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Introduction

In this bachelor’s thesis, we are going to explain the category of profinite sets, study
some of its properties and in the end see the basic notions of condensed mathematics,
where profinite sets are used.

The main theorems presented in this thesis are the equivalence of the category of
profinite sets to the category of totally disconnected compact Hausdorff spaces (Def.
1.4.3 and Theorem 1.4.11) and the characterization of the projectives of this category
as extremally disconnected spaces (Def. 3.2.1 and Theorem 3.2.10).

The text aims to coherently explain the theory of profinite sets with a view toward
both category theory and topology. We will not develop the theory of Boolean Alge-
bras another way to view this topic. Thereby we aim to lay the groundwork for an
introduction to condensed mathematics.

Condensed mathematics, our main motivation for the study of profinite sets, is
a very new field of mathematics only developed in the last few years by Dustin
Clausen and Peter Scholze [CS19b]. It aims to give a new foundation of analytic
non-archimedean [CS19a] and complex geometry [CS22], where one can apply a wide
range of tools from algebraic geometry. As the notion of a topological group is not
well-behaved when looking at exact sequences another kind of object was needed. This
seems to be the category of condensed sets and its subcategories of condensed groups,
rings, and so forth. This approach has been so far very successful, as they were able to
reprove the Riemann-Roch theorem [CS22] in the theory of condensed mathematics.

Another very interesting aspect of this recently developed field is the Liquid Tensor
experiment. This was a challenge, posted online by Peter Scholze, to verify the theo-
rem of liquid tensor spaces using computer assisted proof checking software, with an
emphasis on the proof assistant Lean (Liquid Tensor Experiment). He was very sure
that it was true, but wanted to be absolutely sure, as he was convinced that the theory
of condensed mathematics rose or fell with this theorem. In July 2022 the Liquid Ten-
sor Experiment was completed by a group of mathematicians led by Johan Commelin
with support from Peter Scholze and many contributions from Adam Topaz and many
others (Completion of LTE). This marked, besides verifying the important theorem, a
great success in computer-assisted proofs and proof checking.

Apart from those very recent developments most of what is done in this thesis is
based on material from the middle of the twentieth century. The first appearance of
profinite sets was not as such, but as totally disconnected compact Hausdorff spaces.
Stone studied Boolean algebras [Sto36] which led to him proving that the categories of
Boolean algebras and totally disconnected compact Hausdorff spaces are dual, which
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is the cause for them being called Stone Spaces [Sto37]. In the same paper, he also
proved that extremally disconnected compact Hausdorff spaces, also known as Stonean
Spaces, are dual to complete Boolean algebras. Additionally, simultaneously with Čech
[Cec37], he discovered the Stone-Čech compactification.

Whereas Stone did it from the perspective of the underlying Boolean algebras of
frames and locales the motivation of Čech was the continuous extension of real-valued
functions on completely regular spaces to a compact Hausdorff space, in which the space
we started with is densely embedded. The characterization of extremally disconnected
spaces as projectives was mostly developed in a paper by Gleason [Gle58] and adapted
in a way, more in spirit with category theory, in a paper by Rainwater [Rai59]. There
he also introduces the notion to view the Stone-Čech compactification of discrete spaces
as free objects.

The discoveries described in the previous paragraph mostly look at our topic from a
topological point of view. The other aspect, the category theoretical one, was developed
by Grothendieck in [SGA4], although there the focus lay on the ind-categories, dual to
pro-categories. This also just introduced the abstract construction of those categories
and did not consider the special case of profinite sets. Unsurprisingly this is a field
very close to Peter Scholze’s work before beginning to develop the theory of condensed
mathematics.

Contents

In Chapter 1, we are going to introduce the notion of a projective limit from cat-
egory theory and use this to define the pro-category. This category consists of all
formal projective limits in a category, which can be thought of as a kind of completion.
We will apply this to finite sets to gain the category of profinite sets. Having done
this, we will first examine properties of projective limits of topological spaces and find
out, among other properties, that the limits of compact Hausdorff spaces are again
compact Hausdorff. Equipping finite sets with the discrete topology, they are compact
Hausdorff. Thus we can view our profinite sets as a subcategory of compact Hausdorff
spaces. It turns out that the profinite sets are exactly the totally disconnected compact
Hausdorff spaces and even that the categories are equivalent.

Before continuing to examine the category of profinite sets, Chapter 2 introduces a
tool from topology, the Stone-Čech compactification. We approach this as historically
done by Čech from the angle of continuous real-valued functions and explicitly construct
the Stone-Čech compactification. We also characterize it by a universal property that
any continuous map to a compact Hausdorff space uniquely extends to the Stone-
Čech compactification. We will mainly use the Stone-Čech compactification of discrete
spaces.

Applying this tool, in Chapter 3 we again examine the categories of profinite sets
and compact Hausdorff spaces. A question that originated in homological algebra is
that of projective objects. It turns out that the projectives in both categories are
also characterized by a topological property. They are extremally disconnected spaces.
Furthermore, will we show that the category of compact Hausdorff spaces, and in
particular that of profinite sets, has enough projectives. To do this we will use the
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Stone-Čech compactifications of discrete spaces. They play the role of the free objects
in both our categories and are in particular extremally disconnected.

We end the thesis in Chapter 4 with a brief introduction to condensed sets as this
is the main motivation for the work done beforehand. We see how there does not exist
a useful notion of an exact sequence for topological groups. As this is quite essential
for modern algebra we go on to define condensed sets as sheaves on CHaus. Then,
we show some of their connections to topological spaces. In the end, we show that
the different definitions of condensed sets, as sheaves on ProFin or the extremally
disconnected compact Hausdorff spaces, are equivalent.
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Terminology and Notation

In the following we introduce some terminology and notation. We will mostly use it
this way, but notation may change, so additionally it will (hopefully) always be stated
what kind of object we refer to at the moment.

When talking about categories, the collection of objects is not necessarily a set, but
the hom-sets are always sets. By small we mean that a collection is actually a set. So
if we talk about a small category we mean a category where the collection of objects
forms a set.

Given objects a, b in an arbitrary category C, we write a morphism f : a → b like
a map to clarify domain and codomain. We denote the hom-set of all morphisms with
domain a and codomain b by C(a, b). In an abelian category A we write HomA(a, b)
for the hom-sets.

Given a functor F from the category J to C, i, j, objects in J , and f : i → j, a
morphism in J , we write Fi, Fj for the objects F sends i, j to and Ff : Fi→ Fj for
the morphism f is sent to.

When we write diagrams they are always meant to commute. When we say some-
thing is dual we refer to the situation where all arrows are reversed. When we
say a morphism f : a → b factors through d we mean that there exist morphisms
g : a→ d, h : d→ b such that f = h ◦ g.

When talking about topological spaces maps are supposed to be continuous and we
use the product topology for products and the subspace topology for any subspaces.
A clopen set is a set that is both open and closed.

N natural numbers, including 0

Z integers

R real numbers

⊂ any, not necessarily proper, subset

⊊ proper subset

A \B = {a ∈ A | a ̸∈ B}
f−1(A) for f : X → Y and A ⊂ Y , preimage of A under f

πi : X → Xi usual projection to the i-th component, for X =
∏

i∈I Xi.

A for A ⊂ X a topological space, closure of A in X

(a, b) for a < b ∈ R, open interval of the real line

[a, b] for a < b ∈ R, closed interval of the real line

↪→ injections or monomorphisms

↠ surjections or epimorphisms

Set category of sets with all set theoretic maps

Fin full subcategory of Set of finite sets

Top category of topological spaces with all continuous maps

CHaus full subcategory of Top of compact Hausdorff spaces
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Chapter 1

Profinite Sets

A fundamental element of condensed mathematics is the category of profinite sets. So,
it is of interest what this category looks like. In fact, this category is equivalent to the
category of totally disconnected compact Hausdorff spaces, often referred to as Stone
spaces. This is due to the duality of Stone spaces to Boolean Algebras first shown by
Stone [Sto37]. Further Reading can be found here [Joh86]. This chapter aims to show
the equivalence of the categories of profinite sets and Stone spaces, just relying on the
knowledge of basic category theory and set-theoretic topology.

1.1 Limits

The definitions and constructions of Limits, Colimits and other subjects from category
theory are structured after MacLane [Mac98].

We begin with some well-known facts about functors and categories.

Lemma 1.1.1 ([Mac98, II.4.]). Given a small category J and an arbitrary category
C. Then the collection of all covariant functors from J to C together with natural
transformations of functors forms a category.

Proof. The composition of natural transformations is again a natural transformation
and associative, this can be found in [Mac98, II.4.].

As J is a small category the collection of its objects forms a set. And the collection
of all set theoretic maps from the set of objects of J into itself is again a set. Therefore,
the natural transformations, a sub-collection of all set theoretic maps, form a set as
well.

The category constructed in the previous lemma is called functor-category and
denoted by CJ . We refer to J as the index category and always mean a small category if
we talk about an index category. If we have a functor F : J → C, we say its component-
objects are the objects Fj and if we have a natural transformation τ : F → G of
functors, we say τj : Fj → Gj are its components.

Any category C has a canonical image in its functor category given by the diagonal
functor ∆ : C → CJ , where c is sent to the functor that has as its component-objects
just c and as morphisms between just the identity. This is clearly a functor.
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Example 1.1.2. Some examples for C an arbitrary category:

(i) Take J = ∗, the category consisting of one object and only the identity morphism,
then a functor from J to C is equivalent to choosing an object in C, so CJ = C.

(ii) Take J to be any discrete category, i.e. it consists only of objects and their
identities. Then CJ is the product category of C with itself, indexed by J , as
any small discrete category is basically a set.

(iii) [Awo10, 1.6, 3. Arrow category] Take J =→, the category with two objects and
one non-identity arrow. Then a functor from J to C amounts to choosing an
arrow in C. The morphisms in CJ are just the commutative diagrams. This is
called the arrow category.

(iv) Take J =↓↓, the category with two objects and two non-identity morphisms with
same domain and codomain, such arrows we call parallel. Then a functor from J
to C equals to choosing two parallel arrows in C. So the category CJ consists of
all combinations of parallel arrows i1, i2 : a→ b and j1, j2 : d→ e in C as objects.
As morphisms it has arrows f : a→ d, g : b→ e of C such that the resulting two
diagrams commute:

a b a b

d e d e

i1

f g

i2

f g

j1 j2

(v) [Mac98, I.4.] For a fixed index-category J a morphism of functors F,G is a natural
transformation τ . This means that for any i, j, objects in J , and ϕ : i → j, a
morphism in J , the following diagram commutes:

i F i Gi

j Fj Gj

ϕ Fϕ

τi

Gϕ

τj

Remark. As Examples 1.1.2 show, the functor category CJ can be used to define dia-
grams and their transformations of the form J in a category C. That is why, we also
refer to these functors as diagrams of the form of J .

We say that a collection of maps θj : x → Fj is compatible with F (a diagram of
the form of J) if the diagrams we get for any f : i→ j in J commute with those maps:

Fi i

x

Fj j

Ff f

θi

θj

2



Definition 1.1.3 ([Mac98, III.4.]). Given a functor F from a small category J to a
category C, a limit of F , if it exists, is an limit object lim←−F together with projection
morphisms ϕj : lim←−F → Fj in C such that for any object x in C and compatible
morphisms θj : x→ Fj there exists a unique ψ : c→ lim←−F such that all diagrams, as
seen below, commute for any f : i→ j in J :

lim←−F Fi i

x Fj j

Ff fψ

Remark. A colimit is the dual notion of a limit. It consists of the colimit-object lim−→F
and morphisms ϕj : Fj → lim−→F . It is characterized by a unique map from lim−→F to
any other object x with compatible maps θj : Fj → x (where we mean compatible in
a way which is dual to how we defined it above).

If the limit of F exists, we also say that lim←−F is a limit of the form of J .

Example 1.1.4. Some examples of limits (and colimits) for an arbitrary category C
and a functor F : J → C, for more details see [Mac98, III.3,III.4]:

(i) Given an arbitrary index category J , the limit of ∆c is the limit-object c with
the identity as projections. We see this as any collection of morphisms θj : x→ c
all compatible with the identity have to be the same morphism. One can see that
this limit always exists.

(ii) Take J to be the discrete category of two objects. Then, the limit of two objects
a, b, if it exists, is called the product a × b with the projections p : a × b → a,
q : a × b → b. It has the universal property that given morphisms f : x → a,
g : x→ b they factor through a× b via the same morphism denoted by (f, g):

a a× b b

x

p q

f g

(or, in case of colimits, we get the dual version the coproduct)

(iii) [Mac98, III.4.] Take J to be the category that gives us the following diagram in
C (we leave out the identities):

a d b
f g

Then we denote the limit object, if it exists, by a×d b, we call it the fibre product.
Additionally we have projections p : a ×d b → a, q : a ×d b → b (We leave out
the map to d as it is completely defined by p, q). And for any x with compatible
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maps x → a, x → b it fulfills the universal property described by the following
commutative diagram:

x

a×d b b

a d

p

q

g

f

(iv) [Mac98, III.4.] Take J =↓↓, then, if the limit ⟨d, e⟩ of two parallel arrows f, g :
a→ b exists, is called equalizer. So, each arrow h : x→ a such that f ◦ h = g ◦ h
factors through d via h′ : x→ a, so h = e ◦ h′:

x a b

d

h

h′

f

g

e

(Or, in the case of colimits, we get the coequalizer.)

(v) In the case of an abelian category A the equalizer of an arrow f : A → B and
the zero arrow 0 : A → B is called the kernel. (Or, in the dual case, it is called
the cokernel.)

We take a look at the category of topological spaces denoted by Top, with the
continuous maps as morphisms.

Example 1.1.5. Let C = Top and J the discrete category of two objects, as in
Example 1.1.4(ii).

