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1 Beilinson’s regulator

In previous lectures, we have seen differential extensions of topological K-theory, K̂U0,
or algebraic K-theory of number rings, K̂R 0. The aim for this and the next talk is to
construct a differential extension of the cohomology theory represented by the algebraic
K-theory spectrum KX of more general schemes X. Motivated by Beilinson’s conjectures,
the idea is that in this case the realification of KX is modeled by the real absolute Hodge
cohomology and the realification map by Beilinson’s regulator. The first step is to give a
particular model for the function spectrum Sm(KX) and use it to construct (a version
of) the Beilinson regulator as a map of sheaves of E∞-ring spectra.
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1.1 Bundles and K-theory

We denote by Mf the category of smooth manifolds and by Reg the category of regular
schemes which are separated and of finite type over Z, or over Q. Let M ∈ Mf and
X ∈ Reg. Then we can consider M ×X as a topological space. We equip M ×X with
the structure sheaf OM×X := pr−1

X OX where prX : M × X → X is the projection and
pr−1

X denotes the inverse image in the sense of abelian sheaves.

Definition 1.1. A bundle on M × X is a locally free sheaf of OM×X-modules of finite
rank.

A bundle on M × X can be viewed as a locally constant family of algebraic vector
bundles on X, parameterized by M . If we take X := Spec(R) for some number ring R a
bundle on M×X is “the same” as a locally constant sheaf of finitely generated projective
R-modules on M .

We denote by Vect(M × X) the category of bundles on M × X. Under direct sum
and tensor product, Vect(M × X) can be considered as a semiring (aka rig) object in
the (2, 1)-category Cat of categories. In this situation, we can define K-theory via group
completion:

Definition 1.2. The K-theory functor K is given by the following composition of functors
between ∞-categories:

K : Rig(Cat)→ Rig(S) (associated space)

→ Ring(S) (group completion)
∼=←− CAlg(Sp≥0) Ω∞

→ CAlg(Sp) (forget connectivity)

Here S is the symmetric monoidal ∞-category of spaces, Sp (resp. Sp≥0) that of
(connective) spectra, and CAlg(Sp) = CommMon(Sp) denotes commutative monoid,
or algebra objects in Sp, i.e. E∞-ring spectra. The first map sends a category to its
underlying ∞-groupoid, i.e. the category with the same objects but only isomorphisms
between them.

In general, algebraic K-theory can be defined via group completion only for affine
schemes. To extend this to all schemes in Reg we have to sheafify: We equip Mf with
the usual topology, Reg with the Zariski topology, and the product category Mf ×Reg
with the induced topology. We consider K(Vect) as a presheaf of ring spectra. Since
bundles are locally constant in the manifold direction this is in fact a homotopy invariant
presheaf,

K(Vect) ∈ FunI((Mf ×Reg)op,CAlg(Sp)).

Definition 1.3. We define the sheaf of K-theory spectra

K ∈ Fundesc,I((Mf ×Reg)op,CAlg(Sp))

as the sheafification of K(Vect).
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This is our model for the smooth function spectrum:

Lemma 1.4. We have equivalences

K(M ×X) ∼= Sm(KX)(M). (1)

In particular, πi (K(M ×X)) ∼= KX−i(M).

Proof. If we fix X, both sides of (1) are homotopy invariant sheaves in the manifold M .
Hence we may assume that M is a point. Now we use that algebraic K-theory satisfies
Zariski descent for regular, separated, noetherian schemes to further reduce to the case
that X is affine.

1.2 Differential forms

We now construct a sheaf of commutative dgas IDR on Mf ×Reg which is built from
differential forms and such that IDR(M × X) computes the cohomology of M with
coefficients in a weak version of the real absolute Hodge cohomology of X. This will be
the target for the regulator map.

We consider M ×X ∈ Mf ×Reg. Because X is regular, the set of C-valued points
X(C) is a complex manifold. Let A be the de Rham complex of smooth complex valued
differential forms. On A(M × X(C)) we have the Hodge filtration F where a form ω is
in FpA(M ×X(C)) if, in local coordinates x of M and holomorphic local coordinates z
of X(C), it can be written in the form

ω =
∑

I,J,K,|J |≥p

fI,J,Kdx
IdzJdz̄K

with smooth functions fI,J,K . We have an action of Gal(C/R) on A(M ×X(C)) which is
induced by the action of Gal(C/R) on the complex manifold X(C) and on the coefficients
of the differential forms. Let I be the unit interval [0, 1].

