptions on the base resp. the fibre because usually there is no

continuous choice of base point in a nontrivial fibre sequence F → E
p
−→ B.

This difference between the unpointed and the pointed setting is also
illustrated by [Hir03, Proposition 6.1.4]. See also the discussion in [DF96,
Remark 1.A.7].

In [DF96], several constructions of fibrewise localization are given. All of
them can be translated to categories of simplicial sheaves on a Grothendieck
site T . The key input in all of these methods is again the homotopy dis-
tributivity from [Wen09]. Here, we focus on the method used by Chataur
and Scherer [CS06]. For the other methods, see [Wen07].

3.2. Fibrewise Nullification after Chataur and Scherer: One of the
versions of fibrewise localization [DF96, Proposition 1.F.7] has been ex-
tended to general model categories by Chataur and Scherer [CS06]. The
advantage of this construction is that it works even for functors which are
not simplicial resp. continuous. On the other hand, this approach works for
pointed spaces only under the assumption that the fibre is connected.

There are some axioms that are discussed and used in [CS06]. We re-
mark that the cube axiom used in that paper is nothing else but Mather’s
cube theorem Corollary 2.3, and the ladder axiom is a form of homotopy
distributivity applied to sequential colimit diagrams saying that sequential
homotopy colimits commute with homotopy pullbacks. From our discussion
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in [Wen09, Section 3] we know that both axioms are satisfied in any model
category of simplicial sheaves.

Now we can state the fibrewise localization result of Chataur and Scherer,
cf. [CS06, Theorem 4.3]

Theorem 3.3. Let M be a model category which is pointed, left proper,
cellular and in which the cube axiom and the ladder axiom holds. Let Lf :
M→M be a localization functor which preserves products, and let p : F →
E → B be a fibre sequence inM. Then there exists a fibrewise f -localization
of p.

We first note that localization functors of simplicial sheaves commute
with finite products as remarked in the proof of [MV99, Lemma 2.2.32], cf.
Proposition 2.10.

A result similar to the above can be formulated for fibre sequences over
simply-connected base spaces, replacing the product condition on Lf by the
join axiom, cf. [CS06].

For the convenience of the reader, we provide a of the Chataur-Scherer
result, specialized to the simplicial sheaf setting. Note that although we are
working in an unpointed setting, we will speak of fibre sequences. What we
mean is that F is a homotopy fibre of p : E → B over a fixed base point
b ∈ B, i.e. the obvious diagram is a homotopy pullback. This makes sense
even in an unpointed setting.

Proposition 3.4. Let T be a Grothendieck site, and let Lf : ∆opShv(T )→
∆opShv(T ) be a localization functor. For any fibration p : E → B and
any base point b ∈ B there exists a fibrewise f -localization of the homotopy
pullback p−1(b)→ E → B.

Proof. Let F → E
p
−→ B be a fibre sequence, assuming that p is a fibration

of fibrant simplicial sheaves on T , and that F = p−1(b) for a chosen base
point b ∈ B.

(i) We construct a new fibre sequence. This argument is the same as
[CS06, Proposition 4.1]. We assume without loss of generality that the aug-
mentation map F → LfF is a cofibration. Then we construct the following
diagram:

F
≃f

//

��

LfF //

��

F1

��

E
≃f

//

p

��

E ∪F LfF
≃

//

q

��

E1

p1

��

B =
// B =

// B.

The left column is the original fibre sequence. The space in the centre is
constructed as the pushout of F → E along the augmentation F → LfF .
We have assumed that this is a cofibration, and therefore the centre space
is also a homotopy pushout. The map q comes from the universal property
of the pushout. Then we factor q : E ∪F LfF → B as a trivial cofibration
E ∪F LfF → E1 and a fibration p1 : E1 → B. Finally, F1 is the fibre of p1
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over b ∈ B. An argument similar to the one applied in [Wen09, Proposition
4.22] implies that F1 is the homotopy pushout of the homotopy fibres of
LfF ← F → E. Therefore the composition F → LfF → F1 is an f -local
weak equivalence.

(ii) The problem is that the rectification of LfF → E ∪F LfF → B to
the fibre sequence F1 → E1 → B destroys the property of the fibre being f -
local. Therefore one has to use something similar to a small object argument,
constructing ever better approximations to the total space of the fibrewise
localization.

Transfinitely iterating this construction until a well-defined ordinal κ, see
(iii), produces telescopes E → E1 → E2 → · · · resp. F → F1 → F2 → · · · .
Applying Puppe’s theorem 2.4 to the diagram

E //

p

��

E1
//

p1

��

E2
//

p2

��

· · ·

B =
// B =

// B =
// · · ·

we find that the homotopy fibre of (hocolimκ Ei) → B is hocolimκ Fi. We
therefore have a morphism of fibre sequences

F //

��

E //

��

B

=

��

hocolimκ Fi
// hocolimκ Ei

// B.

Since F → Fi and E → Ei are local weak equivalences by (i), the vertical
maps in the above are local weak equivalences. Moreover, any Fi → Fi+1

factors through LfF and therefore we have a local weak equivalence LfF ≃
hocolimκ Fi.

(iii) The size issues differ from the argument in [CS06]. There a count-
able number of steps is used, and the set of detectors is used to make sure
countably many steps are enough. In an arbitrary topos, this does not work,
since a set of detectors in the sense of [CS06, Definition 1.1] is the same as
a set of compact generators in the sense of [Jar09]. However, we can choose
a cardinal in a similar way as [GJ98]: We let f : A→ B be a cofibration of
simplicial sheaves and assume Lf is the f -localization functor constructed in
[GJ98, Theorem 4.4]. Then let α be a cardinal which is an upper bound for
the cardinality of the sets of morphisms of the site T and all sets of sections
of the simplicial sheaf B. The cardinal up to which the construction in (ii)
has to be iterated is any cardinal κ with κ > 2α. �

Remark 3.5. Note that the above construction is functorial since we have
only used universal constructions such as the localization augmentation F →
LfF and pushouts along this morphism.