Then, applying the example we get that the product of two spaces A,B is a space
A × B with continuous projections p : A × B → A, q : A × B → B such that for
any topological space X and any continuous maps f : X → A, g : X → B there is a
continuous map (f, g) : X → A×B such that

p ◦ (f, g) = f and q ◦ (f, g) = g.

As we can take X to be the one point space, the underlying set of A×B has to be
the set theoretic product of A and B, because we have to have a unique preimage for
each combination of a ∈ A and b ∈ B. Now, applying the forgetful functor from Top
to the category Set, we see that any set theoretic map fulfilling the universal property
already has to be (f, g).

The condition that p, q are continuous defines a topology on A × B which has to
be the topology of the product by its universal property. This topology is exactly the
product topology we know from topology.
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Remark. The product of two objects in Top always exist, as we can equip the set
theoretic product with the product topology. Actually all limits exist because Top
also has all equalizers, again the same as in set, but with the subspace topology. We
will show this construction explicitly for projective limits in Proposition 1.3.1.

If the limit of F in CJ exists and we have a natural transformation of F,G in CJ , we
can in a natural way define the limit of the natural transformation by its components.

Definition 1.1.6. Let ⟨lim←−F, vj⟩ be the limit of a functor F : J → C and τ : F → G
a natural transformation of functors. Then, the limit of τ , denoted by lim←− τ , is defined
via its components (lim←− τ)j = τj ◦ vj:

lim←−F Fj

Gj

vj

(lim←− τ)j

τj

Remark. We get that lim←− τ is compatible with G because τ is a natural transformation.

Here, we have defined the limit of a morphism as a morphism from lim←−F to G,
because we do not need the existence of the limit of G to do this. But if ⟨lim←−G,wj⟩
exists, one readily sees by the universal property of the limit lim←−G that lim←− τ gives
rise to a morphism from lim←−F to lim←−G that composed with the wj gives us lim←− τ . By
abuse of notation we call this morphism also lim←− τ , it lets this diagram commute:

lim←−F lim←−G

Fj Gj

vj

lim←− τ

wj

τj

So, if we have a functor category CJ and all limits the form of J exist, this leads
us to an obvious functor lim←− from CJ to C. This fact is formulated here:

Lemma 1.1.7. Given a category C and an index category J such that all limits of the
form of J exist, then lim←− is a functor from CJ to C.

Proof. By assumption and the discussion above we know that lim←−F exists for all F ∈
CJ , so we know what lim←− does on objects and morphisms (the natural transformations).

We have to check that lim←− commutes with composition of morphisms. This is clear,
if we extend the diagram from above, where each small square commutes, the whole
diagram commutes as well:

lim←−F lim←−G lim←−H

Fj Gj Hj

vj

lim←− τ

wj

lim←− θ

uj

τj θj

As we have defined the limit of our morphisms by components it is now clear that
lim←− θ ◦ lim←− τ = lim←−(θ ◦ τ).
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1.2 Cofiltered Limits

If we now do not admit arbitrary index categories J , but only certain ones, we can
get a special kind of limit a (co-)filtered limit. The first part of this section is again
oriented at MacLane [Mac98].

First, we consider directed posets, which form categories:

Definition 1.2.1 ([RZ10, 1.1]). A directed poset (directed partially ordered set) (I,⪯)
is a set I with a binary relation ⪯ satisfying:

(i) i ⪯ i for all i ∈ I.

(ii) i ⪯ j, j ⪯ k =⇒ i ⪯ k for all i, j, k ∈ I.

(iii) i ⪯ j, j ⪯ i =⇒ i = j for all i, j ∈ I.

(iv) for all i, j ∈ I there exists k ∈ I such that i, j ⪯ k.

Remark. (i),(ii),(iii) are just the ordinary reflexivity, transitivity and anti-symmetry of
a poset, but then (iv) gives our directed poset its direction.

And it is easy to see that a poset forms a category:

Lemma 1.2.2. A directed poset is a category by taking its elements as objects and its
relations as morphisms, this means, if i ⪰ j, we interpret it as an arrow i→ j.

Proof. (i) shows us that each element has a identity morphism, (ii) shows us that we
can compose arrows and it is well defined. And, if we have i ⪰ j, j ⪰ k, k ⪰ l, applying
(ii) twice implies i ⪰ l and we get for the corresponding arrows

[(i→ j) ◦ (j → k)] ◦ (k → l) = (i→ l) = (i→ j) ◦ [(j → k) ◦ (k → l)],

because it clearly does not matter which elements we compare first.

Remark. The direction of our arrows to make a directed poset into a category is arbi-
trary, i ⪰ j constituting an arrow j → i would work as well, it is dual and gives the
opposite category. It makes a difference as soon as we start talking about limits of the
form of this category.

Example 1.2.3. (i) Any totally ordered set is a directed set. e.g. N:

· · · → 3→ 2→ 1→ 0

(ii) The real plane R2 with P ⪯ Q if Q lies on the straight line (including endpoints)
from the origin to P (and 0 ⪯ 0). This is a directed poset as it clearly satisfies
(i),(ii) and (iii) and P ⪯ 0 for all P .

(iii) The set of open covers of a topological space ordered by refinement (we say
{Ui}I ⪯ {Uj}J if {Ui}I is a refinement of {Uj}J), here the arrows are just those
related to the ordering induced by refinement not the refinement maps between
the covers.
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We have a special case of the example (iii) above if we just take the finite disjoint
open covers (then the covers are also closed, because their complement is open) of a
space ordered by refinement. Then the morphisms between the covers actually cor-
respond to the refining morphisms as there is always only one choice for a refining
morphism because the covers are disjoint.

The categorical properties of categories we get from directed posets can be gener-
alized to define (co-)filtered categories and thereby (co-)filtered limits (and colimits):

Definition 1.2.4 ([Mac98, IX.1]). A filtered category is a non-empty category J with
the following properties:

(i) Given any two objects i, j ∈ J there exists k ∈ J and morphisms i → k and
j → k.

(ii) Given two parallel morphisms u, v : i → j, then there exists k ∈ J and a
morphism w : j → k such that w ◦ u = w ◦ v.

A cofiltered category is the opposite category of a filtered category.

Example 1.2.5. Any directed poset is a cofiltered category (When seen as a category
as in Lemma 1.2.2) as property (i) is derived from the existence of bigger elements
(Definition 1.2.1(iv)) and there are only unique arrows so property (ii) is trivial.

Definition 1.2.6. A (co-)filtered (co-)limit is a (co-)limit of an object in the functor
category CJ for J a (co-)filtered category.

Remark. Looking at a filtered limit, one easily sees that being filtered does not give us
any relevant information about the limit, similarly for cofiltered colimits. Therefore,
one only considers cofiltered limits and filtered colimits, which are often defined and
referred to as “filtered” limits and colimits. But then one needs a contravariant functor
from a filtered category to get a “filtered” limit. So when talking about “filtered” limits
it is often implied that the functor from the filtered category is contravariant. To keep
in line with our convention to only have covariant functors we will use cofiltered to
stress that we use covariant functors from cofiltered categories. This is also in line with
sources like [Stacks].

When proving things about general cofiltered limits it is tedious to always consider
general cofiltered index categories. And in fact we can just use the subcollection of the
categories of directed posets (As defined in 1.2.2), because a cofiltered limit is always
isomorphic to the limit of the form of the opposite category of a directed poset. For
this, see [Stacks, Lemma 0032].

If we are only using directed posets and not general cofiltered categories, there are
only unique arrows (Example 1.2.5). Therefore, we will introduce some notation to
simplify talking about our functors from cofiltered categories.

Definition 1.2.7. A projective system {Xi, ϕij, I} in a category C is a diagram of the
form of a cofiltered category I in the case our cofiltered category is a directed poset.
The ϕij denote the unique arrows in the image of our functor from I to C.

7
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A projective limit ⟨lim←−Xi, ϕi⟩ of a projective system {Xi, ϕij, I} is its cofiltered
limit.

Explicitly, for all i ⪰ j ∈ I we have a morphism ϕij : Xi → Xj such that the
following diagram commutes:

lim←−Xi Xi

Xj

ϕi

ϕj ϕij

In this text we will mostly consider cofiltered limits, as defined above. One im-
portant category in the context of this text is the category Set of all sets and its full
subcategory Fin of finite sets.

Example 1.2.8. We consider the cofiltered category J = N and C = Fin. We define
a functor F by sending n to {∞, 0, . . . , n} and the arrow i→ j, for i > j, to

ϕij : {∞, 0, . . . , i} → {∞, 0, . . . , j}, x 7→

{
∞ x > j

x x ≤ j
.

At first we consider ∞ just as a symbol bigger than any other number, we will later
see how it makes sense to call it infinity.

This functor does not have a limit in Fin, because the limit-object of such a limit
would need a preimage of each natural number and can thereby not be finite.

But one sees that lim←−F = N ∪ {∞} with the obvious projections ϕi, when we
consider it in the category Set.

Another similar but important example are the p-adic integers:

Example 1.2.9. Again, we take J = Nop, C = Fin, p a prime, and consider the
functor F from Nop to Fin, sending n to Z/pnZ and i→ j to the natural map

ϕij : Z/piZ→ Z/pjZ, x mod pi 7→ x mod pj.

Again, we see that there is no limit of this functor in Fin. But if we consider it as a
subcategory of Set, we get a limit, namely

Zp = {(xn)n∈N|xn ∈ Z and xi ≡ xj(mod pj) for j ≤ i},

the p-adic integers.

Remark. Obviously we have more structure on the p-adic integers than just those set
theoretic maps, as all of those maps are also group-homomorphisms, but here we are
not interested in those properties.
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Figure 1.1: First six iterations of Cantor set construction
Source: https://en.wikipedia.org/wiki/Cantor_set

Example 1.2.10. A special case of Example 1.2.9 is p = 2. In this case we can look at
Z/2nZ as the n-th iteration in the construction of the Cantor set and Z2 as the Cantor
set, see Figure 1.1.

Until now, we have only looked at one index category at a time and then it is easy
to compare limits if we have a component-wise map between our diagrams. But if
we look at all objects that are cofiltered limits in a category C, we would like them
to be a category, so we need morphisms for different index categories. Furthermore,
we want to have all cofiltered limits to exists, which they often do not. As we saw
in Examples 1.2.8 and 1.2.9 from above, the limits often do not exists in our original
category, but only when looking at them as objects in Set. This method generalizes:

Definition 1.2.11 ([SGA4, 8.10.]). Given a category C then we define Pro(C) to
consist of pro-objects all formal cofiltered limits in C and define

Pro(C)(lim←−
i∈I

Xi, lim←−
j∈J

Yj) := lim←−
j∈J

lim−→
i∈I

C(Xi, Yj).

For this to be a category we need a composition map on our hom-sets.

Proposition 1.2.12. Given a category C, there is a composition map

Pro(C)(lim←−
i∈I

Xi, lim←−
j∈J

Yj)× Pro(C)(lim←−
j∈J

Yj, lim←−
k∈K

Zk)→ Pro(C)(lim←−
i∈I

Xi, lim←−
k∈K

Zk)

making Pro(C) into a category, such that C is a faithful subcategory of Pro(C) and
the formal limit lim←−Xi is the projective limit of the Xi in Pro(C).

9
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Proof. Based on an explanation by professor Huber. Let (I,⪯I), (J,⪯J), (K,⪯K) be
directed posets, then let the projective systems be given by

{Xi, ϕil, I}, {Yj, ψjn, J}, {Zk, πkm, K}.

We first notice that for our conditions to hold, that

θ ∈ lim←−
j∈J

lim−→
i∈I

C(Xi, Yj) = Pro(C)(lim←−
i∈I

Xi, lim←−
j∈J

Yj)

has as data for each j ∈ J an i(j) ∈ I and a morphism θj : Xi(j) → Yj with the
following property: for all j′ ∈ J with j′ ⪯J j and there exists i ∈ I such that i ⪰I i(j)
and i ⪰I i(j′) such that the diagram commutes

Xi(j) Yj

Xi

Xi(j′) Yj′

θj

ψjj′

ϕii(j)

ϕii(j′) θj′

Let
θ ∈ Pro(C)(lim←−

i∈I
Xi, lim←−

j∈J
Yj) and τ ∈ Pro(C)(lim←−

j∈J
Yj, lim←−

k∈K
Zk)

We want to map (θ, τ) to

ρ = τ ◦ θ ∈ Pro(C)(lim←−
i∈I

Xi, lim←−
k∈K

Zk).

Now for each k ∈ K there exists j(k) ∈ J for which there exists i(k) := i(j(k)) ∈ I, so
let

ρk = τk ◦ θj(k) : Xi(k) → Zk.

We need to check that it fulfills all needed properties. Let k, k′ ∈ K such that k′ ⪯K k.
Take any i ∈ I such that i ⪰I i(k) and i ⪰I i(k′). There exists j ∈ J such that
j ⪰J j(k), j ⪰J j(k′) and we can choose i big enough such that i(j) ⪯I i. We get that
all the inner subdiagrams from θ and τ and therefore the whole diagram commutes:

Xi(k) Yj(k) Zk

Xi Xi(j) Yj

Xi(k′) Yj(k′) Zk′

θj(k)

ρk

τk

πkk′

ϕii(k)

ϕii(k′)

ϕii(j) θj

ψjj(k′)

ψjj(k)

θj(k′)

ρk′

τk′
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The way we have defined ρ the outmost diagram gives us the property we wanted
and ρ ∈ Pro(C)(lim←−i∈I Xi, lim←−k∈K Zk). Thereby our composition map is well defined.

As we have defined the composition componentwise it is clear that it is associative,
because it is associative in the components.

