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1. Hodge complexes

Once we have seen what are the Hodge structures and what we can do with them,
following Beilinson [Bei83], we want to re�ne a little bit the assigment that to each
complex variety X associates a collection of mixed Hodge structures. Namely,
we want to associate to X an element of the derived category of mixed Hodge
structures.

De�nition 1.1. An unshifted A-Hodge complex is a diagram

F ′Q (F ′C,W )

FA

ϕ1

>>

(FQ,W )

ψ1

cc
ϕ2

99

(FC,W, F )

ψ2

ff

where FA is a complex of A-modules, F ′Q of A ⊗ Q modules, (FQ,W ) is a �ltered
complex of A ⊗ Q modules, (F ′C,W ) of C modules and (F ′C,W, F ) is a bi�ltered
complex of C modules. The arrows FA ⊗ Q → F ′Q, FQ → F ′Q, (FQ,W ) ⊗ C →
(F ′C,W ) and (FC,W )→ (F ′C,W ) are (�ltered) quasi-isomorphisms.

This diagram should satisfy

(1) The cohomology groups Hi(FA) are �nitely generated A modules and only
a �nite number of them are di�erent from zero.

(2) For any n ∈ Z consider the �ltered complex (GrWn FC,GrWn F ). In this
complex the di�erential is strictly compatible with the �ltration.

(3) The induced Hodge �ltration together with the isomorphismHi(GrWn FQ)→
Hi(GrWn FC) de�nes a pure A⊗Q-Hodge structure of weight n+ i.

The weight �ltration that appears in the de�nition of unshifted A-Hodge complex
is the one that is simpler to write down for smooth complex varieties, nevertheless
it has some drawbacks. First, the weight �ltration we want in cohomology is not
exactly the one induced by the weight �ltration in the complex, but it has to be
shifted according to the degree, and second, the spectral sequence associated to
the weight �ltration degenerates at E2. In some cases the following alternative
de�nition is simpler to use.

De�nition 1.2. An A-Hodge complex is a diagram

F ′Q (F ′C, Ŵ )

FA

ϕ1

??

(FQ, Ŵ )

ψ1

bb
ϕ2

99

(FC, Ŵ , F )

ψ2

ee
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as in De�nition 1.1, satisfying the same properties except that the A ⊗ Q-Hodge
structure induced in Hi(GrWn FQ) pure of weight n.

Given a �ltered complex (K∗,W ), the decalé �ltration is de�ned as

Dec(W )nK
i = {x ∈Wn−iK

i | dx ∈Wn−i−1K
i−1}.

In the exercises we will see the main properties of the decalé �ltration.
One can go from unshifted A-Hodge complexes to A-Hodge complexes using the

following result.

Lemma 1.3. Let

F ′Q (F ′C,W )

FA

ϕ1

>>

(FQ,W )

ψ1

cc
ϕ2

99

(FC,W, F )

ψ2

ff

be an unshifted A-Hodge complex. Then

F ′Q (F ′C,Dec(W ))

FA

ϕ1

GG

(FQ,Dec(W ))

ψ1

``
ϕ2

99

(FC,Dec(W ), F )

ψ2

ff

is an A-Hodge complex.

We will usually employ the letter W for the weight �ltration of a unshifted A-
Hodge complex and Ŵ for the weight �ltration of an A-Hodge complex to indicate
that it is a decalé �ltration.

It is possible to see that the category of A-Hodge complexes up to homotopy is a
triangulated category and one can de�ne the corresponding derived category, that
we denote D(A-HC), by inverting quasi-isomorphism. Given a complex of mixed

A-Hodge structures H∗ = (H∗Z, (H
∗
Q, W̃ ), (H∗C, W̃ , F̃ )) we can de�ne an A-Hodge

complex by writing

FA = H∗A, FQ = F ′Q = H∗Q, FC = F ′C = H∗C

with �ltrations F = F̃ and Ŵ = W̃ . This induces a functor Db(A-MHS) →
D(A-HC). In particular the Tate Hodge structures A(n) determine elements of
D(A-HC) that are also denoted by A(n).

Theorem 1.4 (Beilinson). The functor Db(A-MHS) → D(A-HC) is an equiva-

lence of categories.

This theorem induces a cohomological t-structure on D(A-HC), whose heart is
A-MHS, namely, the natural t-structure of Db(A-MHS) as the bounded derived
category of an abelian category.