3.3. Fibrewise Localization via Classifying Spaces: We return to the
remark made earlier that in the locally trivial case, it is quite easy to con-
struct the fibrewise version explicitly. If the fibre sequence F → E → B is
locally trivial, it is classified by a morphism B → B hAut• F . Composing
with the morphism of classifying space induced from the coaugmentation,
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we obtain a morphism B → B hAut• F → B hAut• LF . Pulling back the
universal LF -fibre sequence along this morphism produces an LF -fibre se-
quence LF → E → B over B, which is the fibrewise localization of the
fibre sequence we started with. This implies that in the above situation any
F -fibre sequence of simplicial sheaves F → E → B can be mapped via a
homotopy commutative diagram

F //

��

E //

��

B

��

LF // E // B

to a fibre sequence over B, i.e. a fibrewise localization exists. Note that
we can get such a morphism between the classifying spaces by applying
Proposition 3.4 to the universal fibre sequence F → EfF → BfF . Then we

obtain a new fibre sequence LF → EfF → BfF which then is classified by
a morphism of the classifying spaces BfF → BfLF .

3.4. Some Consequences: The existence of a fibrewise localization func-
tor implies the following two results from [DF96, Section 1.H]. It also yields
the characterization of nullification functors given later on.

Corollary 3.6. If F → E → B is a fibre sequence with LfF ≃ ∗ and B

path-connected, then Lf (p) : LfE → LfB is a homotopy equivalence, and
∗ → LfE → LfB is a fibre sequence.

Note that if we apply the pointed localization, we have to assume ΩB

path-connected. For the unpointed version, the unconditional statement
obtains, since the unpointed localization functor localizes the induced fibre
sequences over each connected component of B. Of course this statement can
also be proven without the use of fibrewise localization, cf. [MV99, Example
3.2.3]. Note however that in the above corollary there is no restriction like
being locally trivial in the Nisnevich topology, the only restriction is that
F → E → B is a fibre sequence.

Corollary 3.7. Let LW be the W -nullification functor with respect to any
space W . Let X be a pointed path-connected space. Then we have

LW ALW
X ≃ ∗,

where ALW
X is the homotopy fibre of the nullification X → LW X.

The proofs carry over verbatim from [DF96, Section 1.H], as we have es-
tablished all the necessary facts about the nullification functors for simplicial
sheaves.

4. Characterizing Nullification Functors

In this section, we discuss properties which distinguish nullification func-
tors from general localization functors. A characterization result for nullifi-
cation functors of simplicial sets was given in [BF03, Theorem 2.1]. We will
show in this section, that the result also holds for simplicial sheaves. The
main technical tool are the fibrewise localizations from the previous section.
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The assumption that f : X → Y is null-homotopic, i.e. the localization
functor Lf is equivalent to a nullification L∗→W , is essential in the charac-
terization of local fibrations. Theorem 4.7 provides some evidence for this.

We first discuss the two notions of behaviour of fibre sequences under
localizations. Recall from Section 2 that there were two approaches to lo-
calization: One via an axiomatic definition of localization functors, and
another one via the definition of an f -local model structure. These two ap-
proaches have a different terminology in dealing with local fibre sequences.
Looking at the localization functors approach, the natural question to ask
is if a fibre sequence is preserved by a localization functor Lf . On the other
hand, the natural question for the model category approach is rather if a
given sequence is a fibre sequence in the local model structure, using [Hov98,
Definition 6.2.6]. Although it seems almost clear that these two terminolo-
gies basically mean the same thing, we still give a proof of the fact. This
fact also generalizes to homotopy pullbacks in case the local model structure
is proper.

4.1. Localization of Fibre Sequences: In this paragraph, we show that
to determine if F → E → B is a fibre sequence in a localized model structure,
it suffices to check if LE → LF → LB is also a fibre sequence. A similar
statement holds for homotopy pullbacks and their localizations. Note, that
the fibre sequence statement does not depend on properness of the local
model structure, since the localization of the fibre sequence automatically
yields morphisms between fibrant objects. However, the result for homo-
topy pullbacks is not unconditional, as we need properness of both C and its
Bousfield localization LfC to even talk about homotopy pullbacks. There-
fore the homotopy pullback part seems to depend on the fact that Lf is a
nullification.

We begin with a definition of what it means for a fibre sequence resp. a
homotopy pullback to be preserved by a localization functor.

Definition 4.1. Following [BF03] we say that a fibre sequence F → E → B

is preserved by a localization Lf if applying Lf to p yields a morphism of
fibre sequences:

F //

��

E //

��

B

��

LF // LE // LB

Similarly, a homotopy pullback is preserved by the localization Lf if apply-
ing Lf to the homotopy pullback diagram yields a (homotopy) commutative
diagram of homotopy pullbacks:
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X //

��

!!DD
DD

DD
DD

Y

��

""EEE
EEE

EE

LfX //

��

LfY

��

Z //

!!DD
DD

DD
DD

W

""EE
EE

EE
EE

LfZ // LfW

The next proposition shows that being an f -local fibre sequence is the
same as being preserved by a localization.

Proposition 4.2. Let p : F → E → B be a fibre sequence in a proper
model category C. Let f : A→ B be a morphism with associated localization
functor Lf . Then p is preserved by Lf if and only if p is a fibre sequence in
the f -local model structure.

Proof. Assume that p is preserved by Lf . Then we have a commutative
diagram of fibre sequences:

F //

f

��

E
p

//

��

B

��

LF // LE // LB

The morphism f is equivariant for the holonomy action of ΩB, because
the functor Lf is continuous, and preserves products, cf. Theorem 2.8 and
Proposition 2.10. The fibre sequence LF → LE → LB is a fibre sequence
in the f -local model structure since it is a non-local fibre sequence and both
LE and LB are local, cf. [Hir03, Proposition 3.3.16]. Therefore F → E → B

is also a fibre sequence in the local model structure.
Conversely, let p be an f -local fibre sequence. Then there is an f -local

fibre sequence X → Y → Z where q : Y → Z is an f -local fibration of
f -local fibrant objects. Therefore q is homotopy equivalent to Lfp and we
have hofibLfp ≃ X ≃ Lf hofib p. The latter weak equivalence follows since
X is f -locally equivalent to F . So p is preserved by Lf . �

The following proposition shows that a homotopy pullback is preserved
by localization exactly when it is a homotopy pullback in the local model
structure. This generalizes the previous statement on fibre sequences under
the condition that both the model category C and its Bousfield localization
LfC are proper.