When all our systems are constant this clearly gives us our composition from C,
so we can embed it into Pro(C). The other property holds as well. To see this one
just has to notice that the data of a compatible system of morphisms to a projective
system Xi agrees with how we constructed our morphisms and clearly gives us a unique
morphism to lim←−Xi by taking the obvious morphism.

Remark. We calculate the factorization through one object of our projective system,
when we have a morphism from our projective limit later explicitly in Lemma 1.4.10.

An equivalent characterization is given by the following lemma:

Lemma 1.2.13 ([SGA4, 8.10.5.]). Given a category C, then the category Pro(C) is
equivalent to the full subcategory of (SetC)op of those functors which are cofiltered limits
of representable functors under the opposite Yoneda-embedding (C → (SetC)op).

Remark. A whole discussion of this subject can be found in [SGA4, 8.] or [nLab, Pro-
Object]. We will only use the characterization of our definition and therefore provided
the lemma without proof.

With this we have arrived at the main object of study of this text the category of
profinite sets:

Definition 1.2.14. We denote Pro(Fin) by ProFin. We call this the category of
profinite sets.

Examples of objects in ProFin are all finite sets or Examples 1.2.8 and 1.2.9.

1.3 Projective Limits of Topological Spaces

Now that we have looked at a special case of our index category J , we look at C equal
to Top, the category of topological spaces and their continuous maps, and full subcat-
egories of Top by restricting to certain kinds of topological spaces, mainly compact
Hausdorff spaces. This section is structured as in Ribes and Zalesskii [RZ10].

In the Appendix A some basic topological facts and tools are stated with references,
in case they are not familiar to the reader. Having those facts at hand we start to
examine projective systems and their limits in Top.

Proposition 1.3.1. (i) Given a projective system {Xi, ϕij, I} of topological spaces,
there exists a projective limit ⟨X,ϕi⟩ where

X = {(xi) ∈
∏
i∈I

Xi | ϕij(xi) = xj for all j ⪯ i} ⊂
∏
i∈I

Xi

with the subspace topology and the ϕi = πi|X are the restrictions of the usual
projection maps.
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(ii) This limit is unique in the sense that, if (Xi, ϕi) and (Yi, ψi) are two limits, there
is a unique homeomorphism between them compatible with the projections.

Proof. (i) Extending the proof of [RZ10, Prop 1.1.1.]. We take X and ϕi as con-
structed above. By construction the ϕi are clearly continuous, as restriction of
continuous maps, and compatible with the ϕij.

We need to check the universal property. Given any topological space with com-
patible maps (Y, ψi) to our projective system {Xi, ϕij, I} we construct a map

ψ : Y → X, y 7→ (ψi(y))i∈I .

By construction ϕi◦ψ = ψi, so ψ is compatible with the restriction maps. We need
to check that ψ is continuous. So given a basic open set U in X, U =

∏
i∈I Ui∩X

with Ui ⊂ Xi a basic open and all but finitely many Ui = Xi. Then

ψ−1(U) =
⋂
i∈I

ψ−1
i (Ui) =

⋂
i1,...,in

ψ−1
i (Ui)

as ψ−1
i (Xi) = Y and so ψ−1(U) is open and ψ continuous. One easily sees that

ψ is unique by construction.

(ii) See [RZ10, Prop 1.1.1.].

Remark. This can also be viewed as a specific instance of the existence of arbitrary
products and equalizers implying the existence of all limits.

By Lemma 1.1.7 and the previous Proposition 1.3.1 we have the functor lim←− from

TopI to Top for any fixed poset I.
So we can start to look at which properties are preserved by this functor.

Definition 1.3.2 ([RZ10, 1.1]). A morphism θ of TopI is called surjective if each of
its components is surjective.

But surjectivity is not preserved by the projective limit as the following example of
p-adic integers (Example 1.2.9) shows:

Example 1.3.3 ([RZ10, 1.1]). There are obvious surjective maps

θi : Z→ Z/piZ, x 7→ x mod pi

which clearly commute with all the ϕij, for i > j, as

θj(x) = x mod pj = (x mod pi) mod pj = ϕij ◦ θi(x)

and the image of θ = lim←− θi in Zp is the set of constant sequences. But

(xn)n∈N = (1 + · · ·+ pn−1)n∈N

is also in Zp but not a constant sequence. So θ is not surjective.
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This shows that we have to add some further restrictions such that surjectivity
is preserved. It turns out that the spaces for which surjectivity is preserved are the
compact Hausdorff spaces. But for that we first have to see how those properties behave
under the projective limit:

Lemma 1.3.4. Given a projective system {Xi, ϕij, I} of Hausdorff spaces then its limit
lim←−Xi is a closed subspace of

∏
i∈I Xi.

Proof. Rephrasing [RZ10, Lemma 1.1.2]. Take (xi) ∈
∏

i∈I X \ lim←−Xi. Then there are

j ⪯ k ∈ I such that ϕkj(xk) ̸= xj.

As Xj is Hausdorff we can choose disjoint neighborhoods Uj, Vj ⊂ Xj of xj and ϕkj(xk)
respectively. By continuity Vk = ϕ−1

kj (Vj) ⊂ Xk is a neighborhood of xk. Now

W =
∏
i∈I

Wi such that Wi =


Xi for i ̸= k

Vk for i = k

Uj for i = j

is a neighborhood of (xi)i∈I and W is disjoint from lim←−Xi as ϕkj(Wk) = ϕkj(Vk) = Vj
disjoint from Wj = Uj. So lim←−Xi is closed as the complement of an open set.

Remark. This can be seen as a generalization of the fact that given a Hausdorff space X
the diagonal ∆X ⊂ X×X is closed, as this is a special case of the above for I = {1, 2}
and Xi = X for i = 1, 2.

For the next steps we will need a strong result from topology, the Tychonov theorem.
As this theorem is by no means trivial, we will only provide references for it: [Mun00,
Ch. 5] or [Stacks, Theorem 08ZU]

Theorem 1.3.5 (Tychonov). An arbitrary product of compact spaces is compact.

Proposition 1.3.6 ([RZ10, Prop 1.1.3]). Given a projective system {Xi, ϕij, I} of
compact Hausdorff spaces then its limit lim←−Xi is a compact Hausdorff space.

Proof. By Tychonov 1.3.5
∏

i∈I Xi is compact, by Lemma 1.3.4 lim←−Xi is a closed
subspace of this compact space and so it is compact by Lemma A.1.2.

By Lemma A.1.1
∏

i∈I Xi is Hausdorff and as a subspace of a Hausdorff space lim←−Xi

is also Hausdorff.

We have seen that being compact Hausdorff is preserved by the projective limit and
arrive at the following result. This turns out to solve the problem of preservation of
surjectivity.
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Proposition 1.3.7. Given a projective system {Xi, ϕij, I} of non-empty compact Haus-
dorff spaces then the projective limit lim←−Xi is non-empty.

Proof. Giving the proof of [RZ10, Prop 1.1.4] in more detail. For each j ∈ I let

Yj = {(yi)i∈I | ϕjk(yj) = yk ∀ j ⪰ k ∈ I} ⊂
∏
i∈I

Xi.

By the same argument as in Lemma 1.3.4 Yj is closed. It is non-empty because we can
choose a xj ∈ Xj and take yi to be ϕjk(xj) for all k ⪯ j and any other value in Xi for
all other i. (Here we need the Xi to be non-empty)

Let j ⪯ j′ and (yi) ∈ Yj′ , this means that ϕj′k(yj′) = yk for all k ⪯ j′. Because
ϕj′k = ϕjk ◦ ϕj′j and in particular j ⪯ j′, so ϕj′j(yj′) = yj, we get that for all k ⪯ j

yk = ϕj′k(yj′) = ϕjk(ϕj′j(yj′)) = ϕjk(yj).

So (yi) ∈ Yj and Yj′ ⊂ Yj.
We notice that the collection {Yi}i∈I fulfills the finite intersection property, because

given any finite subset indexed by {i1, . . . in} ⊂ I there is a k ∈ I such that i1 . . . in ⪯ k
and by the assertion above this means that Yk ⊂

⋂
j=1,...,n Yij and as Yk nonempty the

intersection is non-empty as well.
By Tychonov 1.3.5

∏
i∈I Xi is compact, so by Lemma A.1.6 the intersection

⋂
i∈I Yi

is nonempty and we can see by our construction in Lemma 1.3.1, that
⋂
i∈I Yi = lim←−Xi.

So lim←−Xi is non-empty.

This solves the problem we encountered in Example 1.3.3.

Theorem 1.3.8. Given a surjective morphism θ :{Xi, ϕij, I} → {X ′
i, ϕ

′
ij, I} of projec-

tive systems of compact Hausdorff spaces, then the morphism lim←− θi : lim←−Xi → lim←−X
′
i

is surjective.

Proof. Restating [RZ10, Lemma 1.1.5.]. Take any (x′i) ∈ lim←−X
′
i. In Hausdorff spaces

one point sets are closed so by continuity X̃i := θ−1
i ({x′i}) ⊂ Xi is closed. Because Xi

is compact Lemma A.1.2 tells us that X̃i is compact. It is also Hausdorff because Xi

is Hausdorff. And we observe that ϕij(X̃i) ⊂ X̃j, because θ is compatible with the ϕij:

θj ◦ ϕij(X̃i) = ϕ′
ij ◦ θi(X̃i) = ϕ′

ij(x
′
i) = x′j.

So {X̃i, ϕij, I} is a projective system of non-empty compact Hausdorff spaces, so by
Proposition 1.3.7 lim←− X̃i is nonempty. Choose any (xi) ∈ lim←− X̃i ⊂ lim←−Xi, this is a
preimage for (x′i).

Corollary 1.3.9 ([RZ10, Cor 1.1.6]). Given a compact Hausdorff space X and surjec-
tive maps θi : X → Xi to a projective system {Xi, ϕij, I} of compact Hausdorff spaces,
the induced map Θ : X → lim←− Xi is surjective.

Proof. Take the surjective morphism θ : ∆X → {Xi, ϕij, I} of inverse systems that
is induced by the θi, then apply Theorem 1.3.8. So we have a surjective map (use
Example 1.1.4(i)) and get equality to Θ by uniqueness of the map to the limit.

Θ = lim←− θ : X = lim←−∆X → lim←−Xi
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1.4 Profinite Sets

We have already seen the category ProFin of profinite sets in Example 1.2.14 and
are ready to show the equivalence of categories to the category of totally disconnected
compact Hausdorff spaces, the so called Stone spaces. If the reader is not familiar with
connectedness, all necessary material is stated and referenced in Appendix A.2.

Definition 1.4.1. A profinite space is a topological space which is the projective limit
of a projective system of finite spaces equipped with the discrete topology.

We will use profinite space and profinite set interchangeably as the categories of
finite sets and of discrete finite spaces are clearly equivalent and thereby each profinite
set is also a profinite space.

Example 1.4.2. Any finite space in the discrete topology is profinite as it is the
projective limit of the constant system.

To characterize these profinite spaces we need to introduce some more topology:

Definition 1.4.3. A topological space is totally disconnected if every point is its own
connected component.

Clearly totally disconnectedness of a space X is equivalent to saying that any sub-
space of X consisting of more than two points has a separation.

We formulate some useful results for totally disconnected spaces:

Lemma 1.4.4. An arbitrary product of totally disconnected spaces is totally discon-
nected. A subspace of a totally disconnected space is totally disconnected.

Proof. For all i ∈ I let Xi be totally disconnected and let W ⊂
∏

i∈I Xi such that
it contains at least two distinct points (xi), (yi). Then there is an index i0 ∈ I such
that xi0 ̸= yi0 and as Xi0 is totally disconnected there is a separation Ui0 , Vi0 of Wi0 =
πi0(W ) ⊃ {xi0 , yi0} (projection of W to Xi0). Then

U =
∏
i∈I

Ui with Ui =

{
πi(W ) i ̸= i0

Ui0 i = i0
, V =

∏
i∈I

Vi with Vi =

{
πi(W ) i ̸= i0

Vi0 i = i0

is a separation ofW . This shows that any set with two or more points is not connected,
so the connected components are the one point sets and

∏
i∈I Xi is totally disconnected.

Let X be totally disconnected and Y ⊂ X a subspace. Y is also totally discon-
nected as the connected components of Y are always contained in the intersection of a
connected component of X with Y , so they can only become smaller. As the connected
components of X are already just the points, those are the connected components of
Y .

Remark. As equalizers in Top are always subspaces, this lemma tells us that the
full category of totally disconnected spaces has arbitrary products and equalizers and
thereby all limits. We formulate this for our case:
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Corollary 1.4.5. Given a projective system {Xi, ϕij, I} of totally disconnected spaces
then lim←−Xi is totally disconnected.

Proof. By Lemma 1.4.4 lim←−Xi is totally disconnected as a subspace of a totally dis-
connected space

∏
i∈I Xi.

Example 1.4.6. Lemma 1.4.4 yields many examples of totally disconnected spaces,
in particular the p-adic integers from Example 1.2.9, N ∪∞ from Example 1.2.8, and
the Cantor set from Example 1.2.10. When looking at the Cantor set one can see
the topology it inherits as a subspace from the unit interval very well. In general
all profinite sets are totally disconnected (compact Hausdorff), because finite discrete
spaces are all clearly totally disconnected (compact Hausdorff) and those properties
are preserved by the projective limit

The next example, important for condensed mathematics, was explained to me by
Reid Barton and Johan Commelin:

Example 1.4.7. We will look at N ∪∞ explicitly. We remind of the construction in
Example 1.2.8. As a subspace of the product its topology has a basis consisting of

{{n} = ϕ−1
i (n)|n ∈ N and i ≥ n} ∪ {{n+ 1, n+ 2, . . . ,∞} = ϕ−1

n (∞)|n ∈ N}.

We can see from this topology that N ∪ ∞ is totally disconnected as any set U that
contains more than one point contains an n ∈ N so {n}, U \{n} is a separation, because
{n} is clopen.

