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Abstract

1 Bundles, connections and K-theory

1.1 Connections and characteristic forms

We consider a smooth manifold M with its sheaf C∞ of smooth complex valued functions.
The datum of a complex vector bundle V → M on M is equivalent to its sheaf of C∞-
modules of sections V . Vice versa, by Swan’s theorem, if V is projective and finitely
generated, then it is the sheaf of smooth sections of a complex vector bundle.

Example 1.1. Consider the sheaf L on CPn of smooth functions f with values in Cn+1

such that f(H) ∈ H for every line H ⊂ Cn+1. It is the sheaf of sections of the tautological
line bundle L→ CPn.

A vector bundle is called trivial if

V ∼= C∞ ⊕ · · · ⊕ C∞︸ ︷︷ ︸
n

for an appropriate n ∈ N.

Problem 1.2. How can we descide whether a vector bundle is trivial.

Characteristic classes provide necesseary conditions, see Corollary 1.6.

Let A be the sheaf of differential graded algebras of complex-valued differential forms on
Mf . Thus A(M) is the complexified de Rham complex of M . Note that Ai|M is the sheaf
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of sections of the bundle ΛiT ∗M ⊗ C → M , in particular A0 ∼= C∞. The cohomology of
the complex of global sections

H∗dR(M) := H∗(A(M))

is called the de Rham cohomology of M .

A connection on V is a A-derivation of degree one

∇ : V ⊗C∞ A → V ⊗C∞ A .

It is uniquely determined by its restriction ∇ : V → V ⊗C∞ A1. If V is trivial, then we
define a connection by

V ⊗C∞ A ∇triv //

∼=
��

V ⊗C∞ A
∼=

��
A⊕ · · · ⊕ A ⊕d // A⊕ · · · ⊕ A

.

Local connections can be glued using a partition of unity. Since a bundle is locally trivial
it admits connections locally, and therefore globally.

The map R∇ := ∇ ◦ ∇ is a map of A]-modules (] forgets the differential) and called the
curvature of ∇. In fact,

R∇ ∈ (A2 ⊗C∞ End(V))(M) .

If V is trivial, then R∇
triv

= 0. If R∇ = 0, then ∇ is called flat.

Definition 1.3. We define the Chern form by

ch(∇) := Tr exp(R∇) ∈ Aev(M) .

Given two connections ∇i on V we can form a connection ∇̃ on pr∗MV → [0, 1]×M which
restricts to ∇i at the end points. We choose the affine path ∇̃ := t∇1 + (1− t)∇0 + dt∂t
for the next definition.

Definition 1.4. We define the transgression Chern form by

c̃h(∇1,∇0) :=

∫
[0,1]×M/M

ch(∇̃) ∈ Aodd(M) .

Lemma 1.5. 1. dch(∇) = 0.

2. dch(∇̃) = ch(∇1)− ch(∇0).

3. The class ch(V ) := [ch(∇)] ∈ Hev
dR(M) is well-defined.

4. If V is trivial, then ch(V ) = dim(V ).

5. If V admits a flat connection, then ch(V ) = dim(V ).
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Corollary 1.6. If ch(V ) 6= dim(V ), then V is not trivial and does not even admit a flat
connection.

Example 1.7. We continue example 1.1. We have an orthogonal projection P : CPn ×
Cn+1 → L. We define a connection on L by ∇L := P∇triv. Since L is one-dimensional we
can identify End(L) ∼= CPn×Cn+1 so that R∇ ∈ A2(CPn+1) is closed. The group U(n+1)
acts on L and preserves ∇. Hence R is U(n+ 1)-invariant. Since CPn+1 ∼= U(n+ 1)/U(n)
is a symmetric space its invariant differential form are its harmonic forms. Therefore R∇

is proportional to the unique ω ∈ A2(CPn) which satisfies
∫
CP1 ω = 1. The proportionality

factor can be determined by a local calculation:

R∇ = 2πiω .

Consequently, we have
ch(∇) = exp(2πiω) . (1)

We set c := [ω] ∈ H2
dR(CPn). Then H∗dR(CPn) ∼= C[c]/(cn+1). For example, if n = 3, then

ch(L) = 1 + 2πic+
(2πi)2

2
c2 +

(2πi)3

6
c3 .

Let V̄ denote V with the opposite complex structure. A hermitean metric on V is a
bundle map h : V̄ ⊗ V →M × C which is fibrewise a scalar product. It induces a map

h : (V ⊗C∞ A)⊗A (V ⊗C∞ A)→ V ⊗C∞ A .