Proposition 4.3. Let the following square be a homotopy pullback in a
proper model category C:

A
φ0

//

g

��

X

h

��

B
φ1

// Y.
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Assume the Bousfield localization LfC is also proper. Then the above dia-
gram is a homotopy pullback in the f -local model structure if and only if its
localization is a homotopy pullback in C.

Proof. We will occasionally refer to the pullback diagram as φ : g → h.
(i) Assume the square above is an f -local homotopy pullback. We can

assume without loss of generality that h is an f -local fibration. To see
this, consider the following diagram obtained by factoring h into the f -local
trivial cofibration a and the f -local fibration c:

A //

g

��

b

##HHHHHHHHH X

h

��

a,≃f

��
@@

@@
@@

@@

B ×Y Z //

{{vvvvvvvvv
Z

c
��~~

~~
~~

~~

B // Y

By assumption the morphism b is an f -local weak equivalence. As we also
assumed functorial factorizations, this diagram continues to commute after
f -localization, and the f -local weak equivalences descend to weak equiva-
lences between the localized objects [Hir03, Theorem 3.2.18]. So the upper
square is a homotopy pullback. It remains to show that the lower square
is, then by the homotopy pullback lemma the localization Lfg → Lfh is a
homotopy pullback. This argument uses properness of LfC since the homo-
topy pullback lemma [GJ99, Lemma II.8.22] only holds in a proper model
category.

(ii) Let h be an f -local fibration, and consider the following diagram:

A //

��

X //

��

LfX

��

B // Y // LfY.

The outer rectangle is an f -local homotopy pullback by the homotopy pull-
back lemma [GJ99, Lemma II.8.22], since the left-hand square is an f -local
homotopy pullback by assumption, and the right-hand square is a homotopy
pullback by [Hir03, Proposition 3.4.8(1)]. By the characterization of f -local
homotopy pullbacks, the morphism A→ LfX ×Lf Y LfB is an f -local weak
equivalence.

Since we assumed h to be an f -local fibration which therefore is preserved
by Lf , cf. Proposition 4.2, we can assume that Lfh is a fibration, and
therefore an f -local fibration [Hir03, Proposition 3.3.16(1)]. By properness
the following pullback is also an f -local homotopy pullback:

LfB ×Lf Y LfX //

��

LfX

Lfh

��

LfB
Lf φ1

// LfY
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By 2-out-of-3, all morphisms in the composition A → LfA → LfB ×Lf Y

LfX are f -local weak equivalences, where the latter map is the universal one
from the definition of pullbacks. By assumption, Lfh is an f -local fibration,
so is LfB ×Lf Y LfX → LfB, and in particular LfB ×Lf Y LfX is f -local.
Using again [Hir03, Theorem 3.2.18], LfA → LfB ×LfY LfX is a weak
equivalence, which readily implies (using properness) that Lfg → Lfh is a
homotopy pullback.

(iii) Assume now Lfg → Lfh is a homotopy pullback. Factor h into an
f -local trivial cofibration a and an f -local fibration c. We need to prove that
the pullback map b : A→ B×Y X is an f -local weak equivalence. Consider
the following diagram:

LfA //

Lf b

&&MMMMMMMMMM

Lf g

��

LfX

Lf a

""FFFFF
FFF

Lf h

��

Lf (B ×Y Z) //

f

��

LfZ

d

��

LfB ×Lf Y X̃ //

xxrrrrrrrrrr
X̃

e
||yy

yy
yy

yy
y

LfB
Lfφ1

// LfY

Since we can not guarantee that Lfc is again an f -local fibration, we have
to factor it as f -local trivial cofibration d followed by the f -local fibration
e. We have by construction that the square φ∗

1c→ c is an f -local homotopy
pullback, and using (ii), the square Lf (φ∗

1c)→ Lf c is a homotopy pullback.

Therefore f : Lf (B ×Y Z) → LfB ×Lf Y X̃ is a weak equivalence. By
assumption, Lfg → Lfh is a homotopy pullback, so the weak equivalence
d ◦ Lfa induces a weak equivalence f ◦ Lfb, which by 2-out-of-3 implies
that Lfb is a weak equivalence. Both LfA and Lf (B ×Y Z) are f -local, so
employing [Hir03, Theorem 3.2.18] again, we find that b : A → B ×Y Z is
an f -local weak equivalence, which proves the claim.

�

Remark 4.4. Note that the properness hypothesis in the above result is
really necessary: If any homotopy pullback in the proper model category C
with one morphism an f -local fibration is preserved by f -localization, then
the Bousfield localization LfC is already proper. The following is a short
argument for this.

Let C be a proper model category, and let the following homotopy pullback
in C be given:

A
φ0

//

g

��

X

h

��

B
φ1

// Y.
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Let φ1 be an f -local weak equivalence, let h be an f -local fibration. We
have assumed that the homotopy pullback is preserved by f -localization. The
morphism Lfφ1 is a weak equivalence, and by properness of C, the morphism
Lfφ0 is also a weak equivalence. Therefore φ0 : A → X is an f -local weak
equivalence, and we have proved properness of the f -local model structure.