This is in a way the classification of a converging sequence in a topological space
X. To see this we take a continuous map

f : N ∪∞ → X,n 7→ xn,∞ 7→ x.

As f is continuous given any neighborhood U of x then f−1(U) is a neighborhood of
∞ and by the discussion above contains all n > n0 for some n0 ∈ N. So, U contains
all xn for n > n0. This coincides with the definition of

xn −−−→
n→∞

x

in metric spaces and even in topological spaces where the limit is well defined.

We now know that profinite sets are totally disconnected compact Hausdorff spaces,
for the other direction, we need one more result from topology:

Lemma 1.4.8. In a compact Hausdorff space X the intersection of all clopen neigh-
borhoods of a point x is the connected component containing x.

Proof. Rephrasing [RZ10, Lemma 1.1.11]. Let C be the connected component of x and
{Wt}t∈T be the collection of all clopen neighborhoods of x. Then let

A =
⋂
t∈T

Wt.
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If C were not a subset of A, we would have a clopen neighborhood Wt0 of x not
containing C. Then Wt0 ∩ C and C \Wt0 are two subsets of C, which are non-empty,
because C ̸⊂ Wt0 and open. This would be a separation, a contradiction to C being
the connected component of x. Therefore, C ⊂ A.

To see that A ⊂ C, it is enough to show that A is connected. For this let Y, Z ⊂ A
be closed in A such that Y ∩ Z = ∅, Y ∪ Z = A. As A is an intersection of closed
sets, Y, Z are closed in the compact space X and thereby compact. By Lemma A.3.5 a
compact Hausdorff space is normal, so we can separate Y, Z by disjoint open sets U, V .
(Explicitly Y ⊂ U,Z ⊂ V and U ∩ V = ∅)

We look at

X \ (U ∪ V ) ⊂ X \ A = X \ (
⋂
t∈T

Wt) =
⋃
t∈T

(X \Wt)

where the X \Wt are open. So {X \Wt}t∈T is an open cover of X \ (U ∪ V ). As
X \ (U ∪V ) is closed it is compact and we can choose a finite subset T ′ ⊂ T , such that
{X \Wt}t∈T ′ is still an open cover of X \ (U ∪ V ).

Therefore, the set

B =
⋂
t∈T ′

Wt

is disjoint from X \ (U ∪ V ) so B ⊂ U ∪ V . As T ′ is finite and the Wt are clopen, B
is clopen. And, as all Wt contain x, we clearly have

x ∈ B = (B ∩ V )∪̇(B ∩ U),

which is a disjoint union because V, U are disjoint. Without loss of generality assume
that x ∈ B ∩ V . Then B ∩ V is open because V and B are open. B ∩ V is closed in
B, because we have

B \ (B ∩ V ) = B ∩ U

and U is open. This makes it also closed in X because B is closed. So B ∩ V is a
clopen neighborhood of x. By the construction of A as the intersection of all clopen
neighborhoods of x we have A ⊂ B ∩ V ⊂ V . But Y ∩ V = ∅ and, because A ⊂ V ,
Y ∩ A = ∅. As Y ⊂ A we get that Y = ∅.

Theorem 1.4.9. The profinite spaces are exactly the totally disconnected compact
Hausdorff spaces.

Proof. Adapted from [Stacks, Lemma 08ZY]. A topological space that is finite and
discrete is clearly a totally disconnected compact Hausdorff space as it is the finite
disjoint union of all its points which are clopen sets. Now, take a projective system
{Xi, ϕij, I} of finite discrete spaces Xi then by Proposition 1.3.6 and Corollary 1.4.5
its limit lim←−Xi, as a closed subspace of the product of the Xi, is also a totally discon-
nected compact Hausdorff space. Being such a limit, every profinite set is a totally
disconnected compact Hausdorff space.
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To see the other direction, let X be a totally disconnected compact Hausdorff space.
We take I to be the set of all finite disjoint open union decompositions. This means
for any I ∈ I we have

X =
∐
i∈I

Ui

with Ui non-empty and open for all i ∈ I. It follows that the Ui are closed because it
is the complement of the union of the others.

We define a partial order on I by setting J ⪯ I if I is a refinement of J . This gives
us a projective system as we can always find a common refinement of I, J by taking the
K ∈ I corresponding to the finite disjoint union decomposition we get by intersecting
all {Ui}i∈I with the {Uj}j∈J . The decomposition K will be again finite, because we
only intersect finitely many sets, disjoint, and clearly J, I ⪯ K. We equip I ∈ I with
the discrete topology which makes I into a finite discrete space. Refinement induces
maps

ϕIJ : I → J, i 7→ j if Ui ⊂ Uj, ∀J ⪯ I ∈ I,

which are clearly compatible with each other. As the covers of X are disjoint those
maps are unique and they are continuous because the I, J are all discrete. So we have
a projective system of finite discrete spaces and so their limit lim←−I is a profinite space.

The maps

θI : X → I, x 7→ i ∈ I if x ∈ Ui

are continuous because the Ui = θ−1
I (i) ⊂ X are clopen and are clearly compatible

with the transition maps. By the universal property of the limit we get a continuous
map

Θ : X → lim←−I.

We claim this map is a homeomorphism.

As X is in particular compact and lim←−I in particular Hausdorff any bijective con-
tinuous map is a homeomorphism by Lemma A.1.5, so it is enough to show that Θ is
bijective.

For surjectivity see Corollary 1.3.9 as the θI are surjective for all I ∈ I.
For injectivity let x, y ∈ X be distinct. We notice that by Lemma 1.4.8 the con-

nected component C of any x ∈ X equals the intersection of all clopen neighborhoods
of x. As our space X is totally disconnected C = {x}. So there is a clopen neigh-
borhood U of x which does not contain y (We cannot use C as it is not necessarily
open). Setting V = X \U we get a finite union decomposition, where X = U

∐
V . By

construction of I there is a I0 ∈ I to this separation. Clearly

θI0(x) ̸= θI0(y).

Therefore, x and y cannot have the same image in lim←−I under Θ because then θI0
could not factor through lim←−I via Θ. So Θ is injective.

We conclude that any totally disconnected compact Hausdorff space is homeomor-
phic to a profinite set.
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The above Theorem 1.4.9 now tells us that we have a functor from profinite sets
to the subcategory of totally disconnected compact Hausdorff spaces of Top and that
the functor is essentially surjective.

This results in an equivalence of categories. We prove an important property of
profinite sets to show this:

Lemma 1.4.10. Given a profinite set lim←−Xi, a projective limit of the projective system
{Xi, ϕij, I} considered as a topological space, then any continuous map f from lim←−Xi

to a finite discrete space Y factors through an Xi0.

Proof. Let Y = {y1, . . . , yn}. Then by continuity we have for each k a clopen set
Uk := f−1(yk) disjoint from Ul for all l ̸= k. They cover lim←−Xi, so

lim←−Xi =
n∐
k=1

Uk.

Now cover each Uk by basic open sets of lim←−Xi contained in Uk, this is possible because
Uk is open. As lim←−Xi is compact so is Uk as a closed subset. So we can choose a finite
cover {Uk,j}1≤j≤mk

of Uk.
By the construction of lim←−Xi as the subspace of the product we get that each basic

open set Uk,j is the preimage of a basic open set of an Xik,j under the projection ϕik,j .
Because Xik,j is discrete the basic open sets are just the points so

Uk,j = ϕ−1
ik,j

(xk,j), xk,j ∈ Xik,j .

As I is directed we can choose an upper bound i0 of all those ik,j (there are only
finitely many!). For k ̸= l take any xk ∈ Uk,j ⊂ Uk and xl ∈ Ul then ϕi0(xk) ̸= ϕi0(xl)
because

xl ∈ Ul ⊂ X \ Uk ⊂ X \ Uk,j =⇒ xl ̸∈ Uk,j = ϕ−1
ik,j

(xk,j).

So the images of ϕi0(xk), ϕi0(xl) under ϕi0,ik,j are different, so they have to differ. This
we can see in the diagram below (where ϕ0 = ϕi0 , ϕk,j = ϕik,j and ϕ0kj = ϕi0ik,j):

lim←−Xi Xi0 ∋ ϕ0(xk), ϕ0(xl)

Xik,j ∋ xk,j ̸= ϕkj(xl)

ϕ0

ϕkj
ϕ0kj

So Xi0 distinguishes points from different Uk. This gives a well defined map

g : Xi0 → Y, x 7→

{
yk for x ∈ ϕi0(Uk)
y1 otherwise

.

It is continuous because Xi0 is discrete. By construction g ◦ ϕi0 = f . So Xi0 was the
one we were looking for.
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Theorem 1.4.11. The categories of profinite sets and totally disconnected compact
Hausdorff spaces are equivalent.

Remark. As the category of totally disconnected compact Hausdorff spaces is a full
subcategory of CHaus and the continuous maps between discrete spaces are exactly
the set theoretic maps, we can just use the hom-functor of CHaus for those hom-sets.

Proof. In Theorem 1.4.9 we have seen that the obvious functor from profinite sets to
totally disconnected compact Hausdorff spaces is essentially surjective. We need to
show that it is fully faithful.

Let {Xi, ϕik, I} and {Yj, ψjl, J} be projective systems of finite sets and lim←−i∈I Xi,
lim←−j∈J Yj their corresponding profinite sets. By Theorem 1.4.9 we identify lim←−i∈I Xi,

lim←−j∈J Yj with their totally disconnected compact Hausdorff spaces.

We need to show that the map of hom-sets is bijective. By definition of the Pro-
category (Definition 1.2.11) we need to show the first bijection

CHaus(lim←−
i∈I

Xi, lim←−
j∈J

Yj)
!∼= lim←−
j∈J

lim−→
i∈I

CHaus(Xi, Yj) = ProFin(lim←−Xi, lim←−Yj).

CHaus(lim←−X,−) is a covariant functor and commutes by the universal property
of the limit with all limits, so we get the bijection

CHaus(lim←−Xi, lim←−Yj) = lim←−
j∈J

CHaus(lim←−Xi, Yj).

(This is true in any category. For details see Proposition B.2.2.) CHaus(−, Yj) is a
contravariant functor. And by precomposition with the ϕi and the universal property
of the colimit we get an injection

lim−→
i∈I

CHaus(Xi, Yj) ↪→ CHaus(lim←−Xi, Yj).

(This can also be done in any category. For a concrete discussion see Proposition
B.2.3) Now we get to the crucial point, which is not true in a general category, the
surjectivity of the above map. We have seen in the previous Lemma 1.4.10 that any
continuous map from lim←−Xi to a finite discrete space Yj factors through an Xi(j).
Thereby it determines an element of the filtered colimit lim−→i∈I CHaus(Xi, Yj). This

shows that any f ∈ CHaus(lim←−Xi, Yj) has a preimage in lim−→i∈I CHaus(Xi, Yj). We
get a bijection

lim←−
j∈J

CHaus(lim←−Xi, Yj) ∼= lim←−
j∈J

lim−→
i∈I

CHaus(Xi, Yj).

Together with the first bijection this concludes the proof.

Remark. As noted before we also have a duality of the category of Stone spaces and
Boolean algebras. This is originally due to Stone [Sto36] and can also be found in
[Joh86].
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Chapter 2

The Stone-Čech Compactification

In this chapter we will construct the Stone-Čech compactification of completely regular
spaces and explain how one can map any topological space onto a completely regular
space and retain some invariants. To do this we will introduce the ring of continuous
real-valued functions, which originally is the main motivation for most of the work here.
The main reference will be Munkres [Mun00] and we will also use Gillman, Jerison
[GJ60] and Walker [Wal74]. The main results are mostly due to Čech [Cec37].

Most details of this chapter will not be relevant for the following chapters, but we
will make use of the fundamental result of this chapter: The universal property of the
Stone-Čech compactification stated in Theorem 2.3.8.

Again we remind the reader that there are some topological facts stated in the
Appendix A, especially Appendix A.3 may be interesting in the following sections.

2.1 Continuous Real-Valued Functions

Definition 2.1.1 ([GJ60, 1.3,1.4]). Given a topological space X, we define C(X) to
be all continuous functions from X to R and C∗(X) to be all bounded continuous
functions to R.

Remark. C(X) has an obvious structure as a ring and C∗(X) is a subring of C(X),
but this will not be of interest in this text.

Definition 2.1.2 ([GJ60, 1.16]). Given an embedding e : X → Y of topological spaces,
we call it an C(X)-embedding (C∗(X)-embedding) if every f ∈ C(X), (f ∈ C∗(X))
extends to a g ∈ C(Y ) (g ∈ C∗(Y )). See the following commutative diagram:

X Y

R

e

f ∃g

It is easy to find trivial examples of such embeddings:
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Example 2.1.3. Take Y to be a manifold, X a connected component of Y and e
the inclusion. Then e is a C(X)-embedding, as we can define continuous functions
independently on all connected components of Y , so we extend each function on X to
a function on Y .

On the other hand many familiar embeddings do not satisfy either property:

Example 2.1.4 ([GJ60, 1.16.]). Take X = R \ {0} ⊂ Y = R, then X is not even
C∗-embedded, as the bounded function

f : R \ {0} → R, x 7→

{
1 x > 0

0 x < 0

clearly cannot be extended continuously to R.

This leads us to Urysohn’s Extension Theorem a criterium for when a subset S ⊂ X
is a C∗(S)-embedding, we will need one more definition to formulate it.

Definition 2.1.5 ([GJ60, 1.15]). Given a topological spaceX, then two subsets A,B ⊂
X are said to be completely separated if there exists f ∈ C(X) such that f(a) = 0 for
all a ∈ A and f(b) = 1 for all b ∈ B.

Theorem 2.1.6 (Urysohn’s Extension Theorem,[GJ60, 1.17]). A subset S ⊂ X is
C∗(S)-embedded in X if and only if any two completely separated sets in S are com-
pletely separated in X.