Definition 1.5. For p ≥ 0 we define the complex

IDR(p)(M ×X) := {ω ∈ A(I ×M ×X(C))[2p] |ω|0 ∈ (2πi)pAR, ω|1 ∈ FpA}Gal(C/R) .

With the usual wedge product of forms

IDR :=
∏
p≥0

IDR(p)

becomes a sheaf of commutative differential graded algebras.

Denote by Ch the infinity category of chain complexes with quasi-isomorphisms in-
verted. Because we are working with fine sheaves, IDR still satisfies descent when con-
sidered as a presheaf with values in Ch. By the Poincaré lemma, it is also homotopy
invariant. Hence we can consider IDR as an object

IDR ∈ Fundesc,I((Mf ×Reg)op,CAlg(Ch)).
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Lemma 1.6. The map

IDR(p)→ Cone((2πi)pAR ⊕FpA
(α,β)7→α−β−−−−−−→ A)[2p− 1]

ω 7→ (ω|0 ⊕ ω|1,−
∫
I×( )/( )

ω)

is an equivalence in Fundesc,I((Mf ×Reg)op,Ch). In particular, if the generic fibre XQ
is proper over Q then for n ≤ 0

Hn(IDR(p)(∗ ×X)) ∼= Hn+2p
AH (XR,R(p))

where the right hand side is real absolute Hodge cohomology.

Proof. This is an exercise.

1.3 Characteristic forms

We now introduce additional geometric data on bundles in order to construct characteristic
forms which lie in the complex IDR. Later on, we will use these to construct the regulator.

Let V be a bundle on M ×X. Then

VC := V|M×X(C) ⊗pr−1
X OX |M×X(C)

C∞M×X(C)

The differential in the de Rham complex A of M × X(C) can be written as d = dM +
∂ + ∂̄, where dM is the partial differential in the M -direction, ∂, ∂̄ are the differentials
in the holomorphic and the antiholomorphic X-direction. Because dM and ∂̄ vanish on
pr−1

X OX
∣∣
M×X(C)

, they induce

• a natural flat partial connection ∇I on VC in the M -direction,

• a holomorphic structure ∂̄ on VC in the X-direction.

Definition 1.7. A geometry on V is a connection ∇̃ on pr∗M×X(C)VC/I ×M × X such

that ∇̃|0 is unitarizable and ∇̃|1 extends the partial connection ∇I + ∂̄. We furthermore

require that ∇̃ is Gal(C/R)-invariant in a suitable sense.

Geometries exist locally and can be glued. Hence geometries always exist.
Given a bundle V with geometry ∇̃, we consider the Chern character form

ch(∇̃) = Tr exp(−R∇̃) ∈ A(I ×M ×X(C)).

The conditions on ∇̃ are designed in such a way that, in fact,

ch(∇̃) ∈ Z0(IDR(M ×X)).
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We denote the category of bundles on M ×X with a geometry and geometry preserving
maps by Vectgeom(M×X). We denote the set of its isomorphism classes by Vect

geom
(M×

X). There is a natural notion of the direct sum and tensor product of two geometries.
Thus we can consider Vectgeom(M ×X) as a semiring object in Cat,

Vectgeom(M ×X) ∈ Rig(Cat)

and Vect
geom

(M × X) as a semiring. Since the Chern character forms are additive and
multiplicative, we can view ch as a natural transformation between semiring valued func-
tors

ch : Vect
geom → Z0(IDR). (2)

1.4 The regulator

We now explain how one can use characteristic forms to construct (a weak version of) the
Beilinson regulator as a map of sheaves of E∞-ring spectra, i.e. as a map between objects
in Fundesc,I((Mf ×Reg)op,CAlg(Sp))

rBeil : K→ H(IDR).

The construction is a prototypical example. In the same way, one could construct the
Chern character map from complex K-theory to real cohomology, or Borel’s regulator for
the K-theory of number rings.

