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1. Absolute Hodge cohomology of smooth complex varieties

In this section we will show how to construct a complex that computes the real
absolute Hodge cohomology of a smooth complex variety that is not necessarily
proper.

Let X be a smooth complex variety of dimension d. By Nagata [Nag62] and
Hironaka [Hir64] we can �nd a proper complex variety X and a dense open embed-
ding j : X → X such that D = X \X is a simple normal crossing divisor (NCD).
This means that, each point x ∈ X has a coordinate neighbourhood U with coordi-
nates (z1, . . . , zd) on which x has coordinates (0, . . . , 0), there is an integer k with
0 ≤ k ≤ d such that

D ∩ U = {(z1, . . . , zd) | z1 . . . zk = 0},

and each irreducible component Di of D is smooth (that is, the irreducible compo-
nents of D do not have self intersections). Such coordinate neighborhood is called
adapted to D.

De�nition 1.1. The sheaf of holomorphic forms with logarithmic poles along D,
denoted Ω∗

X
(logD) is the subsheaf of algebras of j∗Ω∗X generated locally in each

adapted coordinate neighborhood as before by Ω∗
X

and the forms

d zi
zi
, i = 1, . . . , k.

The weight �ltration W of Ω∗
X

(logD) is the multiplicative �ltration that assigns
weight zero to the sections of Ω∗

X
and weight one to the sections d zi/zi. The

decalé �ltration of W is denoted by Ŵ . The Hodge �ltration F of Ω∗
X

(logD) is the
decreasing �ltration

F pΩ∗
X

(logD) =
⊕
q≥p

Ωq
X

(logD).

Lemma 1.2. The inclusion Ω∗
X

(logD) ↪→ j∗Ω
∗
X is a quasi-isomorphism. Therefore

there are isomorphisms

H∗(X,Ω∗
X

(logD)) ' H∗(X, j∗Ω∗X) ' H∗
dR

(X,C).

Thus we can use di�erential forms with logarithmic poles to compute de Rham
cohomology of X. The key point now is that this complex of forms allow us to
relate the cohomology of X to the cohomology of smooth proper complex varieties
of di�erent dimensions.

To see this we de�ne the residue map. Let D =
⋃k
i=1Di be the decomposition of

D into irreducible components. For each I ⊂ {1, . . . , k} we denote by DI = ∩i∈IDi
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and we write
D̃n =

∐
|I|=n

DI ,

where for a subset I as before we denote by |I| its cardinal. Then D̃n is a disjoint
union of smooth proper complex varieties of dimension d−n. Let U be a coordinate
neighborhood with coordinates (z1, . . . , zk) adapted to D. For each j ∈ {1, . . . , k}
we will denote by ij the index of the component of D satisfying Dij = {zj = 0}. If

η = α ∧ d zj1
zj1
∧ · · · ∧ d zjm

zjm
∈WnΩr

X
(logD), m ≤ n

then the residue is de�ned locally by

Res(η) =

{
0, if m < n,

α|Dij1
∩···∩Dijn

, if m = n.

Lemma 1.3. The residue of a di�erential forms with logarithmic poles de�nes an

isomorphism

Res: GrWn Ω∗
X

(logD)→ Ω∗
D̃n [−n].

Lemma 1.4. The natural maps

(Ω∗
X

(logD),W )←− (Ω∗
X

(logD), τ) −→ (j∗ΩX , τ)

are �ltered quasi-isomorphisms.

Proof. The right arrow is a quasi-isomorphims because the inclusion Ω∗
X

(logD) −→
j∗ΩX is a quasi-isomorphism. The right arrow is a �ltered quasi-isomorphism be-
cause, by Lemma 1.3

H r(GrWn Ω∗
X

(logD)) =

{
0, if r 6= n,

ιD̃nCD̃n , if r = n.

where ιD̃n : D̃n → X is the map induced by the inclusion D ⊂ X and CD̃n is the
constant sheaf with �ber C. Hence, the cohomology sheaf of GrWn Ω∗

X
(logD) is

concentrated in degree n. Therefore

H n(GrWn Ω∗
X

(logD)) = H n(Ω∗
X

(logD)) = H n(Grτn Ω∗
X

(logD)),

and, for r 6= n,

H r(GrWn Ω∗
X

(logD)) = 0 = H r(Grτn Ω∗
X

(logD)).