The argument that a homotopy pullback with one weak equivalence has
another parallel weak equivalence is as follows: Consider the following dia-
gram:

A
j

//

d
��

X

c

��

B ×Y X̃
k //

��

X̃

p

��

B
i

// Y

We assume the outer rectangle is a homotopy pullback. Then we consider
a factorization of X → Y as a trivial cofibration c and a fibration p. We
assume i is a weak equivalence and we want to show j is a weak equiva-
lence. Then k is a weak equivalence by properness. Since the rectangle is a
homotopy pullback, the morphism d : A → B ×Y X̃ is a weak equivalence.
By 2-out-of-3 and since c is a weak equivalence we obtain that j is a weak
equivalence.

4.2. Characterizing Nullifications: This paragraph is concerned with
special properties that distinguish nullification functors, i.e. localizations
with respect to null-homotopic morphisms W → ∗, from localizations with
respect to general morphisms f : A→ B. This is a generalization of results
that appeared in [BF03] to the case of simplicial sheaves. The first is a
simple lemma appearing as [BF03, Lemma 1.7].

Lemma 4.5. Let T be a Grothendieck site, and let F → E
p
−→ B be a

fibre sequence in ∆opShv(T ). Let Lf be an arbitrary localization functor on

∆opShv(T ). Consider a fibrewise localization LF → E
p
−→ B. Then Lf

preserves p if and only if Lf preserves p.

Proof. The definition of fibrewise localization, cf. Definition 3.1, requires
that the morphism a : E → E is an f -local weak equivalence, hence Lfa :

LfE → LfE is a weak equivalence and therefore hofib p ≃ hofib p. �

We need yet another lemma on ladder diagrams of simplicial sheaves,
which is derived from the corresponding fact on simplicial sets:

Lemma 4.6. Let T be a site, and let a commutative ladder diagram of fibre
sequences be given:

F1

f

��

// E1
//

e

��

B1

b
��

F2
// E2

// B2
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Assume that f and b are weak equivalences. Then e is also a weak equiva-
lence.

Proof. Fibre sequences are preserved by passing to points, cf. [Wen09,
Proposition 3.17]. Also weak equivalences are determined on points by
definition. It therefore suffices to prove the above assertion for simplicial
sets.

If we consider the above diagram in the category of simplicial sets, then
we can assume without loss of generality that B1 → B2 is a weak equivalence
of connected simplicial sets. Then we have a diagram of the corresponding
long exact sequences

· · · // πn(F1)

πn(f)
��

// πn(E1) //

πn(e)
��

πn(B1)

πn(b)
��

// · · ·

· · · // πn(F2) // πn(E2) // πn(B2) // · · ·

Using the five lemma together with the fact that πn(f) and πn(b) are iso-
morphisms for all n ≥ 0, we obtain that πn(e) is an isomorphism for all
n ≥ 0. Hence e is a weak equivalence. �

The following characterization of nullification functors was proved for the
case of simplicial sets resp. topological spaces in [BF03, Thm. 2.1]. Using
the elementary facts and the existence of fibrewise localization, we find that
it holds for any model category of simplicial sheaves.

Theorem 4.7. Let T be a Grothendieck site, and let f : X → Y be a mor-
phism of simplicial sheaves in ∆opShv(T ). Denoting by Lf the localization
functor, consider the following statements:

(i) Lf is equivalent to a nullification, i.e. there exists a simplicial sheaf
W such that Lf and L∗→W have the same local spaces resp. induce
Quillen-equivalent Bousfield localizations.

(ii) If in any fibre sequence F → E
p
→ B both F and B are local, then so

is E.
(iii) Every fibre sequence with B local is preserved by Lf .
(iv) For every space Z the space LfALf

Z is contractible.

Then (ii), (iii) and (iv) are equivalent, and (i) implies (ii). If we assume
that X and Y are π0-connected, i.e. the sheaves π0(X) and π0(Y ) are trivial,
then (iv) implies (i).

Proof. Note that Lf and Lg for g : ∗ → W have the same local spaces if
and only if the corresponding local model structures are Quillen equivalent.
This can be seen from the following argument: The local model categories
have the same underlying categories, namely the category ∆opShv(T ). The
cofibrations in both model structures are the same, i.e. the monomorphisms
of simplicial sheaves. Then we have that h : X → Y is a f -local weak
equivalence if and only if Lfh : LfX → LfY is a weak equivalence if and
only if Lgh : LgX → LgY is a weak equivalence if and only if h : X → Y

is a g-local weak equivalence. The outer equivalences follow from [Hir03,
Theorem 3.2.18], the inner equivalence is in turn equivalent to the assertion
that Lf and Lg have the same local spaces. Therefore both local model
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structures have the same cofibrations and weak equivalences, therefore also
the same fibrations. Hence the identity on ∆opShv(T ) is both a left and
right Quillen functor.

Now we prove the following implications: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii).
(i) implies (ii) is elementary fact (e.6) in [DF96, Section 1.A.8]. To get

rid of the connectedness assumption, we have to use a slightly extended
argument. This is proved as follows: Let F → E → B be any fibre sequence.
Then the following is also a fibre sequence Hom(W,F ) → Hom(W,E) →
Hom(W,B) for any cofibrant W , [MV99, Lemma 2.1.19]. Moreover, this
holds for any choice of base points, so it does not need connectedness. For
a pointed and connected space X, we have that X is W -local if and only
if Hom∗(W,X) ≃ ∗. If this holds for B and F , then by the long exact
homotopy sequence associated to the Hom-sequence, this also holds for E.
For the general case, we note that the internal hom-functor is coaugmented
X → Hom(W,X) by the constant maps. Therefore we obtain a morphism
of fibre sequences

F

��

// E //

��

B

��

Hom(W,F ) // Hom(W,E) // Hom(W,B).

Now X is W -local if and only if X → Hom(W,X) is a weak equivalence.
Assuming F and B are W -local in the above diagram, the left and right
vertical morphisms are weak equivalences. This implies that also the mor-
phism E → Hom(W,E) is a weak equivalence by Lemma 4.6. Therefore E

is W -local.
For (ii) implies (iii) it suffices to show by Lemma 4.5 that the fibrewise

localization LfF → E
p
→ B is preserved. But this follows from (ii), since

both B and LfF , hence by assumption also E are local. Note that this is
the place where we use the existence of fibrewise localization for simplicial
sheaves!