Lemma 1.8. Given a connection ∇ on V there exists an adjoint connection ∇∗h such
that

h ◦ (∇⊗ 1 + 1⊗∇∗h) = d ◦ h .

Its curvature satisfies
h ◦ (1⊗R∇∗h ) = h ◦ (R∇ ⊗ 1) .

We have
ch2n(∇∗h) = (−1)nch2n(∇) . (2)

The last relation can explicitly be verified in (1).

Definition 1.9. ∇ is called hermitean (and h is called parallel), if ∇∗h = ∇. We call ∇
unitarizable, if there exists a parallel hermitean metric.

Problem 1.10. How can we decide whether ∇ is unitarizable.

If∇ is trivial, then it admits a parallel metric. In general we can again define characteristic
classes which provide obstructions against the existence of a parallel metric. We set
c̃h(∇, h) := ch(∇∗h ,∇).

Lemma 1.11. 1. We have d Im(ipc̃h2p−1(∇, h)) = 0.
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2. The class ω(∇) :=
∑

p≥1[Im(ipc̃h2p−1(∇, h))] ∈ Hodd
R,dR(M) does not depend on h.

3. If ∇ admits a parallel metric, then ω(∇) = 0.

Proof. 1. follows from Lemma 1.5, 2. and (2). For 2. we consider two metrics h0, h1. We
form the metric h̃ := th1 + (1− t)h0 on pr∗V → [0, 1]×M . Then

c̃h(∇∗h1 ,∇)− c̃h(∇∗h0 ,∇) = d

∫
[0,1]×M/M

c̃h(pr∗∇, h̃) +

∫
[0,1]×M/M

dc̃h(pr∗∇, h̃) .

For 3. we use that c̃h(∇,∇) = 0. 2

Corollary 1.12. If ∇ is unitarizable, then ω(∇) = 0

Example 1.13. The connection on L described in example 1.7 is unitarizable. Indeed,
the metric on L induced by the embedding L → CPn+1 × Cn+1 is parallel. We have
Im(ipc̃h2p−1(∇, h)) = 0 by the calculation above.

Problem 1.14. We consider the trivial bundle R2 × C2 → R2 with connections

∇ := d+

(
0 1
0 0

)
dx , ∇′ := d+

(
0 1
0 0

)
ydx

Show that ∇ is unitarizable, while ∇′ is not. The connection ∇ descends to the quotient
R2/Z2, but this descent is not unitarizable.

Example 1.15. We consider λ ∈ C∗ and define the action of Z on the trivial bundle
R× C → R by n(t, z) 7→ (t + n, λnz). This action preserves the trivial connection ∇triv.
We let V (λ) → S be the quotient with the induced flat connection ∇(λ). One can
calculate that

ω(∇(λ)) = −2 log |λ|orS1 ∈ Hodd
R,dR(S1) .

Hence ∇(λ) admits a parallel metric if and only if λ ∈ U(1).

We will see more examples of non-unitarizable connections later in this course.

1.2 Bundles and topological K-theory

We consider the functor
Bun : Mf →Mon

which associates to a manifold M the monoid of isomorphism classes of vector bundles
on M under direct sum and to f : M → M ′ the pull-back f ∗. This functor is homotopy
invariant. In general it is a difficult problem to calculate Bun(M). In contrast, a functor
F 0 : Mf → Ab is amenable to calculations if it is part of a cohomology theory F ∗ : Mf →
AbZ−graded. For F ∗(M) we have a Mayer-Vietoris sequence and an Atiyah-Hirzebruch
spectral sequence with second page Ep,q

2
∼= Hp(M ;F q). A good way to study the functor

Bun is to look first at its approximation by complex K-theory KU0.
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Complex K-theory is represented by a spectrum KU with homotopy groups

π∗(KU) ∼= R[b, b−1]

with deg(b) = −2. We have a natural transformation

cycl : Bun→ KU0 (3)

of monoid valued functors such that a vector bundle V →M gives rise to a class cycl(V ) ∈
KU0(M). Note that KU is a ring spectrum, and cycl is multiplicative, of one considers
on Bun the monoid structure induced by the tensor product of bundles.

Remark 1.16. One can construct complex K-theory by the following procedure. Instead
of Bun one considers the homotopy invariant functor (presheaf)

Bun ∈ Funconst(Mfop,CommMon(S))

which associates to a manifold M the monoid space of bundles. We group-complete and
sheafify in order to get a sheaf

K(Bun) ∈ Fundesc,const(Mf ,CommGrp(S))

of commutative group spaces (E∞-spaces). As any homotopy invariant sheaf of spaces
it representable, in this case by a commutative group space which we can defined to
be Ω∞KU . If one takes the tensor product of bundles into account, then one gets the
multiplicative structure on KU as well. In particular, we have the isomorphism

KU0(M) ∼= π0(K(Bun)(M))

as rings. If we define topological K-theory in this way the cycle map (3) is tautological.
We will develop the techniques for this procedure during this week.