Theorem 2.1.7 (Urysohn’s Lemma,[Mun00, Theorem 33.1]). Let X be a normal space
(see Definition A.3.4) then any two disjoint closed set A,B are completely separated.

2.2 Completely Regular Spaces

As we will see in the next section the Stone-Čech compactification is only defined for
completely regular spaces, so in this part we will see what a completely regular space
is and how we can still apply certain results to arbitrary topological spaces.

Definition 2.2.1 ([Mun00, §33]). A space X where one point sets are closed is called
completely regular if given any point x0 ∈ X and any closed subset x0 ̸∈ A ⊂ X,
{x0}, A are completely separated.

Remark. Replacing {x0} by any closed set B disjoint from A is the definition of com-
pletely normal. Though this is not a very relevant characterization anymore as clearly
any completely normal space is normal and by Urysohn’s Lemma 2.1.7 any normal
space is completely normal.

One also sees that this separating function can be chosen to be bounded, because
we can set any value higher than one to one and any value lower than zero to zero and
still have a continuous function fulfilling our properties.
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Example 2.2.2. Any metric space (X, dX) is completely regular. It is Hausdorff so
one point sets are closed. As dX is continuous so is

f(x) =
dX(x0, x)

dX(x0, x) + dX(A, x)
where dX(A, x) = inf

a∈A
(dX(a, x)).

One sees that f is well defined as by [Dug73, IX 4.2.] dX(A, x) = 0 if and only if
x ∈ A = A:

x ∈ A ⇐⇒ ∀ϵ > 0 : Bϵ(x) ∩ A ̸= ∅
⇐⇒ ∀ϵ > 0 ∃aϵ ∈ A : dX(x, aϵ) < ϵ

⇐⇒ 0 = inf
ϵ>0

dX(x, aϵ) ≥ inf
a∈A

dX(x, a) ≥ 0

⇐⇒ dX(x,A) = 0.

As {x0}, A are disjoint the denominator is never zero, so f is well defined and
continuous. Applying f to points in A and {x0} shows that it fulfills the necessary
properties.

Remark. This shows actually more than that a metric space is completely regular. If
we replace {x0} by a closed set B disjoint from A the same calculations show that
metric spaces are normal.

The example shows that in particular R is completely regular.

Lemma 2.2.3. Any subspace Y of a completely regular space X is completely regular.

Proof. If points in X are closed, so are points in Y . Given a point x0 and a closed set
A∩Y in Y then A is closed in X and by complete regularity of X we get a“separating”
function f . The restriction f |Y is continuous and separates {x0} and A ∩ Y .

Theorem 2.2.4 ([Mun00, §33]). A compact Hausdorff space is completely regular.

Proof. By Theorem A.3.5 every compact Hausdorff space is normal and by Urysohn’s
lemma 2.1.7 any disjoint closed sets in a normal space can be completely separated.
Finally, as points are closed, the space is completely separated.

We prove a lemma we need for the next proof.

Lemma 2.2.5. Given a set X and a non-empty collection C of maps from X to R
such that for any f, g ∈ C and c ∈ R then f − c,−f and max f, g are again in C.

We have a topology on X, which has all preimages of closed sets of R under any
f ∈ C as a subbasis for the closed sets. This is also the weakest topology such that all
functions in C are continuous.

Then the preimages of [0,∞) under any f ∈ C form a basis for the closed sets. In
particular the preimages of all closed sets under any f ∈ C already form a basis for the
closed sets of the topology.
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Proof. This is restructured from [GJ60, 3.].
We have a subbasis for our topology consisting of all preimages of closed sets in R

under any f ∈ C. As the collection of closed rays

{(−∞, a]|a ∈ R} ∪ {[b,∞)|b ∈ R}

forms a subbasis of R it is enough to consider preimages of those rays to still have a
subbasis. We can reduce the collection of sets we have to take preimages of again. We
can assume a, b to be zero because f − a, f − b are again in C because

f−1((−∞, a]) = (f − a)−1((−∞, 0]), f−1([b,∞)) = (f − b)−1([b,∞)).

Similarly we reduce one step further and just take rays of the form of [0,∞), because if
f is in C so is −f . The union of any such preimages is clearly such a preimage because
max{f, g} is in C and

f−1([0,∞)) ∪ g−1([0,∞)) = (max{f, g})−1([0,∞)).

So, those preimages actually form a basis for our closed set and so the preimages of
closed sets in general also form a basis of the topology.

Theorem 2.2.6. Given any topological space X there is a completely regular space ρX
and a continuous surjection η : X → ρX such that any f ∈ C(X) factors through ρX.

Proof. Oriented at [Wal74, 1.6]. Let ρX be the set of equivalence classes of points in
X where x ∼ y if and only if f(x) = f(y) for all f ∈ C(X) and let

η : X → ρX, x 7→ x̃

be the natural surjective mapping of x to its equivalence class x̃. As all f ∈ C(X) are
constant on all members of x̃ ∈ ρX this defines a function ρf such that ρf ◦ η = f :

X ρX

R

η

f
ρf

As in lemma 2.2.5, we equip ρX with the topology generated by the collection of
ρf for f ∈ C(X). As for any f, g ∈ C(X) f − c,−f,max f, g are again in C(X) we
can apply Lemma 2.2.5.

Therefore, a set A in ρX is closed if and only if it is the intersection of preimages
of closed sets Ai in R under ρfi. This makes η continuous because the preimage of any
closed set in ρX is the preimage of a closed set in R under an fi ∈ C(X) so it is closed
and intersections of closed sets are closed.

We need to check that ρX is completely regular. One can easily see that ρX is
Hausdorff. Let x̃ ̸= ỹ ∈ ρX for x, y ∈ X and f ∈ C(X) such that f(x) ̸= f(y). Now
choose disjoint neighborhoods U, V of f(x), f(y) then ρf−1(U), ρf−1(V ) are disjoint
and open neighborhoods of x̃, ỹ.
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Similarly given a point x̃0 ∈ ρX and a closed set

A =
⋂

ρf−1
i (Ai) ⊂ ρX for fi ∈ C(X) and Ai ⊂ R closed

not containing x̃0 there is some ρfi such that ρfi(x̃0) ̸∈ Ai. As R is completely regular
(Example 2.2.2) there is g separating ρfi(x̃0) and Ai. Then g ◦ ρfi separates x̃0 and
ρf−1

i (Ai). As A ⊂ ρf−1
i (Ai) then g ◦ ρfi also separates x̃0 and A.

We conclude that ρX is completely regular.

Remark. One may think that the topology on ρX coincides with the quotient topology
on ρX induced by η. This is not true in general as the quotient topology is too large.
We see this in the following example.

Example 2.2.7. Based on an exercise [GJ60, 3J]. Let

S = R× R \ ({(0, 0)} ∪ {(1/n, y) | y ̸= 0 and n ∈ N}) ⊂ R× R.

Now consider E = π(S), where π is the projection to the x-coordinate, endowed with
the quotient topology. As a set E = R and U ⊂ E is open if and only if π−1(U) ⊂ S
is open.

In E distinct points are completely separated and in particular one point sets are
closed. Let x, y ∈ E be distinct. We claim that

f : E → R, z 7→ z − x
y − x

is continuous. Then it clearly separates x, y and they are preimages of closed sets (0
and 1 respectively) and thereby closed. Let U ⊂ R be open. Then f−1(U) is open if

π−1(f−1(U)) = U × R ∩ S

is open, which is clearly the case, because U × R ⊂ R× R is open.
E is not completely regular as it is not even regular: We notice that the set A =

{1/n}n∈N is closed as by construction of S

π−1(A) = A× R ∩ S = ((A ∪ {0})× {0}) ∩ S.

Now this closed set cannot be separated from the point 0 by any disjoint open sets as
any open set containing A also contains 0.

If we now look at our construction of ρE, we will see that, as any distinct points
in E can be completely separated, the map η : E → ρE will be bijective. But, if
the topology on ρE were to be the quotient topology, η, being bijective, would be a
homeomorphism. This cannot be the case because ρE is completely separated, but E
is not.

So we see that when looking at real-valued functions it is enough to just consider
completely regular spaces, as all information about the functions is already “contained”
in a completely regular space.

25



2.3 The Stone-Čech Compactification

Now we are ready to look at the Stone-Čech compactification, this part is mostly
oriented at Munkres [Mun00, §38].

Definition 2.3.1 ([Mun00, §38]). A compactification of a space X is a compact Haus-
dorff space Y in which we can embed X such that the image of X is dense in Y .

Two compactifications Y0, Y1 of X are equivalent if there exists a homeomorphism
f : Y0 → Y1 such that f |X = idX .

Theorem 2.3.2. Given a completely regular space X there exists a space βX that is
a compactification of X and X is C∗(X)-embedded in βX. Such a space βX we call a
Stone-Čech compactification of X.

Proof. The proof can be found in part in [Mun00, Theorem 38.2] and [Mun00, Theorem
34.2.].

Let {fj}j∈J be an indexing of C∗(X). Now consider the map

ev : X → R :=
∏
j∈J

[inf
X
fj, sup

X
fj], x 7→ (fj(x))j∈J .

AsX is completely regular any two points x, y ofX can be separated by a continuous
function fj0 . So for the projection πj0 to the j0 the component

πj0(ev(x)) ̸= πj0(ev(y)).

Thereby ev(x) ̸= ev(y) and ev is injective. And ev is continuous because by construc-
tion πi ◦ ev = fi is continuous and by the universal property of the product so is ev
(Example 1.1.5). The map ev is also an open mapping. To see this take an open set
U ⊂ X and take z0 ∈ ev(U) and x0 ∈ U such that ev(x0) = z0. We will find an open
neighborhood of z0 in ev(U). As X is completely regular we can find an j0 such that
fj0(X \ U) = 0 and fj0(x0) = 1. Consider the following open subset of ev(X)

W = ev(X) ∩ π−1
x0
((0,+∞)) ⊂ ev(U).

W contains ev(x0) = z0 so it is an open neighborhood of z0 contained in ev(U). Thereby
ev(U) is open and ev an open mapping. Together with the previous results we get that
ev is a homeomorphism of X and ev(X), it is an embedding of X into R.

Now let
βX = ev(X) ⊂ R.

It is compact Hausdorff as it is a closed subspace of a product of compact Hausdorff
spaces (Lemma A.1.2), which is compact Hausdorff (Tychonov 1.3.5 + Lemma A.1.1).
We need to check that X is C∗(X)-embedded. So given fj0 ∈ C∗(X) and (xj)j∈J ∈ βX,
let

f ′
j0
((xj)j∈J) = πj0((xj)j∈J) = xj0 ,

this clearly defines a continuous map and by construction an extension of fj0 .
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Remark. Some constructions instead just use all bounded functions with image in [0, 1],
but as all closed intervals in R are homeomorphic, this is equivalent to our construction.

We formulate an insight from the proof of the Theorem.

Theorem 2.3.3 ([Mun00, Theorem 34.3]). A space is completely regular if and only
if it is homeomorphic to a subspace of [0, 1]J for some J .

Proof. Assume X is completely regular. Use the construction of the space R from the
proof of Theorem 2.3.2. All closed intervals in R are homeomorphic to [0, 1]. Apply
those homeomorphisms componentwise to our space R, this yields an embedding into
[0, 1]J .

On the other hand, [0, 1]J is completely regular by Theorem 2.2.4 as it is compact
Hausdorff. Then by Lemma 2.2.3 any subspace X of [0, 1]J is completely regular.

Lemma 2.3.4 ([Mun00, Lemma 38.3.]). Let A ⊂ X and f : A→ Z into a Hausdorff
space, then there is at most one continuous extension of f to A.

Proof. Let there be two extensions of f ,

g, h : A→ Z continuous s.t. g|A = h|A = f.

Assume there exists x0 ∈ A such that g(x0) ̸= h(x0). Choose disjoint neighborhoods
U, V of those points. As g, h are continuous g−1(U), h−1(V ) are neighborhoods of x0.
But their intersection cannot intersect A because g|A = h|A = f and the images U, V
are disjoint. This is a contradiction to the fact that x0 ∈ A, because this means that
every neighborhood of x0, in particular g−1(U) ∩ h−1(V ) intersects A.

Proposition 2.3.5. Any continuous map f : X → C where X is completely regular
and C is a compact Hausdorff space factors uniquely through βX.

Proof. [Mun00, Theorem 38.4.] As C is compact Hausdorff it is completely regular
(Theorem 2.2.4) and we can embed it into [0, 1]J for some index set J (Theorem 2.3.3).
We identify C with its image in [0, 1]J . Denote the projections by πj. Now each
component fj = πj ◦ f of f : X → C is a bounded real-valued function. By Theorem
2.3.2 we can extend fj to ψj : βX → C, applying this to all components defines an
extension ψ of f to βX. This is well defined because

ψ(βX) = ψ(X) ⊂ ψ(X) ⊂ C = C.

The first inclusion is due to continuity and the last equality due to the fact that C is
a compact subspace of a Hausdorff space and thereby closed (see Lemma A.1.3).

By Lemma 2.3.4 are the ψj and thereby ψ unique.

Corollary 2.3.6. Two Stone-Čech compactifications of a completely regular space X,
Hausdorff compactifications such that X is C∗(X)-embedded, are equivalent as com-
pactifications. We just speak of the Stone-Čech compactification βX.
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Proof. Oriented at [Mun00, Theorem 38.5] By previous the Lemma 2.3.5 given Y0, Y1
both satisfying the properties of the Stone-Čech compactification identifying X with
its image in Y0, Y1 we get the following commutative diagram:

Y0 Y1 Y0

X

f g

So (g ◦ f)|X = idX and as Y0 = X this extends uniquely to Y0 (Lemma 2.3.4) and as
idY0 is such an extension and g◦f too, idY0 = g◦f . By the same argument f ◦g = idY1 ,
so Y0, Y1 are equivalent compactifications of X.