In case that A is already a �eld, hence A⊗Q = A, we can simplify the de�nition of
A-Hodge complex because the two leftmost complexes do not carry any information.
In fact we have the following immediate result.
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Lemma 1.5. Assume that A is a �eld and let

H =


F ′Q (F ′C, Ŵ )

FA

ϕ1

??

(FQ, Ŵ )

ψ1

bb
ϕ2

99

(FC, Ŵ , F )

ψ2

ee


be an A-Hodge complex. Then, in Db(A-MHS), there is a canonical isomorphism

of A-Hodge complexes between H and
FQ (F ′C, Ŵ )

FQ

Id

??

(FQ, Ŵ )

Id

cc
ϕ2

99

(FC, Ŵ , F )

ψ2

ff


Thus, when A is a �eld we will use the following alternative de�nition of unshifted

A-Hodge complex and similarly for A-Hodge complexes.

De�nition 1.6. Assume that A is a �eld. we will say that a diagram

(F ′C,W )

(FQ,W )

ϕ
99

(FC,W, F )

ψ
ff

is an unshifted A-Hodge complex if the diagram

FQ (F ′C,W )

FQ

Id

>>

(FQ,W )

Id

cc
ϕ

99

(FC,W, F )

ψ
ff

satis�es de�nition 1.1.

To each complex variety X we can associate an A-Hodge complex H(X). The
assignment X → H(X) is a functor from the category of complex varieties to
D(A-HC). In this section we will give the A-Hodge complex associated to a smooth
proper complex variety and in the next talk, that of a smooth complex variety
(non-necessarily proper). For singular varieties we need to use hyper-resolutions
and we will not cover it in this notes.

De�nition 1.7. Given a complex (K∗ d), the canonical �ltration τ is de�ned by

τnK
r =


Kn, if r < n,

Ker d, if r = n,

0, if r > n.

Observe that the canonical �ltration is the decalé of the trivial �ltration T that
satis�es T−1K = 0 and T0K = K.

Lemma 1.8. Let C∗ → K∗ be a quasi-isomorphim, then (C∗, τ) → (K∗, τ) is a

�ltered quasi-isomorphism.
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Let X be a smooth proper complex variety. Then the diagram

S∗(X,A⊗Q) (S∗(X,C), τ)

S∗(X,A)

;;

(S∗(X,A⊗Q), τ)

ff 88

(A∗C(X), τ, F ),

ee

is an A-Hodge complex, where S∗(X,R) is the complex of smooth singular cochains
with R coe�cients, the �ltration F is the Hodge �ltration on the complex of di�er-
ential forms, τ is the canonical �ltration, and the arrows are the obvious morphisms.
This A-Hodge complex is denoted H(X). The unshifted A-Hodge complex is ob-
tained by using the trivial �ltration in place of the canonical �ltration.

From the explicit description of H(X) we can derive

Lemma 1.9. If X is an irreducible smooth proper complex variety, then there is a

canonical map A(0)→ H(X).

2. Absolute Hodge cohomology

Assume that we have a triangulated category D. From an object C ∈ D we
want to extract some �cohomology�, from which we can extract information more
easily. There are two processes to do so. First, if we can identify D as the derived
category of an abelian category A, then D has a t-structure with heart A. Hence
we can de�ne the cohomology Hn(C) = t≤nt≥nC ∈ A. This is called the geometric
cohomology.

For the second method, assume that we have a distinguished object R ∈ D, then
we can compute RHom(R,C) ∈ Db(A), where A is the abelian category of abelian
groups, maybe with some extra structure depending on the context. Since the
category Db(A) comes with a t-structure, we can de�ne the arithmetic cohomology

groups of C with coe�cients in R as H∗(RHomD(R,C)).
The arithmetic cohomology groups have several advantages,

(1) They may contain more information as we will see in the case of Hodge
structures.

(2) It may be the case that we do not have at our disposal a t-structure. For
instance, we do not know a good t-structure on the derived category of
mixed motives. Nevertheless we can de�ne motivic cohomology as a kind
of arithmetic cohomology.

We will apply these ideas to the category of A-Hodge complexes. To each com-
plex variety X we can associate an element on the derived category of A-Hodge
complex, A-HC(X). Since the derived category of A-Hodge complexes is equivalent
to the derived category of mixed A-Hodge structures, it has a t-structure whose
heart is the category of mixed A-Hodge structures A-MHS, the obtained coho-
mology, denoted Hn(X,A) ∈ A-MHS, is the usual cohomology groups with their
mixed A-Hodge structure.