Example 1.17. We can identify KU0(CPn) ∼= Z[z]/(zn+1) as rings, where z := cycl(L)−
1. For this one can use the multiplicative version Atiyah-Hirzebruch spectral sequence.

We further consider the Eilenberg-MacLane spectrum HR[b, b−1] of the ring R[b, b−1]. The
de Rham isomorphism identifies HR[b, b−1]0(M) ∼= Hev

dR(M).

Proposition 1.18. There is a unique map ch : KU → HR[b, b−1] of spectra such that
the following diagram commutes

Bun(M)
cycl //

ch
��

KU0(M)

ch
��

Hev
dR(M)

∼= // HR[b, b−1]0(M)

.

During this week we will present a construction of regulators. If applied to topological
the Chern character forms and the approach to topological K-theory 1.16 we get a simple
proof of 1.18.

Example 1.19. The map ch : KU0(CPn)→ HR[b, b−1]0(CPn) sends z to exp(2πibc)−1.
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1.3 Flat bundles and algebraic K-theory

We now consider the functor

Bun∇,f lat : Mf →Mon

which associates to a manifold M the monoid of isomorphism classes of vector bundles
with flat connection on M under direct sum and to f : M → M ′ the pull-back f ∗. Its
approximation

Bun∇,f lat
forget∇−−−−−→ Bun

cycl→ KU0

by complex K-theory loses most of the information. A better approximation is by the
algebraic K-theory of C.

The algebraic K-theory spectrum KC again represents a cohomology theory.

Remark 1.20. One can construct in analogy to 1.16 the algebraic K-theory spectrum
KC as follows. One starts with the homotopy invariant presheaf

Bun∇,f lat ∈ Funconst(Mfop,CommMon(S))

which associates to a manifold M the monoid space of bundles with flat connection. We
group-complete and sheafify in order to get a sheaf

K(Bun∇,f lat) ∈ Fundesc,const(Mf ,CommGrp(S))

of commutative group spaces (E∞-spaces). The sheaf is again represented by a commu-
tative group space which define to be Ω∞KC. If one takes the tensor product of bundles
into account, then one even gets the multiplicative structure on KC as well. In particular,
we have the isomorphism

KC0(M) ∼= π0(K(Bun∇,f lat)(M))

as rings.

Proposition 1.21. There is a cycle map

cycl : Bun∇,f lat → KC0 .

Proof. This is either an immediate consequence of the construction 1.20 or shown us-
ing classifying spaces as follows. Note that KC0(M) ∼= [M,Ω∞KC], and that for every
n ∈ N there is a natural map BGL(Cδ, n) → Ω∞KC. If (V,∇) ∈ Bun∇,f lat(M), then
the connection induces a reduction of the structure group of V from GL(C, dim(V )) to
GL(Cδ, dim(V )) and therefore a unique homotopy class of classifying maps in [M,BGL(Cδ, dim(V ))]
which induces the class cycl(V,∇) in the natural way. 2

We consider the Eilenberg-MacLane spectrum

HR〈b0, b1, b3, b5 . . . 〉 ,
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where bj is an additive generator in degree j. The de Rahm isomorphism provides an
identification

HR〈b0, b1, b3, . . . 〉0(M) ∼= H0
R,dR(M)⊕Hodd

R,dR(M) .

Proposition 1.22. There exists a unique map of spectra rC : KC → HR〈b0, b1, b3, . . . 〉
such that the following diagram commutes.

Bun∇,f lat(M)
cycl //

b0 dim⊕ω
��

KC0(M)

rC

��
H0

R,dR(M)⊕Hodd
R,dR(M)

∼= // HR〈b0, b1, b3, . . . 〉0(M)

.

Example 1.23. We have KC0(S1) ∼= π0(KC) ⊕ π1(KC) ∼= Z ⊕ C∗. Under this identifi-
cation cycl(V (λ),∇(λ)) = 1⊕ λ. Furthermore,

rC(n⊕ λ) = nb0 − 2 log |λ|b1orS1 ∈ HR〈b0, b1, b3, . . . 〉0(S1) .

1.4 Differential cohomology

A bundle with connection (V,∇) ∈ Bun∇(M) gives rise to a class cycl(V ) ∈ KU0(M)
and a form

ch(∇) := Tr exp(bR∇) ∈ Z0((A⊗C C[b, b−1])(M))

such that Rham(ch(∇)) = ch(cycl(V )). It can happen that both invariants are trivial,
but (V,∇) is non-trivial.