Corollary 2.3.7. If X is compact Hausdorff then βX is homeomorphic to X.

Proof. X is C∗(X)-embedded into the compact Hausdorff space X, so X is homeomor-
phic to βX by the Corollary 2.3.6 we just proved.

As we will often use it we will formulate the results from Proposition 2.3.5 and
Corollary 2.3.6 (uniqueness of βX up to homeomorphism) as the universal property of
the Stone-Čech compactification.:

Theorem 2.3.8. Given a completely regular space X and a continuous map h : X → C
where C is a compact Hausdorff space then h extends uniquely to a map ψ : βX → C:

βX

X C.

∃!ψ

h
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Chapter 3

Projective Objects

As we have characterized profinite sets as the totally disconnected compact Hausdorff
spaces the next step is to understand this category better. One question, with origins in
homological algebra, is that of projective objects. The main reference for this chapter
is the paper Gleason [Gle58].

3.1 Projective Objects

We first consider the ”original” case of projective objects in an abelian category:

Definition 3.1.1. An object P in an abelian category A is called projective if the
functor HomA(P,−) is exact.

Remark. As the functor HomA(A,−) is left exact for any A ∈ A the important property
is that HomA(P,−) preserves epimorphisms (because in an abelian category epi is
equivalent to cokernel 0 and the exactness of a short exact sequence states that the
last cokernel is zero).

Example 3.1.2. Given any commutative ring R with 1, then the free R-modules are
projective in the category R-Mod of R-modules. (This is the case because we can
choose a basis)

How can we generalize this notion? For that we write out what it means that
HomA(P,−) is exact.

As noted in the remark the real condition such that P is projective is that given
any epimorphism f : B → X in an abelian category,

f ∗ : HomA(P,B)→ HomA(P,X), ψ 7→ f ◦ ψ

is also an epimorphism, or as we are now working with Hom-sets that f ∗ is surjective.
Therefore, it is also equivalent to the existence of a preimage: P is projective if given
an epimorphism f : B → X and a morphism ϕ : P → X, then there exists ψ : P → B
such that ϕ = f ◦ ψ.

This is now a notion which does not depend on an abelian category, but is equivalent
to the notion in the abelian case, so we take it to be our new definition.
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Definition 3.1.3 ([Mac98, V.4.]). An object P of a category C is called projective
if given an epimorphism f : B → X and a morphism ϕ : P → X, then there exists
ψ : P → B such that ϕ = f ◦ ψ, its lifting property, see also the commutative diagram
below:

B

P X

f

ϕ

ψ

Lemma 3.1.4. An object P of a category C is projective if and only if C(P,−) pre-
serves epimorphisms.

Proof. Assume P to be projective. Then given an epimorphism f : B → X and two
morphisms g, h : X → D (denote the morphism C(P, f) by f ∗) such that we have
g∗ ◦ f ∗ = h∗ ◦ f ∗. Now given any ϕ ∈ C(P,X) there is a ψ ∈ C(P,B) such that
f ◦ ψ = ϕ, as P is projective. So we get :

g∗(ϕ) = g ◦ ϕ = g ◦ f ◦ ψ = (g∗ ◦ f ∗)(ψ) = (h∗ ◦ f ∗)(ψ) = h ◦ f ◦ ψ = h ◦ ϕ = h∗(ϕ),

for ϕ arbitrary so f ∗ cancels on the right and is therefor an epimorphism.
On the other hand if C(P,−) preserves epimorphisms then given an epimorphism

f : B → X the pullback f ∗ : C(P,B)→ C(P,A) is surjective so given any ϕ ∈ C(P,A)
there is a ψ such that f ◦ ψ = f ∗(ψ) = ϕ, so the lifting property is fulfilled.

Definition 3.1.5. A category is said to have enough projectives if for every A there is
a projective object P and an epimorphism P → A.

Example 3.1.6. In the category R-Mod for each module M there is a surjective
homomorphism from a free module: We can just take the free module over elements of
M , this is clearly surjective. So R-Mod has enough projectives.

3.2 Extremally Disconnected Spaces

Extremally disconnected spaces, also known as Stonean Spaces, different from Stone
Spaces, are exactly the projective objects of the category of compact Hausdorff spaces,
CHaus, and thereby also of our category of profinite sets ProFin, which are the
totally disconnected compact Hausdorff spaces. The goal of this section is to show this
characterization of the projective objects.

Definition 3.2.1 ([Gle58, Def 1.1]). A topological space X is called extremally dis-
connected if for each open set U ⊂ X its closure U is again open.

Remark. It is indeed called “extremally” with an “a”.

First we study some properties of extremally disconnected spaces. One clearly sees
that open subspaces and disjoint unions of extremally disconnected spaces are also
extremally disconnected.
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Lemma 3.2.2 ([Gle58, Lemma 2.2]). Given two disjoint open subsets U, V of an ex-
tremally disconnected space X, then U, V are also disjoint.

Proof. As V is open and U ⊂ X \ V , which is closed, U ⊂ X \ V . Now U is open and
V ⊂ X \ U , which is closed, so V ⊂ X \ U and U, V are disjoint.

Lemma 3.2.3. An extremally disconnected Hausdorff space X is totally disconnected.

Proof. Take any non-empty subset A ⊂ X containing at least two distinct points x, y.
As X is Hausdorff we can separate x, y by disjoint open neighborhoods U, V . By
previous Lemma 3.2.2 are U, V disjoint and by definition of extremally disconnected
spaces clopen. Now U ∩A,A \ U ⊃ V ∩A constitutes a separation of A, because they
are both disjoint, open, their union is A, and they are both non-empty, because they
contain x, y respectively.

Remark. The Hausdorff condition is necessary, as one can easily see when looking at
the space {a, b} with the trivial topology, which is extremally disconnected but not
totally disconnected.

Theorem 3.2.4. Any projective object P in CHaus is extremally disconnected.

Proof. Adaptation of [Gle58, Theorem 1.2]. Let P be a projective in CHaus and
U ⊂ P open, we show that U is open.

Let {a, b} be the two point space with the discrete topology. We know that P×{a, b}
is in CHaus, so is the projection π : P × {a, b} → P , and the product of two objects.
Therefore, we can consider

Y = ((P \ U)× {a}) ∪ (U × {b}) ⊂ P × {a, b}

which also is in CHaus as it is a closed subspace of P × {a, b}.
Now take a look at the restriction of π to Y , this is a surjective map to P because

clearly (P \U)∪U = P , so we get the following diagram with an induced ψ, such that
idP = π ◦ ψ from the projectivity of P :

Y

P P

π

idP

ψ

Now we show that ψ−1(U×{b}) = U by which U is open, because U×{b} = Y ∩P×{b}
is clearly open. We see that π maps (u, b) ∈ U×{b} to u ∈ U one-to-one. As π◦ψ = idP
we get ψ(u) = (u, b). Now ψ is continuous so

ψ(U) ⊂ ψ(U) ⊂ U × {b},

but because again π ◦ψ = idP we have to get equality. On the other hand if u ̸∈ U we
have ψ(u) = (u, a), because the image of u cannot lie in U × {b}. We conclude that
ψ−1(U × {b}) = U .
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Remark. As one may note, we did not need all the strength of the compact Hausdorff
condition to proof this for a category of spaces. One only needed that

(i) the morphisms of the category are continuous,

(ii) A×{a, b}, where {a, b} has the discrete topology, is an object and the projection
to A is in the category,

(iii) and given a closed subset of a space then it and its inclusion are in the category.

As (i),(ii) and (iii) also hold for ProFin we see that the projective objects in ProFin
are also extremally disconnected. This is how it is done in more generality in [Gle58,
1.].

This now shows that in a right subcategory of Top, in particular CHaus, the
projective spaces are extremally disconnected.

This leads us to some examples. Obviously discrete spaces are extremally discon-
nected, but their Stone-Čech compactifications are extremally disconnected as well:

Lemma 3.2.5. Given a discrete space D, then its Stone-Čech compactification βD is
projective and in particular extremally disconnected.

Proof. Taken from [Rai59, Lemma 3]. Consider a continuous map ϕ : βD → Z to a
compact Hausdorff space and a continuous surjective map f : Y → Z from a topological
space Y . Because D is a discrete space we can construct a continuous map

h : D → Y, d 7→ y ∈ f−1(ϕ(d)).

Here we choose which y we map d to and we can apply ϕ because D is embedded in
βD. As Y is compact Hausdorff there exists by the universal property of the Stone-
Čech compactification a continuous extension of h to βD. We denote this map by
ψ : βD → Y . Our construction can now be seen in this commutative diagram:

D Y

βD Z

h

f

ϕ

ψ

This makes βD projective and by Theorem 3.2.4 in particular extremally discon-
nected.

Remark. It might seem as if our construction gives us a unique ψ, but this is not true
as ψ depends on h for which there are many possibilities.

So if we show that in CHaus all extremally disconnected spaces are projective they
are also the projective objects in ProFin.

But to show this we first need some other results about (extremally disconnected)
compact Hausdorff spaces.
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Lemma 3.2.6. Given A,E in Top and ρ : E → A an epimorphism such that for
any proper closed subset E0 ⊊ E we have ρ(E0) ⊊ A, then for any open set U ⊂ E,
ρ(U) ⊂ A \ ρ(E \ U).

Proof. Extended the proof [Gle58, Lemma 2.1]. W.l.o.g. is U not empty.
Now let a ∈ ρ(U), by definition of the closure a ∈ A \ ρ(E \ U) if for all open

neighborhoods V of a:
V ∩ (A \ ρ(E \ U)) ̸= ∅.

So choose any open neighborhood V of a. By continuity U ∩ ρ−1(V ) is open. It is a
nonempty open subset of E, therefore (using that ρ is surjective):

E \ (U ∩ ρ−1(V )) ⊊ E

=⇒ ρ(E \ (U ∩ ρ−1(V ))) ⊊ A

=⇒ A \ ρ(E \ (U ∩ ρ−1(V ))) ̸= ∅.

Now choose y ∈ A\ρ(E \ (U ∩ρ−1(V ))), because ρ is surjective there is x such that
ρ(x) = y. By construction

y ∈ A \ ρ(E \ (U ∩ ρ−1(V )))

=⇒ y ̸∈ ρ(E \ (U ∩ ρ−1(V )))

=⇒ x ̸∈ E \ (U ∩ ρ−1(V ))

=⇒ x ∈ U ∩ ρ−1(V )

=⇒ x ∈ ρ−1(V )

=⇒ y ∈ ρ(ρ−1(V )) = V.

This gives us y ∈ V ∩ (A \ ρ(E \ (U ∩ ρ−1(V )))). And with

E \ U ⊂ E \ (U ∩ ρ−1(V ))

=⇒ ρ(E \ U) ⊂ ρ(E \ (U ∩ ρ−1(V )))

=⇒ A \ ρ(E \ U) ⊃ A \ ρ(E \ (U ∩ ρ−1(V ))).

we get that y ∈ V ∩ (A \ ρ(E \ U)). As we have seen that any neighborhood V of a
intersects A \ ρ(E \ U), a must lie in A \ ρ(E \ U), this concludes the proof.

Lemma 3.2.7 ([Gle58, Lemma 2.3]). Given E,A in CHaus, A extremally discon-
nected, and ρ : E → A an epimorphism such that for any proper closed subset E0 ⊊ E
we have ρ(E0) ⊊ A, then ρ is a homeomorphism.

Proof. A continuous map from a compact space to a Hausdorff space is already a
homeomorphism if it is bijective by Lemma A.1.5. So we only need to show that ρ is
injective:

Let x1, x2 ∈ E. We show that their images are different. By the Hausdorff condition
we can find disjoint open neighborhoods U, V of x1, x2 respectively. E \ U,E \ V are
closed subsets of E and thereby compact. So ρ(E \ U), ρ(E \ V ) are also compact
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and as compact subsets of the Hausdorff space A they are closed. So A \ ρ(E \ U),
A \ ρ(E \ V ) are open and they are disjoint as (with ρ(x) = y):

y ∈ A \ ρ(E \ U)
=⇒ y ̸∈ ρ(E \ U)
=⇒ x ̸∈ E \ U
=⇒ x ∈ U ⊂ E \ V
=⇒ y ∈ ρ(E \ V )

=⇒ y ̸∈ A \ ρ(E \ V ).

By Lemma 3.2.2 the closures of disjoint open sets in an extremally disconnected space
are again disjoint. So A \ ρ(E \ U), A \ ρ(E \ V ) are disjoint. By Lemma 3.2.6 this
implies that ρ(U) and ρ(V ), as subsets of the sets above, are disjoint. Therefore
ρ(x1) ̸= ρ(x2). So ρ is injective.

Lemma 3.2.8 ([Gle58, Lemma 2.4]). Given X, Y in CHaus and a surjective map
π : X → Y then there is a compact subset E ⊂ X with π(E) = Y such that for any
proper closed subset E0 ⊊ E we have π(E0) ⊊ Y .

Proof. We take C to be the collection of compact subsets of X such that for any A ∈ C
π(A) = Y and order them by inclusion. Clearly C is not empty as it contains X.

Now let Γ = {At}t∈T be a chain in C (This means that Γ with the order of C is
totally ordered). Then we claim that the intersection

D =
⋂
t∈T

At

is a lower bound for Γ in C. It is clear that is a lower bound. We check that it is in
fact an element of C.