�

We now choose �asque resolutions of the sheaves AX , AX ⊗Q, CX and Ω∗X that
�t in a commutative diagram

A]X
// AX ⊗Q] // C]X // Ω∗X

]

AX //

OO

AX ⊗Q //

OO

CX //

OO

Ω∗X

OO
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of complexes of sheaves in X. Consider the diagram

(j∗C]X , τ) // (j∗Ω∗], τ) (Ω∗
X

(logD), τ)
i1oo

i2

��
(Ω∗

X
(logD),W )

The arrows in the above diagram are �ltered quasi-isomorphisms and we will denote
(Ω̃∗,W ) = cone(i1− i2). From the diagram we obtain a �ltered quasi-isomorphism
(j∗C]X , τ) → (Ω̃∗,W ) and (Ω∗

X
(logD),W ) → (Ω̃∗,W ). We now consider the dia-

gram of complexes of sheaves on X
j∗(AX ⊗Q]) (Ω̃∗,W )

j∗(A
]
X)

==

(j∗(AX ⊗Q]), τ)

;;ee

(Ω∗
X

(logD),W, F )

dd


that we denote D(X,X). We choose compatible (�ltered) �asque resolutions on
the sheaves of such diagram and denote the corresponding diagram by D(X,X)].

We �nally apply the functor of global sections Γ to the above complex to obtain
a diagram of �ltered complexes of A-modules that we denote by Γ(D(X,X)]).

Theorem 1.5. Let X be a smooth complex variety and X a compacti�cation of X
with D = X \X a NCD. The complex Γ(D(X,X)]) is a mixed Hodge complex and

its class in AHC does not depend on X nor on the choices of �asque resolutions.

We now want to particularize to the case when A = R. In this case we can
simplify the construction of a mixed R-Hodge complex by considering an acyclic
resolution of the sheaf Ω∗

X
(logD) that has a real structure. In this way we will

be able to use the same complex to recover also the real piece of the cohomology,
avoiding most of the technicalities of the previous construction.

De�nition 1.6. The sheaf of di�erential forms with logarithmic singularities along
D[BG94], denoted A ∗

X
(logD) is the subsheaf of algebras of j∗A ∗X generated locally

in each adapted coordinate neighborhood as before by A ∗
X

and the forms

d zi
zi
,

d z̄i
z̄i
, log(ziz̄i) i = 1, . . . , k.

The weight �ltration W of A ∗
X

(logD) is the multiplicative �ltration that assigns
weight zero to the sections of A ∗

X
and weight one to the sections d zi/zi, d z̄i/z̄i,

and log(ziz̄i). The decalé �ltration of W is denoted by Ŵ . The Hodge �ltration F
of A ∗

X
(logD) is the decreasing �ltration

F pA ∗
X

(logD) =
⊕
q≥p

A q

X
(logD).

Clearly, A ∗
X

(logD) is stable under complex conjugation. We will denote by A ∗
X,R(logD)

the subsheaf of algebras consisting of forms invariant under complex conjugation.
Since the weight �ltration is invariant under complex conjugation, it induces a
�ltration Ŵ on A ∗

X,R(logD).
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Since the complex A ∗
X

(logD) is a complex of A ∗
X
-algebras, it is a complex of

�ne sheaves and hence of acyclic sheaves.
We will denote by A∗

X
(logD) (respectively A∗

X,R(logD)) the complex of global
sections of A ∗

X
(logD) (respectively A ∗

X,R(logD))
The main properties we need of the complex of di�erential forms with logarithmic

singularities are summarized in the following result.

Theorem 1.7. With the hypothesis of Theorem 1.5

(1) The natural inclusion (Ω∗
X

(logD),W, F ) → (A ∗
X

(logD),W, F ) is a bi�l-

tered quasi-isomorphism of complexes of sheaves.

(2) The map A∗
X,R(logD)→ S∗(X,R) given by integration is a quasi-isomomorphims.

Joining together theorems 1.5 and 1.7 we obtain

Corollary 1.8. Let X be a smooth complex variety and X a compacti�cation of X
with D = X \X a NCD. Then the diagram

(A∗
X

(logD), Ŵ )

(A∗
X,R(logD), Ŵ )

ι

66

(A∗
X

(logD), Ŵ , F )

Id

hh

is an R-Hodge complex that agrees with H(X).

The next task is to get rid of a particular compacti�cation of X to this end we
consider the category CX of compacti�cations of X. That is, the objects of CX
are triples (X,D, ι) where X is a proper complex variety, D ⊂ X is a NCD and
ι : X → X \D is an isomorphism. A morphisms between (X,D, ι) and (X

′
, D′, ι′)

is a morphism of varieties f : X → X
′
such that f ◦ ι = ι′. The opposed category

C◦X is directed.

De�nition 1.9. The complex of di�erential forms on X with logarithmic singu-
larities along in�nity is

A∗log(X) = lim
−→
C◦X

A∗
X

(logD).