We now apply the second method. The category A-HC has a distinguished object
A(0).

De�nition 2.1. The absolute cohomology groups of X are de�ned as

Hn
AH(X,A(j)) = Hn(RHom(A(0),H(X)(j))).
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Let us see an example of what kind of beast we have de�ned. To �x ideas,
put A = Z, and assume that X is smooth and projective. By the Proposition
2.10 from last lecture, we know that, if M is a mixed Z-Hodge structure, then
Exti(Z(0),M) = 0 for i > 1. Therefore, the spectral sequence associated to RHom:

Ep,q2 = Extp(Z(0), Hq(X)(j)) =⇒ Hp+q
AH (X,Z(j))

only contains terms with p = 0, 1. Therefore, it degenerates at the term E2 and
there are short exact sequences
(2.1)

0→ Ext1(Z(0), Hn−1(X)(j))→ Hn
AH(X,Z(j))→ Hom(Z(0), Hn(X)(j))→ 0.

In the case n = 2j we obtain that

Hom(Z(0), H2j(X)(j)) = α(H2j(X,Z)) ∩Hj,j(X,C),

where α : H2j(X,Z)⊗C→ H2j(X,C) is the comparison isomorphism between Betti
and de Rham cohomology, multiplied by by (2πi)j . This group is called the group
of Hodge cycles. While

Ext1(Z, H2j−1(X)(j)) = J(H2j−1(X)(j)) =: Jj(X)

is the j-th intermediate Jacobian of X.
Now we want to construct a complex that computes absolute Hodge cohomology.

Given a diagram

(2.2) D =


F ′1 F ′2, . . . F ′k

F0

ϕ1

>>

F1

ψ1

``
ϕ2

>>

F2

ψ2

``

. . . Fk

ψk

``


we denote Γ̃D = cone(

∑
ϕi −

∑
ψi)[−1]. If H is an A-Hodge complex as in De�-

nition 1.2, then we write

D(H) =


F ′Q Ŵ0F ′C,

FA

ϕ1

??

Ŵ0FQ

ψ1

aa
ϕ2

;;

(Ŵ0 ∩ F 0)FC

ψ2

ff


Theorem 2.2. Let H be an A-Hodge complex. Then, in Db(A-MOD), there is an

isomorphism

RHom(A(0), H)
'−→ Γ̃(D(H))

From this result we obtain a concrete complex that computes the absolute Hodge
cohomology of a complex variety

Assume that we have an A-Hodge complex as in De�nition 1.2 that represents
H(X) for some complex variety X. Then the diagram D(H(X)(j)) is given by

F ′Q Ŵ2jF ′C,

FA

ϕ1

??

Ŵ2jFQ

ψ1

bb
(2πi)jϕ2

::

(Ŵ2j ∩ F j)FC

ψ2

ff
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and the absolute Hodge cohomology of X is

(2.3) Hn
AH(X,A(j)) = Hn(Γ̃(D(H(X)(j)))).

This expression of absolute Hodge cohomology gives us some long exact sequences
that relate it with the usual cohomology groups. In the exercises we will see one of
these exact sequences.

3. Absolute Hodge Homology and the cycle class map

As an example of the use of absolute Hodge cohomology, in this section we will
construct the class of a cycle, that integrates at the same time, the usual cohomology
class and the Abel-Jacobi map. The description of the cycle map is easier using
Homology and Poincaré duality.

Let X be a smooth complex variety. The space of currents on X of degree
n, denoted ′En(X), is the topological dual of the group of di�erential forms with
compact support E−nc (X). The di�erential

d : ′En(X) −→ ′En+1(X)

is de�ned by
dT (ϕ) = (−1)nT (dϕ);

here T is a current and ϕ a test form. The bigrading of E∗c (X) induces a bigrading
on ′E∗(X).

There is a pairing

En(X)⊗ ′Em(X) −→ ′En+m(X), ω ⊗ T 7−→ ω ∧ T,
where the current ω ∧ T is de�ned by

(ω ∧ T )(η) = T (η ∧ ω).

There a bigrading ′EnC(X) = ′En(X) ⊗ C =
⊕

p+q=n
′Ep,q(X) and an associated

Hodge �ltration F .
IfX is equidimensional of dimension d, there is a morphism of complexes E∗(X)→

′E∗(X)[−2d] that sends ω to the current

η 7→
∫
η ∧ ω.