By Lemma A.1.3 the elements of Γ are closed, because they are compact subsets of
X Hausdorff. Their intersection D is also closed and compact by Lemma A.1.2. Now
for any y ∈ Y the collection

{π−1({y}) ∩ At}t∈T
fulfills the finite intersection property, because it is totally ordered by inclusion and all
π−1({y}) ∩ At are nonempty. And as we are in a compact space by Lemma A.1.6

D ∩ π−1({y}) =
⋂
t∈T

(π−1({y}) ∩ At) ̸= ∅

So we get that ρ(D) = Y and we conclude D ∈ C.
By the Lemma of Zorn this gives us a minimal element E ∈ C. This subset fulfills

the first two properties by construction. And given any proper closed subset E0 of E
it is compact, as a closed subset of a compact space. So π(E0) ⊊ Y or we would have
a contradiction to the minimality of E as E0 would also be in C.

Theorem 3.2.9. In CHaus the extremally disconnected spaces are projective.
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Proof. Taken from [Gle58, Theorem 2.5]. Let A,B,C be in CHaus, A extremally
disconnected, f : B → C an epimorphism and ϕ : A → C a morphism. We need to
construct a morphism ψ : A→ B such that f ◦ ψ = ϕ.

For this consider
D = {(a, b) | ϕ(a) = f(b)} ⊂ A×B.

Because f is surjective, for any a ∈ A we can find a preimage for ϕ(a) ∈ C under
f . This means, for all a ∈ A we have b ∈ B such that ϕ(a) = f(b). Therefore if
π1 : A× B → A is the projection we get that π1(D) = A. Now we apply the previous
Lemma 3.2.8 to get E ⊂ D compact such that for any proper closed subset E0 ⊊ E
we have π1(E0) ̸= A. Denote the resulting map by ρ = π1|E. Now we know by Lemma
3.2.7 that ρ is a homeomorphism. We get a morphism ρ−1 : A → E ⊂ D. Given the
second projection π2 : A × B → B then ψ = π2 ◦ ρ−1 is the morphism we are looking
for. To see this take any a ∈ A then

f ◦ ψ(a) = f ◦ π2 ◦ ρ−1(a) = ϕ(a).

The last equality is due to the construction of D. As a ∈ A was arbitrary f ◦ ψ = ϕ.

This leads us to the characterization we were looking for:

Corollary 3.2.10. The projective objects in ProFin are exactly the extremally dis-
connected spaces.

Proof. We have seen that the projective objects in CHaus are exactly the extremally
disconnected spaces, by Theorems 3.2.4 and 3.2.9. It is clear that Theorem 3.2.4
telling us that projectives are extremally disconnected still holds and as ProFin is a
full subcategory of CHaus Theorem 3.2.9 holds too.

Lemma 3.2.11. CHaus has enough projectives.

Proof. [Stacks, Lemma 090D] Let X be in CHaus. We need to find an extremally
disconnected compact Hausdorff space X ′ that covers X. Let D be the discrete space
of all points of X. Then there is an obvious surjective map h : D → X mapping each
point to itself. Because D is discrete h is continuous and by the universal property
of the Stone-Čech compactification it extends to βD. By Lemma 3.2.5 and D being
discrete βD is extremally disconnected. So we can choose X ′ = βD. We see this below:

βD = X ′

D X

ψ

h

Corollary 3.2.12. The category ProFin has enough projectives.

Proof. As by Lemma 3.2.3 any extremally disconnected space in CHaus is totally
disconnected we can just apply the previous Lemma.
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Chapter 4

Condensed Sets

The main source of this chapter is a talk by Reid Barton in a series of talks titled Crash-
course on Condensed Mathematics by Reid Barton and Johan Commelin at Freiburg
University in March 2023 and the corresponding lecture notes [BC23]. The original
source are the lecture notes by Clausen and Scholze[CS19b].

4.1 Condensed Mathematics

The motivation for doing condensed mathematics is that of investigating algebraic
structures with a topology. We have already seen a lot of those, for example the real
numbers R, the p-adic integers Zp, or the real-valued functions C(X) on a topological
spaceX. This topology, together with completeness, allows us to approximate elements
of those structures as we are used to from analysis. To do this the topology of our
algebraic objects is of utmost importance.

The goal of condensed mathematics is now to extend the methods that are known
from algebra to those objects (for example cohomology or coherent sheaves). At first
glance one may try to use the category of topological groups. One could try to extend
one basic notion of algebra, that of a short exact sequence, to this category. However,
this is not well-behaved. To see this we turn to the example of the real numbers. On
the one hand R with the standard topology and on the other hand Rδ as the real
numbers with the discrete topology, we get the following sequence we want to be exact
(i : x 7→ x):

0 Rδ R C 0i

But what should C be?
The cokernel C should satisfy the category theoretical condition that for any topo-

logical group D we get

Hom(C,D) = {ϕ : R→ D continuous group homomorphism | ϕ|Rδ = 0}

As any map from R is completely determined by what it does on each point and
i : Rδ → R is surjective Hom(C,D) = 0.
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But if it were a short exact sequence R and Rδ would need to be isomorphic, which
is not the case, because their topologies do not agree. What we would want to happen
is to have a cokernel that somehow shows the difference in the topologies of R and Rδ.

What is the problem here?
The problem is that i is a bijective map, of the underlying sets, but it is not an

isomorphism of topological groups because it is not a homeomorphism.
A category we do not have that problem in is CHaus because there any bijective

continuous map is a homeomorphism (Lemma A.1.5). But most of the object we want
to include in our theory are not compact, not even Z, the free abelian group with one
generator, or R.

The solution is to somehow expand CHaus so it contains all the objects we want
it to contain and preserve its good properties.

4.2 Condensed Sets

We are now ready to define condensed sets as in [BC23].

Definition 4.2.1 ([BC23, Definition 1.2.5.]). A condensed set is a functor

X : CHausop → Set

such that

(i) X(K1 ⊔ · · · ⊔Kn) = X(K1)× · · · ×X(Kn),

(ii) if q : K ↠ L is surjective, then

X(L) X(K) X(K ×L K)

is an equalizer,

and moreover X is the colimit of a small diagram of Kα. The category Cond is the
category of those functors together with their natural transformations.

Remark. The last condition that X is a colimit is to resolve the set-theoretic problems
of CHaus being a large category: The objects do not form a set. Those issues are
addressed concretely in [CS19b, Lectures I, II].

Remark. One can also formulate this in the language of sheaves by defining a Grothen-
dieck topology. Then (i),(ii) are the sheaf properties. This approach can be found in
[Ásg21, Chapter 1].

We say that the underlying set of a condensed set is X(∗) the evaluation of the
condensed set X at ∗, the one point space. This makes sense as this can be seen as
the set of all maps from the one point set ∗ to X, which is just the set of points, when
dealing with sets.
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Example 4.2.2 ([CS19b, Example 1.5.]). Let Y be a T1-space, then we have an asso-
ciated condensed set

Y : CHausop → Set, K 7→ C(K,Y ),

where C(K,Y ) denotes the continuous maps from K to Y .
This clearly satisfies Definition 4.2.1(i). To see that (ii) is satisfied, notice that a

surjection e : K ↠ L of compact Hausdorff spaces is a quotient map, as it is closed by
Lemma A.1.4 and Lemma A.1.3. Therefore, given a map f : L→ Y such that g = f ◦e
is continuous then f is already continuous. We have a commutative diagram:

K ×L K K L

Y

π1

π2

e

g
f

Because in Set the coequalizer of the above map is just L, by our previous discussion it
is also the coequalizer in Top. And applying the contravariant hom-functor C(−, Y ) =
Top(−, Y ) turns colimits into limits (Dual argument to Proposition B.2.2). So the
coequalizer is turned into an equalizer, this is condition (ii).

It is also clear that this functor works on our continuous maps by composition A
continuous map f : X → Y between topological spaces is sent to a morphism f . So
evaluation of f at the compact Hausdorff space K is given by:

f(K) : X(K)→ Y (K), (h : K → X) 7→ (f ◦ h : K → Y )

Remark ([BC23, 1.2.6.]). We require the T1-condition for it to be actually a small
colimit. So when talking about this functor in the future we will assume that our
topological spaces are T1.

One easily sees that X 7→ X is a faithful functor.

Proposition 4.2.3 ([CS19b, Proposition 1.7.]). The functor X 7→ X is faithful.

Proof. Let X, Y be topological spaces and f, g : X → Y continuous maps, such that
the morphisms of condensed sets f = g : X → Y are the same. We look at the
evaluation at ∗. This gives us a set-theoretic maps

f(∗) = g(∗) : X(∗)→ Y (∗).

As X(∗) is exactly the underlying set of the topological space X and by how we
constructed f, g we know that f, g agree on all points. However any continuous maps
agreeing on all points are the same.

The next part is modelled after an exercise given in the Crash course on Condensed
Mathematics.

Definition 4.2.4. A topological space X is called sequential if a map f : X → Y is
continuous if and only if for all converging sequences xn → x in X we get a converging
sequence f(xn)→ f(x).
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As we have seen in Example 1.4.7 a converging sequence in X is equivalent to a
continuous map from N ∪∞. This yields the following lemma:

Lemma 4.2.5. Let X be a topological space, then the following are equivalent:

(i) X is sequential.

(ii) X → Y is continuous if and only if N ∪ ∞ → X → Y is continuous for any
continuous map N ∪∞ → X.

Proof. As stated in example 1.4.7 a converging sequence xn → x in X is equivalent to
a continuous map

N ∪∞, n 7→ xn,∞ 7→ x

So clearly X is sequential if and only if for any converging sequence xn → x the map

f ◦ (N ∪∞ → X) : N ∪∞ → Y, n 7→ f(xn),∞ 7→ f(x)

is continuous, because this states just the convergence f(xn)→ f(x).

Together with the functor from condensed sets to topological spaces this leads us
to the following intermediate result.

Lemma 4.2.6. The functor X 7→ X restricted to sequential topological spaces is fully
faithful.

Proof. We know from Proposition 4.2.3, that the functor is faithful.
Given sequential spaces X, Y and a morphism of condensed sets f : X → Y . We

need to check that f is the image of a continuous map X → Y . It is enough to see
that f(∗) : X(∗)→ Y (∗) is continuous, when we equip the spaces with the topology of
X and Y .

By Lemma 4.2.5 we know that f(∗) is continuous if and only if f(∗) composed with
any continuous map N∪∞ → X is continuous. But to see this we can just look at the
evaluations at N ∪∞ ∈ CHaus:

f(N ∪∞) : X(N ∪∞)→ Y (N ∪∞)

This tells us that every continuous map N ∪ ∞ → X is sent to a continuous map
N ∪∞ → Y . Which by definition tells us that if xn → x then f(∗)(xn)→ f(∗)(x). So
f(∗) is continuous.

We can generalize the notion of sequential in line with Lemma 4.2.5.

Definition 4.2.7. A topological space X is said to be compactly generated if a map
X → Y is continuous if and only if for all K in CHaus and continuous maps K → X
the composition K → X → Y is continuous.

And we can generalize Lemma 4.2.6.
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Proposition 4.2.8 ([CS19b, Proposition 1.7.]). The functor X 7→ X restricted to
compactly generated topological spaces is fully faithful.

Proof. We know by Proposition 4.2.3, that the functor is faithful.
We adapt the proof of Lemma 4.2.6. Given any compactly generated spaces X, Y

and a morphism of condensed sets f : X → Y . We need to check that f is the image
of a continuous map X → Y . So we just need to show that f(∗) : X(∗) → Y (∗) is
continuous.

By definition f(∗) is continuous if and only if f(∗) composed with any map K → X
from a compact Hausdorff space K is continuous. To see this we notice that f is a
natural transformation, so the following diagram commutes for any morphism ∗ → K,
which is basically choosing a point in K (See also Example 1.1.2(v), we have a different
direction because our functor is contravariant):

K X(K) Y (K)

∗ X(∗) Y (∗)

f(K)

f(∗)

So f(K) is pointwise defined and therefore completely defined:

f(K) : X(K)→ Y (K), h 7→ f(∗) ◦ h

As K was an arbitrary compact Hausdorff space and X(K) = C(K,X) we see that
f(∗) is continuous, by definition of compactly generated spaces.

Corollary 4.2.9 ([CS19b, Proposition 1.7.]). The functor X 7→ X restricted to com-
pactly generated topological spaces admits a left adjoint functor.

We get this left adjoint functor fromCond to topological spaces explicitly by taking
the underlying set X(∗) and equipping it with the quotient topology we get from the
map ⊔

α

Kα → X(∗).

Here the Kα are those that X is a colimit of, as in definition 4.2.1. By this we gain
a topological space X(∗)top.

4.3 Equivalence of Definitions

There are different definitions of condensed sets. In [CS19b] the category CHaus in
Definition 4.2.1 is replaced by ProFin and one can go even as far as to just consider
extremally disconnected spaces. Those different definitions just amount to restricting
our functors to those subcategories. Due to the covering property (ii) and CHaus hav-
ing enough projectives (exactly the extremally disconnected spaces) those definitions
are all equivalent.
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Remark. There are also some differences in how the set-theoretic issues are solved but
we are not going to mention those here.

Proposition 4.3.1. The category Cond is equivalent to the category we gain when
restricting each condensed set to the extremally disconnected spaces.