This complex inherits a weight �ltration, a Hodge �ltration and a complex conju-
gation, hence a real structure A∗log,R(X).

For any (X,D, ι) ∈ CX , the map (A∗log(X), Ŵ , F ) → (A∗
X

(logD), Ŵ , F ) is a

bi�ltered quasi-isomorphism and the map (A∗log,R(X), Ŵ )→ (A∗
X,R(logD), Ŵ ) is a

�ltered quasi-isomorphism. Therefore the diagram

Alog(X) =


(A∗log(X), Ŵ )

(A∗log,R(X), Ŵ )

ι

77

(A∗log(X), Ŵ , F )

Id

hh


is an R-Hodge complex that again agrees with H(X).

We can now apply Theorem 2.2 of the previous lecture to this complex.
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De�nition 1.10. Let X be a smooth complex variety. Then the absolute Hodge

cohomology complex of X is the complex of sheaves RAHC(X) is de�ned as
RAHC(X) = Γ̃(D(Alog(X))). Unraveling this de�nition, we have

RAHC(X) = cone(Ŵ0Alog,R(X)⊕ Ŵ0 ∩ F 0Alog(X)
ϕ−→ Ŵ0Alog(X))[−1],

where ϕ(r, f) = r − f .
More generally the twisted absolute Hodge cohomology complex of X is

RAHC(X, p) = Γ̃(D(Alog(X)(p))).

In this case we obtain

RAHC(p)(X) = cone((2πi)pŴ2pAlog,R(X)⊕Ŵ2p∩F pAlog(X)
ϕ−→ Ŵ2pAlog(X))[−1].

One of the main advantages of this construction is that it is functorial on the
nose and we do not need to choose any particular �asque resolution.

Lemma 1.11. Let SmC be the category of smooth complex varieties. The assign-

ment X 7→ Alog(X) is a presheaf of R-Hodge complexes in SmC. The assignments
X 7→ RAHC(p)(X), p ∈ Z are presheaves of complexes of real vector spaces.

There is a variant of the absolute Hodge cohomology called weak Hodge coho-

mology or Deligne-Beilinson cohomology that is obtained by ignoring the e�ect of
the weight �ltration. The real Deligne-Beilinson cohomology of X is

H∗D(X,R(p)) = H∗(cone((2πi)pAlog,R(X)⊕ F pAlog(X)
ϕp−→ Alog(X))[−1])).

We end this section discussing the case of real varieties. Let X be a real variety.
To it we can associate a complex variety XC together with an conjugate-linear
involution F∞ of XC. In fact the category of real varieties is equivalent to the
category of complex varieties with a conjugate linear involution. On the space of
di�erential forms A∗(XC) we de�ne an involution σ given by

σ(ω) = F ∗∞ω.

that is, σ acts as complex conjugation on both, the space and the coe�cients of the
di�erential form. It is easy to see that σ induces an involution in the complexes
RAHC(p)(XC).

De�nition 1.12. Let X be a smooth real variety. Then the absolute Hodge coho-
mology complex of X is

RAH(p)(X) = (RAHC(p)(XC))σ=Id.

That is, the complex formed by the elements of RAHC(p)(XC) that are invariant
under σ.

2. Zariski descent

One of the basic results in topology concerning singular cohomology is the Mayer-
Vietoris sequence, that relates the cohomology of two open subsets with that of its
union and intersection. This result is what makes singular cohomology �easily�
computable. The Mayer-Vietoris theorem can be generalized as the �ech spectral
sequence in sheaf cohomology and in Deligne's theory of homological descent, that
allow us to compute the cohomology of a variety in terms of hyper-resolutions. The
fact that the �ech spectral sequence associated to a Zariski open cover converges to
the cohomology is a particular case of homological descent called Zariski descent.
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We denote by SmC the category of smooth complex varieties. Then RAHC(p)
is a pre-sheaf on SmC. That is, a contravariant functor. Let X ∈ Ob(SmC) and
let U = {Uα}α∈Λ be a Zariski open covering of X. The nerve of U, denoted N (U)
is the simplicial smooth variety with

N (U)n =
∐

(α0,...,αn)∈Λn

Uα0
∩ · · · ∩ Uαn

,

the degeneracy map σi : N (U)n → N (U)n+1 sends the component Uα0
∩ · · · ∩ Uαn

identically to the component Uα0
∩ · · · ∩ Uαi

∩ Uαi
∩ · · · ∩ Uαn

, while the face map
δi : N (U)n → N (U)n+1 includes the component Uα0 ∩ · · · ∩Uαi ∩ · · · ∩Uαn into the
component Uα0

∩ · · · ∩ Ûαi
∩ · · · ∩ Uαn

, where the simbol ̂ means that the subset
is omitted.