Example 1.24. We consider the bundle V (λ)→ S1 from Example 1.15. Then 1 = [V (λ)]
and ch(∇(λ)) = 1.

Differential K-theory K̂U
0

can capture a refined invariant. It fits into an exact sequences

K−1(M)→ HC[b, b−1]−1(M)
a→ K̂U

0
(M)→

(I,R)→ KU0(M)×HC[b,b−1]0(M) Z
0((A⊗C C[b, b−1])(M))→ 0 .

(A⊗C C[b, b−1])−1(M)
a→ K̂U

0
(M)

I→ KU0(M)→ 0

such that R ◦ a = d. Furthermore,

(KU ∧MC/Z)0(M) ∼= K̂U
0

flat(M) := ker(R : K̂U
0
(M)→ Z0((A⊗C C[b, b−1])(M))) .

(4)
We will explain the definition in later talks. We have a refined cycle map

ĉycl : Bun∇(M)→ K̂U
0
(M)

such that R(ĉycl(V,∇)) = ch(∇) and I(ĉycl(V,∇)) = cycl(V ).
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Example 1.25. We have ĉycl(V (λ),∇(λ)) = 1 − a(log λborS1) ∈ K̂U
0
(S1). Here we

can choose any leaf of the logarithm.

Proposition 1.26. There exists a lift

K̂U
0
(M)

��
KC0(M) //

φ
88

KU0(M)

such that R(φ(x)) = dim(x).

Using (4) we can define a map

φ : KC→ Σ−1(KU ∧MC/Z) (5)

which in degree zero cohomology induces φ−dim. Work out the details. It detects torsion
elements in π∗(KC). By a theorem of Suslin [Sus84] we have

πn(KC)tors ∼=
{

Q/Z n odd
0 n even

Is φ injective on πn(KC)tors? By a theorem of Quillen [Qui76] the unit S → KC is
injective on the image of the J-homomorphism. By a theorem of Jones-Westbury [JW95],

S → KC→ Σ−1(KU ∧MR/Z)

detects the image of the J-homomorphism.

2 TIC

2.1 Differential algebraic K-theory of a number ring

We consider a number field k and its ring of integers R. Then we have the algebraic
K-theory spectrum KR. We first explain real model of KR. The set Spec(R)(C) is the
set of embeddings R ↪→ C on which the group Z/2Z acts by complex conjugation. We
define the graded abelian group

A(R) := b0R⊕ R〈b2i+1,σ|i ∈ N , σ ∈ Spec(R)(C)〉/ ∼ ,

with the relations b2i+1,σ̄ = (−1)ib2i+1,σ. We define a map

c : KR→
⊕

σ∈Spec(R)(C)

KC ⊕rC→
⊕

σ∈Spec(R)(C)

H(Rb0 ⊕ R〈b2i+1|i ∈ N〉)→ HA(R) .

The component at σ of the first map is induced by the inclusion σ. The map rC is a
defined in Proposition 1.22. The third map is the obvious projection on the higher degree
part and given by ⊕σxσb0 7→ 1

|Spec(R)(C)|xσb0 in degree 0.
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Theorem 2.1 (Borel, [Bor74]). The map c induces an isomorphism in homotopy groups
πi(KR) ⊗ R → πi(HA(R)) for i 6= 1. The map π1(KR) ⊗ R → π1(HA(R)) is injective
with one-dimensional cokernel generated by

∑
σ∈Spec(R)(C) b1,σ.

Definition 2.2. We define the spectrum KR as the homotopy cofibre of c.

One can check using Borel’s theorem that

KR ∼= KR ∧MR/Z⊕HR ,

For a spectrum E we let Sm(E) ∈ Fundesc(Mfop,Sp) be the function spectrum which
evaluates as Sm(E)(M) = Map(M,E). If C is a chain complex of real vector spaces, then
we can form the sheaf of chain complexes AR⊗RC and the sheaf of spectra H(AR⊗RC) ∈
Fundesc(Mfop,Sp). Its homotopy type is given by the de Rham Lemma.

Proposition 2.3 (De Rham Lemma). There exists a canonical equivalence

Rham : H(AR ⊗R C)
∼→ Sm(HC) .