The principal idea is to view a set as a discrete category. A semiring can then be
viewed as a semiring in Cat and we can apply the K-theory functor to it.

We start with the Chern character from (2) and apply K to it:

K(Vect
geom

)
K(ch)−−−→ K(Z0(IDR)) (3)

Since Z0(IDR) is already a presheaf of rings, the group completion doesn’t change any-
thing, and one there is a natural equivalence

K(Z0(IDR)) ∼= H(Z0(IDR)) (4)

where H is the Eilenberg-MacLane functor from chain complexes to spectra and we view
Z0(IDR) as a complex concentrated in degree 0 (Exercise!). The natural inclusion of
complexes Z0(IDR) ↪→ IDR induces

H(Z0(IDR))→ H(IDR). (5)

If we restrict from Vectgeom to its underlying groupoid iVectgeom where we allow only
isomorphisms as maps, we get a functor iVectgeom → Vect

geom
sending each bundle to its

isomorphism class. Since, by construction, K first restricts a category to its underlying
groupoid we get a natural map

K(Vectgeom)→ K(Vect
geom

). (6)
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Composing (6), (3), (4), and (5) we have now constructed a map

K(Vectgeom)→ H(IDR). (7)

We have a natural “forget the geometry” map Vectgeom → Vect and henceK(Vectgeom)→
K(Vect). However, this is not an equivalence. For instance, K(Vect) is homotopy invari-
ant, whereas K(Vectgeom) is not. We can try to make K(Vect) homotopy invariant by
the following procedure:

Exercise 1.8 (s̄-construction). Let C be an ∞-category which has all colimits, and F ∈
Fun(Mfop,C). Let ∆• ∈ Fun(∆,Mf) be the cosimplicial manifold of standard simplices.
We can define an endofunctor s̄ of Fun(Mfop,C) which on objects is given by

s̄(F )(M) = colim∆opF (∆• ×M).

If F was homotopy invariant then the natural map F → s̄(F ) is an equivalence.

Lemma 1.9. The natural map

s̄K(Vectgeom)→ s̄K(Vect) (8)

is an equivalence.

Proof. This boils down to show that the map of simplicial sets

Nq(iVect
geom(∆• ×M ×X))→ Nq(iVect(∆• ×M ×X)),

where N denotes the nerve functor from categories to simplicial sets and Nq denotes the
set in simplicial degree q, is a trivial Kan fibration. This in turn follows from the fact
that for a bundle on ∆p×M ×X, any geometry given on ∂∆p×M ×X can be extended
to a geometry on ∆p ×M ×X.

To finish the construction of the regulator, we apply s̄ to (7) and define rBeil : K →
H(IDR) through the following diagram

K(Vect)
∼=
1.8

//

��

s̄K(Vect) s̄K(Vectgeom)
∼=
1.9

oo s̄((7)) // s̄H(IDR)

K rBeil // H(IDR)

∼= 1.8

OO

The dotted arrow exists since H(IDR) is a sheaf and K was defined as the sheafification
of K(Vect).

2 Multiplicative differential algebraic K-theory

Here we give the construction of differential algebraic K-theory for schemes X ∈ Reg.
Again, in the same way one can construct differential extensions of any other generalized
cohomology theory. We will then show how, using these constructions, the definition
of topological and geometric cycle maps becomes a tautology. Finally, we will give an
application of the theory presented here to the construction of classes in K3 of a number
ring.
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2.1 The construction

For a chain complex C and an integer k, we denote by σ≥kC its stupid truncation in
degree k.

Definition 2.1. For each integer k, we define a sheaf of spectra

K̂ (k) ∈ Fundesc((Mf ×Reg)op,Sp)

via the pull-back

K̂ (k) R //

I

��

H(σ≥kIDR)

��
K rBeil // H(IDR).

We define the abelian group valued functors of differential algebraic K-theory

K̂k ∈ Fun((Mf ×Reg)op,Ab)

by K̂k(M ×X) := π−k

(
K̂ (k)(M ×X)

)
. We have induced maps

R : K̂k → Zk(IDR) (curvature)

I : K̂k → Kk (underlying K-theory class)

In fact, one can refine
∨
k∈Z K̂ (k) to a sheaf of E∞-ring spectra. Thus

⊕
k∈Z K̂k be-

comes a functor with values in graded commutative graded rings, and I and R become
homomorphisms of graded rings.