(iii) implies (iv): By assumption the fibre sequence ALf
Z → Z → LfZ

is preserved by Lf , so LfALf
Z is the fibre of the homotopy equivalence

LfZ → LfLfZ, hence contractible.
(iv) implies (ii): Let F → E → B be a fibre sequence with F and B local.

Then E → B factors as lE : E → LfE and q : LfE → B, by (homotopy)
universality of Lf . Consider the following diagram:

F
m //

��

hofib(q) //

��

∗

��

E
lE

// LfE
q

// B

From [Hir03, Proposition 3.3.16], a fibration between local objects is an f -
local fibration. Therefore hofib(q) is local. This also implies that hofib(m)
is local, since F is local by assumption. Now we apply the (non-local!) ho-
motopy pullback lemma: The outer rectangle is a homotopy pullback, since
F → E → B is a fibre sequence. The same holds for the right square. So
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the left square is a homotopy pullback and therefore ALf
E = hofib(lE) ≃

hofib(m), which is local. Hence ALf
E ≃ LfALf

E is contractible by as-
sumption. Then lE is a weak equivalence, so E is already local. The above
is independent of the choice of base points, since the homotopy pullback
argument and the comparison of the spaces can be done at the points of the
topos, and we apply an unpointed localization functor, which localizes all
components of a space.

(iv) implies (i): We start with the remark, that if f : X → Y is a mor-
phism of π0-connected simplicial sheaves, then LfZ is π0-connected for any
π0-connected simplicial sheaf Z. This can be seen by the direct construction
of Lf e.g. in [GJ98, Section 4]. The functor Lf is constructed as transfinite
composition of pushouts

X ×∆n ∪X×∂∆n Y × ∂∆n //

��

Lα
f Z

��

Y ×∆n // Z ′,

where Lα+1
f Z = Ex∞T Z ′ and Ex∞T is a functorial fibrant replacement for

the simplicial model structure on ∆opShv(T ). These pushouts can be com-
puted at the points, and in particular x∗(Lα

f Z) and x∗(Y ×∆n) are connected

simplicial sets for any point x of the topos. The pushout Z ′ of these sim-
plicial sets is again connected, and a fibrant replacement does not change
the homotopy types at the points. Therefore LfZ is π0-connected for any
π0-connected simplicial sheaf Z, in particular for X and Y .

Now we can proceed with the argument from [BF03, Theorem 2.1]: From
Proposition 2.11 we know that Lf (X ∨ Y ) ≃ Lf (LfX ∨ LfY ). Define W =
ALf

X ∨ ALf
Y . By assumption and the formula above, LfW ≃ ∗, so any

Lf -local space is also W -local.
Letting g : W → ∗, we have ∗ ≃ LgW ≃ Lg(LgALf

X ∨ LgALf
Y ), the

latter weak equivalence again from Proposition 2.11. From the definition of
locality, LgZ ≃ ∗ if and only if Z → ∗ is an g-local weak equivalence if and
only if Hom∗(Z,P ) ≃ ∗ for any g-local space P . Note that this uses the
π0-connectedness of Z. It follows that

Hom∗(LgALf
X ∨ LgALf

Y,LgALf
X) ≃ ∗.

Because the morphisms ∗, id∨∗ : LgALf
X ∨ LgALf

Y → LgALf
X are then

homotopic, this implies LgALf
X ≃ ∗. The same holds for ALf

Y . Consider
the commutative diagram

LgX
Lgf

//

��

LgY

��

LgLfX
LgLf f

// LgLfY.

Both vertical arrows are homotopy equivalences, since their homotopy
fibres are contractible, cf. Corollary 3.6. Lff is a homotopy equivalence,
because it is an f -local equivalence of f -local spaces, cf. [Hir03, Theorem
3.2.18]. Therefore, LgLff is a weak equivalence and by 2-out-of-3 also Lgf .
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Thus every W -local space is Lf -local and the two localization functors agree
up to homotopy. �

Remark 4.8. It seems plausible that the implication from (iv) to (i) also
holds under weaker connectedness assumptions than used above. In view
of [MV99, Corollary 2.3.22], we know that for an interval I on site, the
localization LIX of a π0-connected X is again π0-connected. The interval
A

1 in SmS is not π0-connected, so the π0-connectedness of the spaces X and
Y in Theorem 4.7 is certainly not necessary.

5. Characterizing Local Fibrations

We now finally give the criterion for a fibre sequence to be preserved by
a nullification. There is one preparatory lemma we need, which is a sheaf
version of [BF03, Lemma 3.2]. All we need for the simplicial set proof of
this lemma to work also for simplicial sheaves is Theorem 4.7.

Lemma 5.1. Let T be a Grothendieck site, and let Lf be a nullification func-
tor on ∆opShv(T ). Consider the following diagram of simplicial sheaves, in
which the square is a homotopy pullback and the lower sequence is a fibre
sequence with local base C:

D //

q

��

E

p

��

A // B
r // C

Then there is a homotopy equivalence of homotopy fibres

hofib(Lq) ≃ hofib(Lp),

and p is preserved by L if and only if q is.

Proof. Consider the following diagram:

D

q

��

// E

p

��

A //

��

B

r

��

∗ // C

As A→ B → C is a fibre sequence, the lower square is a homotopy pullback.
By the homotopy pullback lemma [GJ99, Lemma II.8.22], the sequence D →

E
r◦p
−→ C is also a fibre sequence. Since Lf is a nullification and C is f -local,

the two fibre sequences r and r ◦ p are preserved by L, cf. Theorem 4.7.
Then we consider the localized diagram
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LfD

Lf q

��

// LfE

Lfp

��

LfA //

��

LfB

Lfr

��

∗ // LfC

By the pullback lemma and properness of the (non-local!) model struc-
ture, the upper square is a homotopy pullback. This proves the assertion
hofib(Lfq) ≃ hofib(Lfp). Also, hofib(p) ≃ hofib(q), because the non-
localized upper square was assumed to be a homotopy pullback, and this
implies that p is preserved by L precisely when q is. �

The following theorem provides a criterion for locality of fibre sequences
which appeared in [BF03, Theorem 4.1] for the case of simplicial sets resp.
topological spaces. Although the statement below is more general and ap-
plies to general model categories of simplicial sheaves, the proof is still al-
most the original one. Note that we need the hypothesis that f : X → Y is
null-homotopic in order to apply the previous lemmas.