If C ∈ Fundesc(Mfop,Ch), then we get a sheaf of zero cycles Z0(C) ∈ Fundesc(Mfop,Ab).
If we consider the latter as a presheaf of chain complexes concentrated in degree zero in
Fun(Mfop,Ch[W−1]), then it may not be a sheaf. We let Z̃0(C) ∈ Fundesc(Mfop,Ch[W−1])
denote its sheafification. We have a map Z̃0(AR ⊗R C)→ AR ⊗R C which finally induces

z : H(Z̃0(AR ⊗R C))→ H(AR ⊗R C)
Rham→ Sm(HC) .

Under the obvious identifications, the induced map

z : π0(Z̃0(AR ⊗R C)(M))→ π0(Sm(HC)(M))

maps a cycle ω ∈ Z0(AR ⊗R C)(M) to its cohomology class z(ω) ∈ HC0(M).
Assume that we have fixed a map of spectra c : E → HC and let E be its cofibre.

Definition 2.4 (Differential cohomology). We define the sheaf of differential cohomology
spectra

Diff(E) ∈ Fundesc(Mf ,Sp)

as the pull-back such that

Diff(E) R//

I
��

H(Z̃0(AR ⊗R C))

z

��
Sm(E) c // Sm(HC)

We define the differential cohomology group of M by

Ê0(M) := π0(Diff(E)(M)) .
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It fits into the natural exact sequence

E−1(M)→ HC−1(M)
a→ Ê0(M)→ (6)

(I,R)→ E0(M)×HC0(M) Z
0((AR ⊗R C)(M))→ 0 . (7)

(AR ⊗R C)−1(M)
a→ Ŵ 0(M)

I→ W 0(M)→ 0

Furthermore, we have a natural identification

E
0
(M) ∼= Ê0

flat(M) := ker(R) .

Work out the argument.

We apply this construction to the map c : KR → HA(R) and obtain the differential
algebraic K-theory of R.

A sheaf of finitely generated R-modules on M which will be called an R-bundle. If V
is such a sheaf, then Vσ := V ⊗R,σ C∞ is a sheaf of sections of a complex vector bundle
(Vσ,∇σ) with flat connection.

Definition 2.5. A geometry on V is a collection of metrics g := (hVσ) which is invariant
under complex conjugation.

Let
LocR, Loc

geom
R : Mfop →Mon

be the functors which map a manifold to the monoids of R-bundles without and with
geometry. We have a cycle map

cycl : LocR → KR0 .

We define the characteristic form

ω : Loc
geom
R → Z0(A⊗R A(R))

such that
ω(g) := b0 dim(V )⊕

∑
i∈N, σ∈Spec(R)(C)

c̃h2i+1(∇σ,h
σ)b2i+1,σ .

Proposition 2.6 (B.-Gepner, [BG13]). There exists an additive natural transformation

ĉycl : Loc
geom
R → K̂R

0

such that
Z0(AR ⊗R A)

Loc
geom
R

(V,g)7→ω(g)
44iiiiiiiiiiiiiiiiiii

(V,g)7→cycl(V)
**UUUUUUUUUUUUUUUUUUUUUU

ĉycl //
K̂R

0

R

88qqqqqqqqqqq

I

&&NNNNNNNNNNN

KR0

commutes.
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Note that this transformation is not unique.

Example 2.7. We fix a prime p ∈ N and consider the cyclotomic field Q(ξ) with ξp = 1
and let R ⊂ Q(ξ) be its ring of integer. Then ξ ∈ R. We consider a manifold M with base
point m0 and an identification π1(M,m0) ∼= Z/pZ. For example, we can take the total
space of the U(1)-bundle L2n+1

p → CPn with Chern class pc. The representation [1] 7→ ξ
of π1(M,m0) on R induces an R-bundle V on M . It carries a canonical parallel geometry
g. We therefore get a class

ĉycl(V , g) ∈ K̂R
0
(M)

such that R(ĉycl(V , g)) = b0. Calculate φ(cycl(σ(V)) ∈ (KU ∧MR/Z)0(L2n+1
p ), where

φ is as in (5).

2.2 Lott’s relation

Let us consider an exact sequence of R-bundles on a smooth manifold M

V : 0→ V0 → V1 → V2 → 0 .

It is known that algebraic K-theory splits exact sequences.

Lemma 2.8. We have
cycl(V0) + cycl(V2) = cycl(V1)

in KR0(M).

Proof. First reduce to the case bundles which are fibrewise free. Then V1 corresponds to
a representation of π1(M,m0)→ GL(dim(V1), R) of the block form(

ρ0 ∗
0 ρ2

)
.

Show that one can deform the corresponding classifying map M → BGL(dim(V1), R)+

to the map given by the representation(
ρ0 0
0 ρ2

)
.

