3. Exercises

Exercises

- (1) Finite dimensional Hodge theory. Let (A^*, d) be a bounded complex of finite dimensional real vector spaces. Assume that each piece A^* is provided with an Euclidean product. Prove Theorem 1.2 and Corollary 1.3 in this case.
- (2) Let k be a field and C the category of filtered k-vector spaces.
 - (a) Give an example of a morphism f in C such that $\text{Img}(f) \neq \text{Coimg}(f)$. Conclude that \mathbb{C} is not an abelian category.
 - (b) Show that, if f is a morphism in C that is strictly compatible with the filtrations, then Img(f) = Coimg(f).
 - (c) Show that, if $f: H \to H'$ is a morphism of pure Hodge structures of weight n, then it is strictly compatible with the Hodge filtration.
 - (d) Let (A^*, d, F) be a filtered bounded complex of finite dimensional vector spaces, with F a bounded decreasing filtration. Prove that the differential d is strictly compatible with the filtration F if and only if the spectral sequence associated to F degenerates at E_1 .
- (3) On the projective line $X = \mathbb{P}^1$, with absolute coordinate z, consider the differential form

$$\omega = \frac{\mathrm{d}\,z \wedge \mathrm{d}\,\overline{z}}{(1+z\overline{z})^2}$$

- (a) Show that ω is smooth on the whole X and represents a generator of H¹(X, Ω¹_{XQ}). (Hint: Use first, that in Čech cohomology, a generator of H¹(X, Ω¹_{XQ}) is given by dz/z in P¹ \ {0,1} and second, the Čech complex of the Dolbeault resolution of Ω¹_{XC}.)
- (b) Show that $\int_X \omega = 2\pi i$ and conclude that the Hodge structure of the cohomology group $H^2(X)$ is the Lefschetz Hodge structure.
- (4) Compute $Ext^1(\mathbb{Z}(i), \mathbb{Z}(j))$.

References

- [CG72] C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972), 281–356.
- [Del71] P. Deligne, Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5-57.
- [Del75] _____, Théorie de Hodge III, Publ. Math. IHES 44 (1975), 5-77.
- [GH94] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc., 1994.
- [Wel80] R.O. Wells, Differential analysis on complex manifolds, Graduate Texts in Math., vol. 65, Springer-Verlag, 1980.

10