Theorem 5.2. Let T be a site, and let f : X → Y be a null-homotopic

morphism of simplicial sheaves in ∆opShv(T ). Furthermore, let F → E
p
→

B be a fibre sequence.
Let LfF → E → B be a fibrewise localization of p, and let LfF → E′ →

ALf
B be the pullback of this fibrewise localization of p to ALf

B = hofib(B →
LfB). Then the following are equivalent:

(i) The fibre sequence p is an f -local fibre sequence,
(ii) the fibre sequence p is preserved by Lf ,
(iii) E′ ≃ LfF × ALf

B and therefore there is an f -local weak equivalence
E′ ≃ LfF , and

(iv) the following composition of morphisms is null-homotopic:

ALf
B → B

p
−→ BfF → BfLfF.

The first morphism in the above composition is the natural inclusion
of the homotopy fibre ALf

B = hofib(B → LfB) into B, then follows

the morphism B → BfF classifying the fibre sequence p, and finally
the morphism BfF → BfLfF induced by fibrewise localization.

Proof. (i) and (ii) are equivalent by Proposition 4.2. (iii) and (iv) are equiv-
alent, as (iv) describes via morphisms on classifying spaces what the con-
struction in (iii) does on the level of fibre sequences.

We write L = Lf omitting f from the notation. We know from Lemma 4.5
that p is preserved by L if and only if p is. Applying Lemma 5.1 to the
diagram

E1
//

q

��

E

p

��

ALB
dB

// B
lB

// LB
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we see that p is preserved if and only if q is. Since LALB is contractible, q

is preserved if and only if there is a map of fibre sequences:

LF //

=

��

E1

��

// ALB

��

LF
≃

// LE1
// ∗

Such a morphism of fibre sequences can only exist if the upper fibre sequence
is trivial, i.e. there is a weak equivalence E1 ≃ LF × ALB. By the Dold
theorem 5.4 discussed in the next paragraph, the fibre sequence q is equiv-
alent to a trivial one if and only if the inclusion of the fibre LF →֒ E1 has
a left homotopy inverse. Therefore q is preserved by L if and only if q is
equivalent to a trivial fibre sequence. �

We can even prove a more general result describing sharp conditions under
which a homotopy pullback of simplicial sheaves descends to a nullification
model structure.

Corollary 5.3. Let T be a site and let a homotopy pullback of simplicial
sheaves in ∆opShv(T ) be given:

X
i //

j

��

Y

q

��

Z p
// W.

Furthermore, let f : A → B be a null-homotopic morphism of simplicial
sheaves in ∆opShv(T ). Assume that the f -local model structure is proper.
Then the above homotopy pullback is an f -local homotopy pullback if and
only if the fibrewise localization of the fibre sequence hofib q → Y → W

splits over ALf
Z if and only if the fibrewise localization of the fibre sequence

hofib p→ Z →W splits over ALf
Y .

Proof. The proof is similar to the one of Theorem 5.2. Assume the homotopy
pullback is f -local. By properness, it suffices to check one factorization, i.e.
one of the conclusions, cf. [GJ99, Lemma II.8.18]. Since the diagram is a
homotopy pullback, we have a fibre sequence hofib q → Y → W . We also
consider the local fibre sequence hofibLq → LY → LW . It is not necessary
that both agree, i.e. that L preserves the fibre sequence q. We pull these
two fibre sequences back along p : Z → W . Since we assumed the diagram
is a local homotopy pullback, the pullback of Lq : LY → LW is locally
weakly equivalent to j : X → Z, which is the pullback of the fibre sequence
q. Therefore the pullback of the fibre sequence q along Z →W is preserved
by L, and the equivalence of (ii) and (iii) in Theorem 5.2 implies that the
pullback of q along Z →W splits over the non-local part of Z. This is what
we wanted to prove.

Assume that the fibrewise localization of hofib q → Y → W splits over
ALf

Z. Then the pullback of hofib q → Y → W to Z is an f -local fibre
sequence by Theorem 5.2. This implies that after replacing q by a local
fibration Ỹ →W , there is a local weak equivalence Ỹ ×W Z ≃ X. Therefore
the homotopy pullback above is also a local homotopy pullback. �
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5.1. The Dold Theorem: For the proof of Theorem 5.2, we needed a result
characterizing trivial fibre sequences. This was originally proved by Dold
[Dol63], and we show that it also holds in categories of simplicial sheaves.
This is again proved by looking at the points of the topos.

Proposition 5.4. Any fibre sequence F → E → B in a category ∆opShv(T )
of simplicial sheaves is trivial in the sense that there is a weak equivalence
E ≃ F ×B, if and only if the inclusion of the fibre admits a left homotopy
inverse.

Proof. One direction is easy: Let F → E → B be a fibre sequence which
is equivalent to a trivial one. We consider a nice model, i.e. a fibration
p : E → B of fibrant objects and a weak equivalence F → p−1(∗), and we
assume F fibrant. By the assumption that p is trivial, there is a homotopy
equivalence E → F × B, which composed with the projection F × B → F

provides the left homotopy inverse of i : F → E.
For the converse, let a fibration of fibrant objects p : E → B be given,

together with a morphism l : E → F = p−1(∗). This yields a morphism
l × p : E → F × B. We assume that l is left homotopy inverse to i :
p−1(∗)→ E and we want to show that l× p is a weak equivalence. Assume
for now that T has enough points. By definition of the injective model
structure, it suffices to check this on points. Let x be any point of the
topos, and consider x∗(F ) → x∗(E) → x∗(B). This is a fibre sequence by
[MV99, Lemma 2.1.20]. Moreover, the morphism x∗(l) : x∗(E)→ x∗(F ) is a
left homotopy inverse of x∗(p). By the usual Dold theorem [Dol63, Theorem
6.1] the morphism x∗(l×p) = x∗(l)×x∗(p) is a weak equivalence of simplicial
sets. Therefore, l × p induces a weak equivalence for any point x of T and
thus is a local weak equivalence.