This implies the result. 2

We now choose geometries gi on Vi for i = 0, 1, 2 and call g := (gi)i=0,1,2 a geometry on
V . If V splits in a way compatible with the geometry, then we have

ĉycl(V0, g0) + ĉycl(V2, g2) = ĉycl(V1, g1)

in K̂R
0
(M). In general, this does not hold true even on the level of curvatures, i.e. after

applying R. To remedy this fact, Bismut-Lott [BL95] introduced a higher torsion form
T (V , g) ∈ AR⊗RA(M)/im(d) which is uniquely characterized by the following properties:
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1. ω(g0) + ω(g2)− ω(g1) = dT (V , g),

2. T (V , g) = 0 if V splits metrically,

3. T (V , g) depends smoothly on (V , g)

4. T (V , g) is natural w.r.t to pull-back.

Theorem 2.9 (B.-Tamme, [BT12]). We have the relation

ĉycl(V0, g0) + ĉycl(V2, g2)− ĉycl(V1, g1) = a(T (V , g))

in K̂R
0
(M).

The proof is a consequence of a generalization of differential algebraic K-theory from
number rings to higher-dimensional schemes. It is a first step towards Lott’s challenge
[Lot00] relating a secondary index for flat bundles with the Becker-Gottlieb transfer. The
transfer index conjecture formulated below would then imply Lott’s challenge.
As an application of Lott’s relation we have the following:

Corollary 2.10. Assume that we have two exact sequences V ,V ′ with the same bundles
Vi, i = 0, 1, 2. Then [T (V , g) − T (V ′, g)] ∈ HA−1(M) is a class in the image of the
regulator KR−1(M)→ HA−1(M) and independent of the geometry g.

2.3 The analytic index

We consider a proper submersion π : W → B between smooth manifolds. We choose a
metric gT

vπ on the vertical tangent bundle T vπ := ker(dπ) and a connection T hπ. One
way to do this is to choose a Riemannian metric on the manifold W and define gT

vπ as
the induced metric on the fibres and T hπ as the orthogonal complement of the vertical
bundle. The triple (π, gT

vπ, T hπ) is called a geometric proper submersion.

Let (V , g) ∈ Loc
geom
R be a geometric bundle. The main goal of this subsection is to define

the differential analytic index îndex
an

(V , g) ∈ K̂R
0
(B). It comes as an additive map

îndex
an

: Loc
geom
R (W )→ K̂R

0
(B)

which is natural under pull-back squares for geometric proper submersions

For every i ∈ N we consider the bundle Riπ∗V on B.

Definition 2.11. We define the analytic index

indexan : LocR(W )→ KR0(B)

by

indexan(V) :=
∞∑
i=0

(−1)icycl(Riπ∗V) ∈ KR0(B) .
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We use fibrewise Hodge theory in order to define a geometry on these bundles which will
be used to define the differential refinement of the analytic index.

We let dv be the vertical part of the differential of the sheaf of complexes A|W ⊗σ,RV . The
complex π∗(A|W ⊗R,σ V , dv) is a complex of sheaves of C∞|B-modules whose cohomology

groups are naturally identified with Riπ∗V ⊗R,σ C∞|B. The metric gT
vπ together with g

induce a fibrewise L2-metric on π∗(A|W ⊗R,σ V), and by fibrewise Hodge theory we can
identify Riπ∗V⊗R,σC∞|B with the sheaf of fibrewise harmonic forms. In particular we get an

induced metric hR
iπ∗V

σ . The collection (hR
iπ∗V

σ )σ∈Spec(R)(C) is a geometry gR
iπ∗V on RiπV .

We define the bare analytic index by

îndex
an

0 (V , g) :=
∞∑
i=0

(−1)iĉycl(Riπ∗V , gR
iπV ) ∈ K̂R

0
(B) .

The theory of Bismut-Lott solves the problem of the calculation of the class

[R(îndex
an

0 (V , g))] ∈ HA(R)0(B) .

Theorem 2.12 (Bismut-Lott index theorem [BL95]). We have

[R(îndex
an

0 (V , g))] =

∫
W/B

χ(T vπ) ∪ [R(V , g)] ,

where χ(T vπ) is the Euler class of T vπ.

Example 2.13. We continue example 2.7. The circle bundle π : L2n+1
p → CPn has a

canonical vertical metric and connection. One checks that Ri
∗πV = 0 for all i ≥ 0 and

therefore îndex
an

0 (V , g) = 0 and indexan(V) = 0. This is consistent with the Bismut-Lott
index theorem by the fact that χ(T vπ) = 0.