Proof. Expanded upon [CS19b, Proposition 2.7.] Let K be in CHaus and X in Cond.
Then by Lemma 3.2.11 there exists a projective object P and a surjection P ↠ K. By
Definition 4.2.1 (ii) we have an equalizer:

X(K) X(P ) X(P ×K P ).e
p1

p2

We can also find another projective object P ′ covering P ×K P so we get again by
Definition 4.2.1 (ii) the equalizer

X(P ×K P ) X(P ′) X(P ′ ×P×KP P
′).e′

p′1

p′2

We want to show that X(K) is the equalizer of p1 ◦ e, p2 ◦ e. So, taking both diagrams
together, given the set Y , and any map f : Y → X(P ) such that

(e′ ◦ p1) ◦ f = (e′ ◦ p2) ◦ f =: g : Y → X(P ′)

we get the commutative diagram

X(K) X(P ) X(P ×K P ) X(P ′) X(P ′ ×(P×KP ) P
′)

Y

e
p1

p2

e′
p′1

p′2

d

hf
g

As p′1 ◦ e′ = p′2 ◦ e′ by construction p′1 ◦ g = p′2 ◦ g. As e′ is the equalizer of p′1, p
′
2 this

induces a map
h : Y → X(P ×K P )

in the commutative diagram above. So by uniqueness of this map, as an equalizer is a
limit, we get p1 ◦ f = h = p2 ◦ f . Now by the universal property of the equalizer e this
induces a map

d : Y → X(K)

commuting with the others. This shows that e is also the equalizer for e′◦p1 and e′◦p2.
So X(K) is already completely determined by those two maps p1, p2 : X(P )→ X(P ′).

We already know that the projectives in CHaus are exactly the extremally discon-
nected spaces (Corollary 3.2.10), so P, P ′ are extremally disconnected. As the maps
X(P ) → X(P ′) are images of morphisms in CHaus and the extremally disconnected
spaces are a full subcategory of CHaus, X(P ) → X(P ′) are images of morphisms of
the extremally disconnected spaces.

Thereby anX inCond is already completely determined by its values on extremally
disconnected spaces and Cond is equivalent to the category valued on extremally
disconnected spaces.

41



Remark. The construction of h = p1 ◦ f = p2 ◦ f is just a proof that every equalizer is
a monomorphism and applying it by canceling e′ in (e′ ◦ p1) ◦ f = (e′ ◦ p2) ◦ f .

Corollary 4.3.2. The category Cond is equivalent to the category we gain when re-
stricting each condensed set to ProFin.

Proof. We apply the same proof as in Proposition 4.3.1. As any extremally discon-
nected compact Hausdorff space is profinite by Lemma 3.2.3 andProFin is subcategory
of CHaus we are done.

Remark. Those results allow one to calculate results for condensed sets on the S-valued
points for S just profinite or extremally disconnected.
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Appendix A

Topology

A.1 Facts and Definitons

Some topological defiitions and facts supplied without proof.

Lemma A.1.1. [Mun00, Theorem 19.4.] The arbitrary product of Hausdorff spaces is
Hausdorff.

Lemma A.1.2. [Mun00, Theorem 26.2.] A closed subspace of a compact space is com-
pact.

Lemma A.1.3. [Mun00, Theorem 26.3.] A compact subspace of a Hausdorff space is
closed.

Lemma A.1.4. [Mun00, Theorem 26.5.] Given a continuous map f : X → Y of
topological spaces and X compact, then f(X) ⊂ Y is compact.

Corollary A.1.5. [Mun00, Theorem 26.6.] Given a bijective continuous map f : X →
Y , where X is a compact space and Y a Hausdorff space, then f is a homeomorphism.

Lemma A.1.6. [Mun00, p. 26.9.] A space X is compact if and only if given a family of
closed sets {Vj}j∈J in X such that

⋂
j∈J ′ Vj ̸= ∅ for any finite J ′ ⊂ J then

⋂
j∈J Vj ̸= ∅.

We call the property that any finite intersection is nonempty the Finite Intersection
Property.

Definition A.1.7. [Mun00, §18] A continuous map e : X → Y is called an embedding
if it is injective and a homeomorphism between X and its image e(X) ⊂ Y .

Definition A.1.8. Given a subspace Y ⊂ X of a topological space X and a continuous
map f : Y → Z. Then we say a continuous map g : X → Z is a continuous extension
of f if g|Y = f .
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A.2 Connectedness

Definition A.2.1. [Mun00, §23] A separation of a space X are two non-empty open
sets U, V ⊂ X such that U ∩ V = ∅ and U ∪ V = X.

A space X is said to be connected if there is no separation.

Remark. As U, V are complements of each other U, V are always clopen.

The idea behind connectedness is that we can not divide a space into two disjoint
spaces. We cannot separate it. This gives rise to a relation on the set of points of a
space X:

x ∼ y ⇐⇒ ∃ U ⊂ X connected such that x, y ∈ U.

Lemma A.2.2. [Mun00, §25] The relation defined above is an equivalence relation and
the equivalence classes are the biggest connected subspaces of X.

We call those equivalence classes the connected components of X.

A.3 Separation Axioms

Definition A.3.1. [Mun00, §31] A topological space is said to be T1 if one point sets
are closed.

Definition A.3.2. [Mun00, §17] A topological space X is said to be Hausdorff if for
any pair of distinct points x1, x2 there exist disjoint neighborhoods U1, U2 of x1, x2
respectively.

Definition A.3.3. [Mun00, §31] A topological space X that is T1 is said to be regular
if for any closed set A and any x ̸∈ A there are disjoint open sets U, V containing A, x
respectively (A ⊂ U, x ∈ V ).

Definition A.3.4. [Mun00, §31] A topological space X that is T1 is said to be normal
if for any two disjoint closed subset A,B ⊂ X there exist disjoint open sets U, V
containing A,B respectively (A ⊂ U,B ⊂ V ).

Together with the definition of completely regular (Definition 2.2.1) and Urysohn’s
Lemma 2.1.7 we get the following implications of properties of a topological space
[Mun00, §31]:

T1 ⇐= Hausdorff ⇐= regular ⇐= completely regular ⇐= normal

And we have the following result without proof.

Theorem A.3.5. [Mun00, Theorem 32.3] Any compact Hausdorff space is normal.
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Appendix B

Category Theory

B.1 Final functors and subcategories

Definition B.1.1. [Stacks, Definition 04E6] A functor H : I → J is called final if for
any object k in J there exists an object x in I, a morphism k → Hx and if for any two
morphisms k → Hx, k → Hx′ there exist

x = x0 ← x1 → x2 ← x3 → . . . x2n = x′,

such that the following diagram commutes for all r < n:

k

Hx2r Hx2r+1 Hx2r+2

Definition B.1.2. [Mac98, p. IX.3.] A subcategory J ′ of J is called final if the inclusion
functor is final.

Definition B.1.3. A subset J ′ of a directed poset (J,⪯) is called final if for any j ∈ J
there exists j′ ∈ J ′ such that j ⪯ j′

Lemma B.1.4. Both notions of being final agree for a directed poset.

Proof. Clear by applying the definitions and the “directed” property.

Theorem B.1.5. Given a final functor L : I → J , a functor F : J → X such that the
colimit lim−→FL exists then lim−→F exists and is canonically isomorphic to lim−→FL.

Proof. See [Mac98, p. IX.3.].
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B.2 Preservation of Limits

Definition B.2.1. [Mac98, V.4.] A functor H : C → D is said to preserve limits if
given a functor F : J → C, for J a small category, with a limit consisting of the
limit-object lim←−F and projections ϕj, then the limit of HF exists and consists of the
limit object lim←−HF

∼= H lim←−F and projections Hϕj.

Proposition B.2.2. Given a category C and an object c of C, then

C(c,−) : C → Set

preserves all limits.

Proof. Adapted from [Mac98, V.4.]. Let F : J → C be a functor from a small category
J to C and its limit be given by the limit-object lim←−F and projections ϕj. Then ap-
plying the covariant functor C(c,−) yields the following diagram, where ϕ∗j = C(c, ϕj)
and X in Set is arbitrary:

C(c, lim←−F ) C(c, F j)

X C(c, F j)

ϕ∗j

θj

k

The question now is how k is induced. For this take any element x ∈ X. Applying
the θj(x) gives us a collection of maps from c to the diagram FJ and by the universal
property of the limit this induces a morphism hx : c→ lim←−F such that

ϕ∗j(hx) = ϕj ◦ hx = θj(x)

This justifies setting k(x) = hx to construct the map k : X → C(c, lim←−F ). As we
have seen this is done in a unique way for each x. Thereby C(c, lim←−F ) satisfies the
universal property of the limit of the functor C(c, F ) : J → Set. So C(c, lim←−F )

∼=
lim←−C(c, F ).

Remark. This can actually be used to define the limit.

Proposition B.2.3. Given a category C, an object c of C, a small cofiltered index
category J , and the cofiltered limit of a functor F : J → C, with limit object lim←−F , we
get an injective map from the filtered colimit:

lim−→C(F, c)→ C(lim←−F, c)

It is surjective if for any f ∈ C(lim←−F, c) there exist an object j0 of J such that f factors
through Fj0.
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Proof. W.l.o.g. Jop a directed poset. Consider the following diagramm of our limit of
F under the contravariant functor C(−, c):

C(lim←−F, c) C(Fi, c)

lim−→C(F, c)
∐

j∈J C(Fj, c)

ik

This we get from the universal property of the colimit, which exists in Set as all
(co-)limits do.

We need to show that the map is injective. We first notice that any element in
the coproduct

∐
j∈J C(Fj, c) determines an element in the filtered colimit lim−→C(F, c),

as seen in the diagram above. And we notice that two elements g ∈ C(Fi1, c),
h ∈ C(Fi2, c) of the coproduct, indexed by J , determine the same object in the fil-
tered colimit if

∀j ⪰ i1, i2 : C(ϕji1 , c)(g) = C(ϕji2 , c)(h)

Now take g′, h′ ∈ lim−→C(F, c) with the same image f in C(lim←−F, c) and choose any
preimages g ∈ C(Fi1, c), h ∈ C(Fi2, c) in the coproduct. For any j ⪰ i1, i2 we get the
following diagram:

Fi1

Fj lim←−F c

Fi2

gϕji1

ϕji2

ϕj f

ϕi2

ϕi1

h

and it has to commute because of the g, h being mapped to f . By what we noticed
about the filtered colimit g, h determine the same element in lim−→C(F, c) so our map is
injective.

Surjectivity in the case any f ∈ C(lim←−F, c) factors through some Fj0 should be
clear as well because a preimage is just the image of the morphism Fj0 → c in the
filtered colimit.
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Zusammenfassung

Diese Arbeit befasst sich mit der Konstruktion der Kategorie der proendlichen Mengen,
ihren Eigenschaften und ihrer Rolle in dem Feld der Condensed Mathematics.

Dabei sind die wichtigsten Ergebnisse die Äquivalenz der Kategorie der proendlichen
Mengen zu der Kategorie der total unzusammenhängenden Hausdorff Räumen (The-
orem 1.4.11) und die Charakterisierung der projektiven Objekte in der Kategorie der
kompakten Hausdorff Räume, und damit auch in der Kategorie der proendlichen Men-
gen, als die extremal unzusammenhängende Räume (Theorem 3.2.9).

Das Ziel dieser Arbeit ist die Einführung und das Verständniss proendlicher Men-
gen, um damit in das Feld der condensed mathematics einsteigen zu können.

Wir beginnen in Kapitel 1 mit dem Konzept eines projektiven Limes aus der Kate-
gorientheorie und führen damit für jede Kategorie C die Pro-Kategorie Pro(C) als die
Kategorie aller formalen projektiven Systeme in C ein; dies kann als Vervollständigung
von C nach projektiven limiten gesehen werden. Daraufhin betrachten wir den Spezial-
fall der proendlichen Mengen, die Pro-Kategorie der endlichen Mengen. Zuerst versehen
wir dazu endliche Mengen mit der diskretene Topologie, das macht sie kompakt Haus-
dorff, und betrachten generell projektive Systeme und Limiten von kompakten Haus-
dorff Räumen. Dieses Wissen nutzen wir dann, um zu zeigen, dass alle proendlichen
Mengen total unzusammenhängende kompakte Hausdorff Räume sind und kommen zu
dem Schluss, dass sie sogar äquivalent sind.

In Kapitel 2 verlassen wir zunächst die Kategorie der proendlichen Mengen, um
ein topologisches Werkzeug einzufüren, die Stone-Čech Kompaktifizierung. Wir führen
diese, wie historisch durch Čech, als den kompakten Hausdorff Raum βX ein in die
sich der komplett reguläre topologische Raum X dicht einbetten lässt, sodass sich alle
beschränkten reellwertigen Funktionen von X stetg auf βX fortsetzen lassen. Wir wer-
den die Stpne-Čech Kompaktifizierung auch über eine andere universelle Eigenschaft
charakterisieren. So lässt sich nämlich auch jede stetige Abbildung in einen kompakten
Hausdorff Raum eindeutig stetig fortsetzen.

Mit diesem Werkzeug in der Schublade wenden wir uns in Kapitel 3 wieder den
Kategorien der proendlichen Mengen und kompakten Hausdorff Räumen zu. Eine
Fragestellung aus der homologischen Algebra ist die der projektiven Objekte. So
verallgemeinern wir den Begriff des projektiven Objektes auf allgemeine Kategorien
und zeigen, dass die projektiven Objekte der Kategorie der kompakten Hausdorff
Räume auch über einen topologische Eigenschaft bestimmt sind, sie sind alle ex-
tremal unzusammenhängend. Des weiteren hat die Kategorie der kompakten Hausdorff
Räume genug Projektive, da wir jeden Raum mit der Stone-Čech Kompatifizierung
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seiner zugrundeliegenden Menge als diskreter Raum überdekt werden kann. Außerdem
sehen wir, dass alle extremal unzusammenhängenden kompakten Hausdorff Räume
proendlich sind und sich somit die Charakterisierung und die Existenz von genügend
Projektiven auf die Kategorie der proendlichen Mengen überträgt.

In Kapitel 4 sehen wir schlussendlich die Motivation für Condensed Mathematics,
eine Theorie von algebraischen Objekten mit Topologie, die wohlartig ist, sodass wir
Methoden der algebraischen Geometrie anwenden können. Wir werden lediglich die
Konstruktion von kondensierten Mengen und einen Teil ihrer Verbindung zu topolo-
gischen Räumen sehen. Schließlich werden wir noch zeigen, dass teilweise verschiedene
Definitionen übereinstimmen.
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