More generally, since we allowed ourselves to choose a nice model, a weak
equivalence can be check on sections: If (l× p)(U) : E(U)→ (F ×B)(U) is
a weak equivalence for any U ∈ T , and all of E, B and F are fibrant, then
l× p is a weak equivalence [MV99, Lemma 2.1.10]. This again follows from
the usual Dold theorem for simplicial sets. The latter argument of course
works for any topos, even the ones without points. �

5.2. Pullback Stability: In the following L = LW will be a nullification
functor. The following is an immediate corollary to Theorem 5.2. Again the
proof follows the proof of [BF03, Theorem 0.2].

Proposition 5.5. Let T be a Grothendieck site, and let L = LW be a

nullification functor on ∆opShv(T ). If a pointed fibre sequence F → E
p
→ B

of simplicial sheaves is preserved by L, then any pointed fibre sequence p1

induced from p by pullback along f : X → B is also preserved by L.

Proof. Let F → E
p
−→ B be a fibre sequence, and let f : X → B be a

morphism of simplicial sheaves. Then the fibre sequence p is classified by a
morphism p : B → BfF , and the pullback of p along f : X → B is classified
by the composition X → B → BfF . By Theorem 5.2, it suffices to show
that if the composition

ALB → B → BfF → BfLF
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is null-homotopic, then so is the composition

ALX → X → B → BfF → BfLF.

This follows since we have a commuting square

ALX //

��

ALB

��

X // B,

which is obtained by taking the homotopy fibres of the coaugmentation
morphisms X → LX resp. B → LB. �

It is also possible under some connectedness assumptions to prove this
result in a way similar to [BF03, Proposition 3.1].

6. Nullifications and Properness

Denis-Charles Cisinski has kindly pointed out to me that (iii) in the above
Theorem 4.7 holds if we know that both the original and the local model
category are proper. This basically raises the question of the relation be-
tween nullification functors Lf and properness of the f -local model category,
which we partially answer below.

Cisinski’s argument that Theorem 4.7 (iii) follows from properness runs
something like this: Consider a local and fibrant space B and a simplicial

fibre sequence F → E
p
−→ B over it. We want to show that F is the f -local

homotopy fibre of p. Using properness of the f -local model structure, it
suffices to take a factorization of ∗ → B as an f -local trivial cofibration
c : ∗ → B̃ and an f -local fibration q : B̃ → B, and to prove that the induced
morphism d : F → B̃×B E is an f -local weak equivalence, cf. [GJ99, Section
II.8]. The situation is depicted in the following diagram:

F
d //

��

B̃ ×B E //

��

E

p

��

∗
c

//
B̃ q

// B

Since B̃ is f -locally contractible but also local, it is contractible, i.e. c

is a (non-local) weak equivalence. Since the outer square is a (non-local)
homotopy pullback by definition, the right one as well, so the left square is a
(non-local) homotopy pullback. Then the (non-local) weak equivalence ∗ →

B̃ pulls back to an (non-local) and therefore also f -local weak equivalence

d : F → B̃ ×B E. This follows from properness of the non-local model
structure. The f -local homotopy fibre of p is B̃ ×B E and we have shown
it f -locally is the same as F . Therefore F → E → B is an f -local fibre
sequence.

Under suitable assumptions on connectedness of f , we now obtain the fol-
lowing corollary. Probably this can also be obtained under weaker assump-
tions, one of the most interesting cases being a morphism of representable
objects f : U1 → U2 in T .
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Corollary 6.1. Let T be a Grothendieck site, and let f : X → Y be a
morphism of π0-connected simplicial sheaves in ∆opShv(T ). If the f -local
model structure on ∆opShv(T ) is right proper, then there exists a simplicial
sheaf W such that the localization functors Lf and LW are equivalent.

Proof. Cisinski’s argument above shows that if the f -local model structure
is proper, then (iii) in Theorem 4.7 holds. By Theorem 4.7, the localization
has to be equivalent to LW for some simplicial sheaf W . �

Using the characterization of properness due to Cisinski in [Cis02], we
can also prove the other direction:

Corollary 6.2. Let T be a Grothendieck site, and let f : X → Y be a
morphism of simplicial sheaves on T . If f is null-homotopic, then the local
model structure Lf∆opShv(T ) is proper.

Proof. Using [Cis02, Theorem 4.8], it suffices to show that for a fibration
p : E → B with fibrant base B, for any f -local weak equivalence i : X → Y

and every morphism u : Y → B, the morphism j : E ×B X → E ×B Y is
also an f -local weak equivalence.

By Theorem 4.7, the fibre sequence hofib(p) → E → B is preserved by
f -localization. By Proposition 5.5, the same also holds for the pulled-back
fibre sequences hofib(p)→ E ×B Y → Y and hofib(p)→ E ×B X → X. We
therefore obtain a commutative ladder of fibre sequences:

Lf hofib(p) //

��

Lf (E ×B X)

��

// LfX

��

Lf hofib(p) // Lf (E ×B Y ) // LfY.

It is clear that the morphism on the fibres is a weak equivalence, and since i

is an f -local weak equivalence, Lf i : LfX → LfY is also a weak equivalence.
From Lemma 4.6, we conclude that Lf (E ×B X)→ Lf (E ×B Y ) is a weak
equivalence. Therefore j is an f -local weak equivalence.

Note that all the results cited from Section 4 do not use properness of the
local model structure, only properness of ∆opShv(T ). �

This provides another proof of the properness results from [MV99, The-
orem 2.3.2] resp. [Jar00, Theorem A.5].