For our purpose we need the local version of the Bismut-Lott index theorem. First of all,
the vertical metric and the connection on π induce a connection ∇T vπ, a version of the
Levi-Civita connection. Therefore we get an Euler form

χ(∇T vπ) ∈ (Adim(W/B)
R|W ⊗R ΛW/B)(W )

representing the class χ(T vπ), where ΛW/B is the relative orientation bundle. The main
ingredient of the local Bismut-Lott index theorem is the higher analytic torsion form

T := T (V , g, T hπ, gT vπ) ∈ (AR ⊗R A(R))(B)−1

Its detailed definition is complicated, but its main properties are naturality under pull-
back alongs maps B′ → B and the following theorem.

Theorem 2.14 (local Bismut-Lott index theorem [BL95]). We have the equality

R(îndex
an

0 (V , g)) =

∫
W/B

χ(∇T vπ) ∧R(V , g) + a(T ) .

13



Definition 2.15. We define the analytic index îndex
an

: Loc
geom
R (W )→ K̂R

0
(B) by

îndex
an

(V , g) = indexan0 (V , g)− a(T ) .

Example 2.16. We continue example 2.13. We get

îndex
an

(V , g) = −a(T ) .

In this case the higher analytic torsion form has been calculated by Bismut-Lott [BL95]
explicitly:

T = b0T0 +
∑

σ∈Spec(R)(C)

2

|Stab(σ)|

(∑
jeven

(−1)j/2
1

(2π)j
(2j + 1)!

22j(j!)2
Re(Lij+1(σ(ξ))) pjωj b2j+1,σ

+
∑
jodd

(−1)(j−1)/2 1

(2π)j
(2j + 1)!

22j(j!)2
Im(Lij+1(σ(ξ))) pjωj b2j+1,σ

)
.

2.4 The topological index

We continue to consider a geometric proper submersion (π : W → B, gT
vπ, T hπ). The

main goal of this subsection is to describe a differential Becker-Gottlieb transfer

t̂r : K̂R
0
(W )→ K̂R

0
(B) .

It will be used in the definition of the topological index.

Definition 2.17. We define the topological index

îndex
top

: Loc
geom
R (W )→ K̂R

0
(B)

by

îndex
top

(V , g) := t̂r(ĉycl(V , g)) .

Consider a compact manifold M . We can choose an embedding M ↪→ Sn \ {∞} whose
normal bundle is denoted by ν. We get a canonical map

Sn → Sn/h(S
n \M) ∼= Mν ,

where /h denotes the homotopy quotient and Mν is the Thom space of ν. The inclusion
ν ↪→ TM ⊕ ν ∼= M × Rn induces a map Mν → Σn

+M . The composition of these two
maps gives after stabilization a map of spectra S → Σ∞+M . Applying this construction
fibrewise to π we get the transfer map

tr : Σ∞+B → Σ∞+W

which induces a Becker-Gottlieb transfer [BG75] in every cohomology theory, in particular

tr : KR0(W )→ KR0(B) .
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Definition 2.18. We define the topological index indextop : LocR → KR0(B) by

indextop(V) := tr(cycl(V)) .

Theorem 2.19 (Dwyer-Weiss-Williams index theorem [DWW03]). We have

indexan = indextop .

One can check that the Dwyer-Weiss-Williams index theorem is consistent with the
Bismut-Lott index theorem. This follows from

tr([R(ĉycl(V , g))]) =

∫
W/B

χ(T vπ) ∪ [R(ĉycl(V , g))] .

Let c : E → HC and E be as above.

Theorem 2.20 (B.-Gepner [BG13]). There exists a natural differential refinement of the
Becker-Gottlieb transfer

t̂r : Ê0(W )→ Ê0(B)

such that

R(t̂r(x)) =

∫
W/B

χ(∇T vπ) ∧R(x) , I(t̂r(x)) = tr(I(x))

for all x ∈ Ê0(W ). Furthermore, its restriction to Ê0
flat coincides with tr under the

identification Ê0
flat
∼= E

0
.

Example 2.21. Assume that there exists a nowhere vanishing vertical vector field X ∈
C∞(W,T vπ). Then

t̂r(x) = a(

∫
W/B

ΨX ∧R(x)) ,

where ΨX ∈ (Adim(W/B)−1⊗ΛW/B)(W ) is the Mathai-Quillen form of X such that dΨX =
χ(∇T vπ).

Example 2.22. We continue the example 2.16 and calculate îndex
top

(V , g). Since T vπ

is trivialized we have tr = 0. Further note that R(ĉycl(V , g)) = b0. Example 2.21 and

the fact that
∫
W/B

ΨX ∧ b0 = 0 now implies that t̂r(ĉycl(V , g)) = îndex
top

(V , g) = 0.