If we apply the functorRAHC(p) to it we obtain a cosimplicial complexRAHC(p)(U).
To this cosimplicial complex we can associate the total complex tot(RAHC(p)(U)).
SinceRAHC(p) is a functor, there is a canonical mapRAHC(p)(X)→ tot(RAHC(p)(U)).

De�nition 2.1. Let F be a pre-sheaf of complexes on SmC. We says that F
satis�es Zariski descent if the canonical map

F(X)→ F(U)

is a quasi-isomorphims.

Theorem 2.2. The pre-sheaf RAHC(p) satis�es Zariski descent.

Proof. Since de Rham cohomology satis�es the Mayer-Vietoris theorem, the com-
plexes A∗ and A∗R satisfy descent for the ordinary topology, hence for the Zariski
topology. SinceAlog(X)∗ → A∗(X) andAlog,R(X)∗ → A∗R(X) are quasi-isomorphisms,
then A∗log and A∗log,R satisfy Zariski descent.

Since Alog is a presheaf, to the simplicial variety NU we can associate a cosim-
plicial R-Hodge complex Alog(NU).

We now use the following result by Deligne.

Theorem 2.3. Let H· be a cosimplicial A-Hodge complex,

H· =


F ′Q· (F ′C, Ŵ )·

FA·

ϕ1

>>

(FQ, Ŵ )·

ψ1

cc
ϕ2

99

(FC, Ŵ , F )·

ψ2

ff


Then the diagram tot(H) given by

tot(F ′Q) tot(F ′C, Ŵ )

tot(FA)

ϕ1

==

tot(FQ, Ŵ )

ψ1

cc
ϕ2

::

tot(FC, Ŵ , F )

ψ2

ee

By this theorem, the total complex of Alog(NU) is again an R-Hodge complex.
There is a map of R-Hodge complexes H(X) → totAlog(NU). This induces a
map of mixed R-Hodge structures in cohomology. By Zariski descent of A∗R, this
morphism induces an isomorphism of the corresponding real vector spaces. By
Theorem 2.8 of the �rst lecture, it is an isomorphism of mixed Hodge structures.
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Therefore, for all p ∈ Z Ŵ2pA
∗
log,R, Ŵ2pA

∗
log and Ŵ2p ∩ F pA∗log satisfy Zariski

descent. Hence RAHC(p) satis�es Zariski descent. �

3. Multiplicative properties

Since absolute Hodge cohomology is the cohomology of a diagram of di�eren-
tial graded commutative algebras it comes naturally with a graded commutative
product that we will discuss in this section.

Assume that we have a diagram

(3.1) D =


F ′1 F ′2, . . . F ′k

F0

ϕ1

>>

F1

ψ1

``
ϕ2

>>

F2

ψ2

``

. . . Fk

ψk

``


such that all the entries Fi and F ′i are di�erential graded A-algebras and such that
all the morphisms ϕi and ψi are morphisms of di�erential graded A-algebras. Then
the complex Γ̃(D) has several structures of graded algebras. Let α ∈ A and let
ω = (ω0, . . . , ωk, ω

′
1, . . . , ω

′
k) ∈ Γ̃n(D) and η = (η0, . . . , ηk, η

′
1, . . . , η

′
k) ∈ Γ̃m(D).

Then we de�ne

ω ∪α η = (ω0η0, . . . , ωkηk,

ω′1((1− α)ϕ1(η0) + αψ(η1)) + (−1)n(αϕ1(ω0) + (1− α)ψ1(ω1))η′1, . . . )

The basic properties of this product are summarized in the following theorem.

Lemma 3.1. (1) For every α, the map ∪α is a morphism of complexes.

(2) If α, α′ ∈ A then the morphisms ∪α and ∪α′ are homotopic. A homotopy

is given, for ω and η as before, by

h(ω ∪α η) = (0, . . . , 0, (α− α′)ω′1η′1, . . . , (α− α′)ω′kη′k).

Under the canonical automorphism T of Γ̃(D)⊗Γ̃(D) given by T (ω⊗η) = (−1)degω deg η(η⊗
ω), the product ∪α is transformed into ∪1−α. The product ∪0 and ∪1 are associa-

tive.