7. Application: Fibrations in A
1-Homotopy Theory

In this section, we apply the localization theory developed earlier to dis-
cuss fibrations in A

1-homotopy theory. Hence we specialize to the site
T = Smk of smooth schemes over a field k equipped with the Zariski or
Nisnevich topology. We obtain a model structure of simplicial sheaves
∆opShv(Smk), and apply a Bousfield localization to the scheme A

1
S con-

sidered as constant representable simplicial sheaf. More details on the con-
struction of A

1-homotopy theory can be found in [MV99].
Now recall from [Wen09], that for each simplicial sheaf F , there is a

classifying space of locally trivial fibre sequences with fibre F . We denote
this space by B hAut•(F ), since [Wen09, Theorem 5.8] shows that this space
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can be constructed as the classifying space of the simplicial sheaf of monoids
hAut•(F ) of homotopy self-equivalences of F . We assume here that the fibre
sequences considered are locally trivial in the Nisnevich topology.

The main general result is the following.

Theorem 7.1. Let X be a cofibrant and A
1-local fibrant simplicial sheaf

on Smk. Then B hAut•(X) is A
1-local if and only if the sheaf of homotopy

self-equivalence groups π0(hAut•(X)) is strongly A
1-invariant.

Proof. (i) We first prove that the simplicial sheaf of monoids of homotopy
self-equivalences hAut•(X) is fibrant and A

1-local.
By [MV99, Lemma I.1.8], there is a fibration

Hom(X,Y )→ Y

if Y is fibrant. Thus Hom(X,X) is fibrant if X is fibrant. The simplicial set
hAut•(X)(U) is a union of connected components of Hom(X,X)(U). By
2-out-of-3 for weak equivalences a morphism f : X × U → X × U is a weak
equivalence if it is homotopic to a morphism f ′ : X × U → X × U which is
a weak equivalence. Therefore hAut•(X)(U) consists exactly of the union
of the components of Hom(X,X)(U) which contain weak equivalences.

Consider now the commutative diagram

hAut•(X)(U) //

��

hAut•(X)(U × A
1)

��

Hom(X,X)(U) // Hom(X,X)(U × A
1).

The vertical arrows are the inclusions as described above, and the lower hor-
izontal morphism is a weak equivalence of simplicial sets since we noted that
Hom(X,X) is A

1-local. In particular, the lower morphism induces a bijec-
tion on the connected components. This bijection restricts to a bijection be-
tween the components consisting of weak equivalences: first, any morphism
f : X×U → X×U is a retract of f × id : X×U ×A

1 → X×U ×A
1, there-

fore the preimage of a component in hAut•(X)(U ×A
1) is in hAut•(X)(U).

Similarly, if f is a weak equivalence, then f × id is a weak equivalence. But
then the morphism hAut•(X)(U) → hAut•(X)(U × A

1) is a weak equiva-
lence because it is a bijection on connected components, and the connected
components are connected components of the mapping spaces Hom(X,X),
where we have a weak equivalence. This implies that hAut•(X) is A

1-local
if X is A

1-local.
(ii) By [Mor06b, Theorem 3.46], B hAut•(X) is A

1-local if and only if the
sheaf of groups π0LA1ΩB hAut• X is strongly A

1-invariant. The theorem
follows, if we can prove that the obvious morphism

hAut• X → ΩB hAut• X → LA1ΩB hAut• X

induces an isomorphism of sheaves of groups π0. But the obvious morphism

hAut• X → ΩB hAut• X

is already a weak equivalence of simplicial sheaves, because the stalks of
hAut• X are monoids of homotopy self-equivalences of simplicial sets which
are group-like. Therefore, the morphism induces weak equivalences on the
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stalks, cf. [Rud98, Corollary IV.1.68]. Therefore, ΩB hAut• X is already A
1-

local, hence the localization ΩB hAut• X → LA1ΩB hAut• X is a simplicial
weak equivalence. �

This result has the following consequence:

Corollary 7.2. Let X be a cofibrant, fibrant and A
1-local simplicial sheaf

on Smk for which hAut•(X) is strongly A
1-invariant.

Then we have the following statements:

(i) The universal fibre sequence

X → B(∗,hAut• X,X)→ B hAut• X

is A
1-local.

(ii) Any Nisnevich locally trivial fibre sequence F → E → B such that F

has the A
1-homotopy type of X is also A

1-local.

(iii) Denoting by HA
1

(Y,X) the pointed set of Nisnevich locally trivial fibre
sequences over Y with fibre X up to A

1-equivalence, we have a natural
bijection

HA
1

(−,X) ∼= [−, B hAut• X]A1

Proof. (i) The localization criterion Theorem 4.7 and Proposition 3.4 im-
plies that the universal fibre sequence is A

1-local if (a simplicial fibrant re-
placement of) the classifying space B hAut• X is A

1-local. But B hAut• X

is local since the conditions of Theorem 7.1 are satisfied.
(ii) follows from Proposition 5.5. Any Nisnevich locally trivial fibre se-

quence is a pullback of the universal fibre sequence with fibre F along some
morphism B → B hAut• F . But from (i) it follows that the universal fibre
sequence over B hAut• LA1F ≃ B hAut• X is A

1-local.
For (iii) we first note that [Wen09, Theorem 5.8] yields a bijection

H(−,X) ∼= [−, B hAut• X].

Since B hAut• X is A
1-local, we also have a bijection

[−, B hAut• X] ∼= [−, B hAut• X]A1 .

On the other hand, since B hAut• X is A
1-local, the classifying morphism

B → B hAut• X factors up to homotopy through a morphism LA1B →
B hAut• X. By Theorem 4.7, we can hence assume that the fibre sequence
classified by this consists of A

1-local spaces. Since a morphism between
local spaces is an A

1-weak equivalence if and only if it is a simplicial weak
equivalence, the two equivalence notions for fibre sequences coincide, and

we have the final bijection HA
1

(−,X) ∼= H(−,X). �
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