2.5 The transfer index conjecture

We consider a geometric proper submersion (π : W → B, gT
vπ, T hπ) and a geometric

R-module (V , g) ∈ Loc
geom
R (W ).

Conjecture 2.23 (Transfer index conjecture). We have the equality

îndex
an

(V , g) = îndex
top

(V , g) .
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One checks in a straightforward manner that

R(îndex
an

(V , g)) = R(îndex
top

(V , g))

is equivalent to the local Bismut-Lott index theorem, and that

I(îndex
an

(V , g)) = I(îndex
top

(V , g))

is equivalent to the Dwyer-Weiss-Williams index theorem. Hence, apriori in view of (6)

îndex
an

(V , g)− îndex
top

(V , g) ∈ HA(R)−1(M)/im(KR−1(M)→ HA(R)−1(M)) .

Example 2.24. We continue example 2.22. The TIC predicts that a(T ) = 0. This is
equivalent the assertion that there exists an element x ∈ KR−1(CPn) such that c(x) = [T ].
There exists an identification (use multiplicative structure of KR and Atiyah-Hirzeburch
spectral sequence)

KR−1(CPn)⊗Q ∼= K∗(R)⊗Q[c]/(cn+1) .

In this identification we can write

x =
∑
j≥0

x2j+1 ⊗ cj ,

where xj ∈ K2j+1(R)⊗Q are uniquely determined. Therefore the TIC predicts:

Fact 2.25. For every j ∈ N \ {0} there exists xj ∈ K2j+1(R) ⊗ Q such that for every
σ ∈ Spec(R)(C) w have

rBorel,σ(xj) =

{
(−1)j/2 1

(2π)j
(2j+1)!
22j(j!)2

Re(Lij+1(σ(ξ))) pj j even

(−1)(j−1)/2 1
(2π)j

(2j+1)!
22j(j!)2

Im(Lij+1(σ(ξ))) pj j odd

}

This fact is a true statement, since the existence of such elements has been shown by
Beilinson [Bĕı86].
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3 Problems

Problem 3.1. Let L → CPn be the tautological line bundle and ∇ the connection on L
on the tautological line bundle as in the lecture. Let ω ∈ A2(CPn) be the unique harmonic
form satisfying

∫
CP1 ω = 1. Show that the curvature of ∇ satisfies

R∇ = 2πiω.

Problem 3.2. We consider λ ∈ C∗ and define the action of Z on the trivial bundle
R × C → R by n(t, z) 7→ (t + n, λnz). This action preserves the trivial connection ∇triv.
We let V (λ)→ S1 be the quotient with the induced flat connection ∇(λ). Show that

ω(∇(λ)) = −2 log |λ|orS1 ∈ Hodd
dR (S1) .

Problem 3.3. Show that one can identify KU0(CPn) ∼= Z[z]/(zn+1) as rings, where
z := cycl(L)− 1.

Problem 3.4. Let M be a manifold, I the interval [0, 1] and i0, i1 : M ↪→ I ×M be the

inclusions at the endpoints. Prove the following homotopy formula: If x̂ ∈ K̂U
0
(I ×M),

then

i∗0(x̂)− i∗1(x̂) = a(

∫
I×M/M

R(x̂))

where
∫
I×M/M

: A⊗R[b, b−1](I×M)→ A⊗R[b, b−1](M)[−1] is given by integration along

the interval I.

Problem 3.5. Let (V (λ),∇(λ)) be as in Problem 3.2. Calculate K̂U
0
(S1) and charac-

terize the element ĉycl(V (λ),∇(λ)).
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4 Problems II

Problem 4.1. Show the de Rham Lemma H(A ⊗R C)
∼→ Sm(HC). Hint: Construct

equivalences HC
∼→ H(A⊗R C) and HC

∼→ Sm(HC)

Problem 4.2. Show that Zn(A) → σ≥nA represents the sheafification of Zn(A) in
Fun(Mf ,Ch[W−1]).

Problem 4.3. Verify the basic exact sequences of differential cohomology.

Problem 4.4. Show that algebraic K-theory splits exact sequences of bundles (give details
for the proof of Lemma 2.8).

Problem 4.5. Calculate the class predicted in Corollary 2.10 in the case of complexes on
S1

V : 0→ S1 ×R id→ S1 ×R→ 0→ 0 ,

V ′ : 0→ S1 ×R λ→ S1 ×R→ 0→ 0 ,

where λ ∈ R∗ is a unit.

Problem 4.6. Show that the Becker-Gottlieb transfer satisfies tr = 0 if T vπ admits a
nowhere vanishing section.
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