Übungen zur Vorlesung "Algebraische Zahlentheorie" SS 2008 Blatt 11

Ausgabe: 11.07.2008, Abgabe: 18.07.2008

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetische-geometrie/lehre/azt.html Alle Lösungen sind vollständig zu begründen.

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Aufgabe 11.1: Seien p,q verschiedene Primzahlen mit $q \nmid (p-1)$. Benutzen Sie das Henselsche Lemma, um zu zeigen, dass die Gleichung $x^q + y^q = z^q$ eine Lösung in \mathbb{Z}_p hat.

(4 Punkte)

Aufgabe 11.2: Sei $K = \mathbb{Q}(\theta)$ der Zahlkörper, der durch Adjunktion einer Wurzel θ von $f(x) = x^3 - 5x + 5$ entsteht. Welche Primideale von \mathbb{Z} sind verzweigt in K/\mathbb{Q} ? Berechnen Sie den Verzweigungsindex der entsprechenden Primideale. Was können Sie nach dem Berechnen des Verzweigungsindex über den Ganzheitsring \mathcal{O}_K sagen?

Hinweis: Zur Beschreibung der Verzweigung ist es nicht notwendig, den Ganzheitsring zu ermitteln, sondern die lokalen Erweiterungen zu untersuchen.

(6 Punkte)

Aufgabe 11.3: Sei K/\mathbb{Q}_p ein lokaler Körper, $u \in \mathcal{O}_K^*$ eine Einheit, und $e \in \mathbb{N}$ eine natürliche Zahl mit $p \nmid e$. Zeigen Sie, dass die Erweiterung $K(\alpha)/K$ unverzweigt ist, wobei $\alpha^e = u$ ist.

(6 Punkte)

Aufgabe 11.4: Zeigen Sie, dass $\mathbb{Q}_p(\zeta_p) = \mathbb{Q}_p(\sqrt[p-1]{-p})$ gilt.

- (a) Geben Sie das Minimalpolynom für ζ_p-1 an und folgern Sie daraus, dass $(\zeta_p-1)^{p-1}\equiv -p\mod(\zeta_p-1)^p.$
- (b) Benutzen Sie das Henselsche Lemma, um zu zeigen, dass eine (p-1)-te Wurzel von -p in $\mathbb{Q}_p(\zeta_p)$ existiert. Folgern Sie daraus die Behauptung.

(6 Punkte)