From the definition of K̂ (k) as a pull-back, we immediately get the fundamental exact
sequences of a differential cohomology:

Kk−1 rBeil−−→ IDRk−1/im(d)
a−→K̂k I−→ Kk → 0 (9)

Kk−1 rBeil−−→ Hk−1(IDR)
a−→K̂k (I,R)−−−→ Kk ×Hk(IDR) Z

k(IDR)→ 0

Moreover, we have the relation
R ◦ a = d.

2.2 Cycle maps

Let V be a bundle on M×X. Its isomorphism class [V ] can be considered as an element in
π0(iVect(M ×X)). Since Ω∞K(Vect(M ×X)) is the group completion of iVect(M ×X)
we have natural maps

π0(iVect(M×X))→ π0 (Ω∞K(Vect(M ×X))) ∼= π0 (K(Vect(M ×X)))→ π0 (K(M ×X))

This composition defines the topological cycle map.
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To construct the geometric cycle map

ĉycl : Vect
geom → K̂0

we use that K̂ (0) was defined as a pull-back in (pre)sheaves of spectra. It follows im-
mediately from the construction of rBeil that the solid part of the following diagram
commutes:

K(Vectgeom)

��

K(ch)

$$''
K(Vect)

..

K̂ (0) R //

I

��

H(σ≥0IDR)

��
K rBeil // H(IDR)

Hence the dotted arrow exists, and we define ĉycl as the composition

Vect
geom

= π0(iVectgeom)→ π0(K(Vectgeom))→ π0(K̂ (0)) = K̂0.

By construction, for a bundle V with geometry ∇̃ on M ×X we have

R(ĉycl(V , ∇̃)) = ch(∇̃) ∈ Z0(IDR(M ×X))

I(ĉycl(V , ∇̃)) = cycl(V) ∈ K0(M ×X).

2.3 Application: a secondary Steinberg relation

As an application of the theory presented so far, we explain how a differential version
of the Steinberg relation leads to the construction of K3-classes for number rings from
elements in the Bloch group, and their relation to the dilogarithm. The result itself is
not new, it goes back to Bloch. However, differential algebraic K-theory provides the
framework to give an elegant conceptual proof.

We first state the result. The second polylogarithm function is defined for |z| < 1 by

Li2(z) :=
∑
n≥1

zn

n2
.

It extends meromorphically to a covering of C.

Definition 2.2. The Bloch-Wigner dilogarithm is the real valued function on C given by

DBW (z) := log(|z|) arg(1− z) + Im(Li2(z)).

For any ring R we write R◦ := {λ ∈ R× | 1− λ ∈ R×}.

Definition 2.3. The third Bloch group B3(R) is defined as the kernel

B3(R) := ker
(
Z[R◦]

λ 7→λ∧(1−λ)−−−−−−−→ R× ∧R×
)
.

8



Now let R be the ring of integers in a number field and X := Spec(R). The target
of the regulator rBeil on K−3(X) is H−3(IDR(X)). Since X(C) ∼= {σ : R ↪→ C} is zero
dimensional we have

H−3(IDR(X)) ∼= H−3(IDR(2)(X)) ∼= IDR(2)(X)/im(d) ∼=
[
2πiRX(C)

]Gal(C/R)
. (10)

For λ ∈ R◦ we write

DBW
R (λ) :=

(
−iDBW (σ(λ))

)
σ∈X(C)

∈
[
2πiRX(C)

]Gal(C/R)
.

The result we want to prove is:

Theorem 2.4 (Bloch). For any x =
∑

λ∈R◦ nλ[λ] ∈ B3(R), there exists an element
bl(x) ∈ K−3(X) such that

rBeil(bl(x)) =
∑
λ

nλD
BW
R (λ).

We start with some general considerations. Let R be a ring such that X := Spec(R) ∈
Reg. There is a natural map

c : R× → K−1(X)

given as follows: To a unit λ ∈ R× one associates the rank-1 bundle V(λ) on S1 × X
which is trivial in the X-direction and has holonomy λ along S1. Then cycl(V(λ)) ∈
K0(S1 × X) ∼= K−1(X) ⊕K0(X) and c(λ) denotes the first component. The Steinberg
relation says that for λ ∈ R◦ we have

c(λ) · c(1− λ) = 0 in K−2(X).