As a direct consequence of this lemma we deduce that

H∗AH(X,A(∗)) =
⊕
n,j∈Z

Hn
AH(X,A(j))

has a structure of bigraded associative algebra whose product is graded-commutative
with respect to the �rst degree. Nevertheless, at the level of complexes we do not
have a product that is at the same time associative and graded commutative. For
α = 0, 1 we have an associative product and if α = 1/2 ∈ A we have a graded
commutative product, but none of the products ∪α is at the same time associative
and commutative.

For the applications it will be useful to have a complex that computes real
absolute Hodge cohomology and that is, at the same time, associative and graded
commutative. Thus, we now will construct a pre-sheaf that is quasi-isomorphic to
RAHC(∗) but that has a product that is at the same time associative and graded
commutative.

Let L∗ denote the de Rham complex of algebraic di�erential forms on A1
R. That

is L0 = R[t] and L1 = R[t] d t. Since Ŵ2pA
∗
log(X) and L∗ are di�erential graded
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commutative algebras, the tensor product L∗⊗Ŵ2pA
∗
log(X) (or rather the associated

total complex) has a natural structure of di�erential graded complex. Be aware of
the usual sign convention for the tensor products. We will denote this product by
∧.
De�nition 3.2. Let X be a smooth complex variety. The complex IRAH∗C(p)(X)

is the subcomplex of L∗ ⊗ Ŵ2pA
∗
log(X) composed by forms that satisfy

ω |t=0 ∈ (2πi)pŴ2pAlog,R(X),

ω |t=1 ∈ Ŵ2p ∩ F pAlog(X).

Clearly IRAH∗C(p)(X) is not just a subcomplex but also a subalgebra. Thus, it is
a di�erential graded commutative algebra.

The elements of IRAH∗C(p)(X) are one parameter deformations between real
forms and forms in a certain space of the Hodge �ltration. Note that, instead of L∗

we could consider di�erential forms in the manifold R or just the interval [0, 1]. The
important property of L∗ is that it is a �one-dimensional contractible� complex.

There are maps

RAHC(p)(X)
E //

IRAHC(p)(X)
I

oo

given by

E(r, f, η) = t⊗ f + (1− t)⊗ r + d t⊗ η,

I(ω) = (ω |t=0, ω |t=1,

∫ t=1

t=0

ω),

where ∫ t=1

t=0

(p(t) + q(t) d t)⊗ η =

(∫ 1

0

q(t) d t

)
η.

Theorem 3.3. Let X be a smooth complex variety.

(1) The composition I ◦ E = IdRAH.

(2) There is a homotopy h in IRAH such that E ◦ I − IdIRAH = d ◦h+ h ◦ d.
(3) If ω ∈ RAHn

C(p)(X) and η ∈ RAHm
C (q)(X), then

I(E(ω) ∧ E(η)) = ω ∪1/2 η.

Proof. We check the �rst statement. Let (r, f, η) ∈ RAHC(X). Then E(r, f, η) =
t⊗f+(1−t)⊗r+d t⊗η. Since d t |t=0= d t |t=1= 0, we deduce that E(r, f, η) |t=0= r

and E(r, f, η) |t=1= f . Since
∫ t=1

t=0
E(r, f, η) = η, the �rst statement is clear.

For each pair of integers n, p, we de�ne h : IRAHn
C(p)(X)→ IRAHn−1

C (p)(X)
by

h(ω) = t⊗
∫ t=1

t=0

ω −
∫ t

0

ω,

where ∫ t

0

(p(t) + q(t) d t)⊗ η =

(∫ t

0

q(s) d s

)
⊗ η.

Then one can check easily that

h(dω) + dh(ω) = E ◦ I(ω)− ω.
The third statement can also be checked easily. �
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This theorem has the following immediate consequence.

Corollary 3.4. Let X be a smooth complex variety. then

Hn(IRAHC(p)(X)) = Hn
AH(X,R(p)).

Moreover the product induced in Hn
AH(X,R(p)) agrees with the product induced by

Lemma 3.1.

If X is a smooth real variety, the involution σ determines an involution, also
denoted σ, on IRAHC(p)(XC) that is compatible with the product. We de�ne

IRAH(p)(X) = (IRAHC(p)(XC))σ=Id.

Corollary 3.5. Let X be a smooth real variety. then

Hn(IRAH(p)(X)) = Hn
AH(X,R(p)).

Moreover the product of IRAH(p)(X) induces the usual product in Hn
AH(X,R(p)).
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4. Exercises

Exercises
(1) Let K be a number �eld. Consider XQ = SpecK as a variety over Q.

Let XR be the corresponding real variety. Compute the absolute absolute
Hodge cohomology of XR. Compare the obtained dimensions with the rank
of the groups Ki(K).

(2) Compute the mixed Hodge structure of P1 \ {0, 1}.
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