Let now (C∗(X,Z), ∂) be the homological complex of smooth singular chains and
write

Cn(X,Z) = C−n(X,Z), d = (−1)n∂ : Cn(X,Z)→ Cn+1(X,Z).

By Stokes theorem, there is a morphism of complexes

α : C∗(X,Z)→ ′E∗(X)

given, for c ∈ Cn(X,Z), by

α(c)(η) =

∫
c

η.

Thus, the complex of currents contains, at the same time, di�erential forms
and smooth singular chains. One of the interesting properties of the complex of
currents is that it is covariant with respect to proper morphisms: Let f : Y → X
be a proper morphism of smooth complex varieties, then there is a morphism of
complexes f∗ : ′E∗(Y )→ ′E∗(X) given by

f∗T (η) = T (f∗η).
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If X is a smooth proper complex variety, The homology A-Hodge complex of X,
denoted ′H(X) is the diagram

C∗(X,A⊗Q) (′E∗C(X), τ)

C∗(X,A)

::

(C∗(X,A⊗Q), τ)

ff 88

(′E∗C(X), τ, F ),

ee

where τ is the canonical �ltration and F is the Hodge �ltration associated to the
bigrading of ′E∗C(X).

Thanks to the covariance properties of the complex of smooth singular chains
and of the complex of currents, if f : Y → X is a morphism of smooth proper
complex varieties, then there is an induced map

f∗ ∈ HomD(A-HC)(
′H(Y ), ′H(X)).

The last piece of information that we need to construct the class of a cycle is
Poincaré duality.

Theorem 3.1 (Poincaré duality). Let X be a smooth proper complex variety of

dimension d. Then there is a canonical isomorphism in D(A-HC)
H(X) −→ ′H(X)[−2d](−d)

Let now Y be a codimension p irreducible subvariety of X. Let Ỹ be a resolution
of singularities of Y . Then we have a composition of maps

A(−p)[−2p]→ H(Ỹ )[−2p](−p)→ ′H(Ỹ )[−2d](−d)→ ′H(X)[−2d](−d)→ H(X).

Thus, we have an element

cl(Y ) ∈ HomD(A-HC)(A(−p)[−2p],H(X)) = H2p
AH(X,A(p))

A codimension p-cycle is a �nite formal linear combination of irreducible subvari-
eties. Thus, once we have de�ned the class of a subvariety, by linearity, we can
de�ne the class of any cycle.

We now use the exact sequence (2.1). Let Y be a codimension p cycle then the

class cl(Y ) ∈ H2p
AH(X,Z(p)) is mapped to the group of Hodge cycles α(H2p(X,Z))∩

Hp,p(X,C), which is the usual cohomology class of the cycle. If this class is zero,
then cl(Y ) can be lifted to the intermediate Jacobian J(H2p−1(X)). This is the
Abel-Jacobi map.
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4. Exercises

Exercises

(1) Let (A∗,W ) be a complex with a �ltration. Denote the Decalé �ltration of
W as Dec(W ).
(a) Show that the term E2 of the spectral sequence associated toW agrees

(up to renumbering) with the term E1 of the spectral sequence of
Dec(W ).

(b) Given a �ltrationW construct a new �ltration Und(W ) with the prop-
erty that Dec(Und(W )) = W , and although

(A,Und(Dec(W )))
Id−→ (A,W )

is not a �ltered quasi-isomorphism, the associated spectral sequences
agree from the term E2 on.

(2) Prove that, if H is a Hodge complex, then the spectral sequence associ-

ated to the �ltration Ŵ degenerates at the term E1 (Hint: the spectral
sequence associated to the weight �ltration is a spectral sequence of Hodge
structures).

(3) Let X be a complex variety.
(a) Assume that A is a �eld. Prove that the absolute A-Hodge cohomology

�ts in a long exact sequence

. . . −→W2jH
n−1(X,C) −→ Hn

AH(X,A(j))

−→ (2πi)jW2jH
n(X,A)⊕ F jW2jH

n(X,C) −→ . . .

(b) Write down the corresponding long exact sequence when A is not a
�eld and particularize it to the case when X is smooth and projective.

(4) Compute the absolute Z-Hodge cohomology of SpecC.
(5) Given a smooth projective variety X, compute the absolute R-Hodge co-

homology of X in terms of the usual Hodge structure of the cohomology.
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