From the exact sequence (9) we have that I : K̂−1(X)→ K−1(X) is surjective and its
kernel is a divisible abelian group. Hence we can lift c to a map ĉ

K̂−1(X)

I
��

R×
c //

ĉ
;;

K−1(X).

We get an induced map R× ∧ R× → K̂−2(X), λ ∧ µ 7→ ĉ(λ) · ĉ(µ). We consider the
following diagram with exact rows:

0 // B3(R) //

bl
��

Z[R◦]
λ 7→λ∧(1−λ) //

D
��

R× ∧R×

��

0 //K−3(X)/ker(rBeil) rBeil // IDR−3(X)/im(d) a // K̂−2(X) I //K−2(X)
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Here the map D exists by the Steinberg relation and since Z[R◦] is a free abelian group.
The arrow bl is the induced map on kernels. Of course, it depends on the choice of ĉ and
D.

To fix these choices, we consider the universal situation. Let

X := P1
Z \ {0, 1,∞} ∼= Spec(Z[λ, λ−1, (1− λ)−1]).

We first construct ĉ. Let V(λ) be the bundle on S1 × X described above. We want to
construct a geometry on V(λ). Let t be a parameter on S1 and log a local choice of a
branch of the logarithm on X(C) = C×\{1}. Then φ = λt is a local section of V(λ)C which
depends on the choice of logarithm. We first define a hermitian metric h and a connection
∇ on V(λ)C. Since this is a line bundle they are determined by their value on the local
sections φ. We set h(φ) = 1 and ∇(φ) = log(λ)φdt. These are well defined. Moreover,
∇(λ) has holonomy λ along S1 and ∇ is compatible with the holomorphic structure in the
X-direction. For the geometry ∇̃ we take the linear path between the associated unitary
connection ∇u and ∇. Explicitly, if u is the coordinate on the interval I, we have

∇̃φ =

(
1− u

2
(log(λ)− log(λ̄)) + u log(λ)

)
φdt.

We get
ĉycl(V(λ), ∇̃) ∈ K̂0(S1 × X).

We integrate this along S1 to get

ĉ(λ) ∈ K̂−1(X).

Now we look for D(λ) ∈ IDR−3(X)/im(d) such that a(D(λ)) = ĉ(λ) · ĉ(1− λ). Since
R ◦ a = d, we must have

d(D(λ)) = R(ĉ(λ)) ·R(ĉ(1− λ)) ∈ IDR−2(X). (11)

Because we want to specialize to number rings later on, we are only interested in the
component D(λ)(2) ∈ IDR(2)−3(X)/im(d) (cf. (10)) This is determined by (11) up to
elements in H−3(IDR(2)(X)). An easy computation shows that this group vanishes.

We now compute the right hand side of (11). We first compute

R
(
ĉycl(V(λ), ∇̃)

)
= ch(∇̃) = 1−R∇̃ = 1 + idt ∧ d arg(λ) + dt ∧ d log(|λ|u).

Hence
R(ĉ(λ)) = id arg(λ) + d log(|λ|u).

To simplify further we integrate over the interval I as in Lemma 1.6. In view of (10), we
are only interested in the imaginary part of (11). We get

i Im

(
−
∫
I×X(C)/X(C)

R(ĉ(λ)) ·R(ĉ(1− λ))

)
= −i log(|λ|)d arg(1− λ) + i log(|1− λ|)d arg(λ)

= d
(
−iDBW (λ)

)
(12)
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The last identity is an easy computation.
Now we return to the case of a number ring R. We have R◦ = X(R), hence λ ∈ R◦

gives a morphism λ : Spec(R) → X which on C-valued points is given by σ 7→ σ(λ). To

define D(λ)(2) ∈ IDR(2)(Spec(R))/im(d) ∼=
[
2πiRX(C)

]Gal(C/R)
we can pull-back from

the universal case via λ. It follows from (12) and (11) that this gives

D(λ)(2) =
(
−iDBW (σ(λ))

)
= DBW

R (λ).
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