Übungen zur Vorlesung "Algebraische Zahlentheorie" SS 2008 Blatt 4

Ausgabe: 23.05.2008, Abgabe: 30.05.2008

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetische-geometrie/lehre/azt.html Alle Lösungen sind vollständig zu begründen.

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Aufgabe 4.1: Seien A und B Ringe, und sei $f:A\to B$ ein Ringhomomorphismus. Zeigen Sie die folgenden Aussagen:

- (a) Sei $a \in A$ nilpotent. Dann ist $a \in \mathfrak{p}$ für alle Primideale \mathfrak{p} .
- (b) Sei $\mathfrak{p} \subseteq B$ prim. Dann ist $f^{-1}(\mathfrak{p})$ prim.
- (c) Sei $I \subseteq A$ ein Ideal. Dann gibt es eine bijektive Abbildung zwischen der Menge der Ideale von A/I und der Menge derjenigen Ideale von A, die I enthalten.
- (d) Zeigen Sie, dass dies auch für die Mengen von Primidealen gilt.

(4 Punkte)

Aufgabe 4.2: Sei A ein Ring. Für ein Ideal I definieren wir das Radikal \sqrt{I} von I wie folgt:

$$\sqrt{I} = \{x \in A \mid x^n \in I \text{ für ein } n > 0\}.$$

Zeigen Sie:

- (a) $\sqrt{I} \supseteq I$.
- (b) $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (c) $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$.
- (d) Falls $\mathfrak p$ prim ist, gilt $\sqrt{\mathfrak p}=\mathfrak p.$

(4 Punkte)

Aufgabe 4.3: Zeigen Sie, dass ein Dedekindring mit nur einem maximalen Ideal schon ein Hauptidealring ist.

(2 Punkte)

(bitte wenden)

Aufgabe 4.4: Sei A ein Ring, M ein A-Modul. Zeigen Sie, dass die folgenden beiden Bedingungen äquivalent sind:

- (a) Jeder A-Untermodul $N \subseteq M$ ist endlich erzeugt.
- (b) Jede Kette $N_1 \subseteq N_2 \subseteq \cdots$ von A-Untermoduln von M wird stationär.

Ein solcher Modul heißt *noethersch*. Zeigen Sie, dass A ein noetherscher Ring ist, wenn A ein noetherscher A-Modul ist.

(5 Punkte)

Aufgabe 4.5: Ist jeder 0-dimensionale Ring ein Körper? Begründen Sie durch Beweis oder Gegenbeispiel.

(3 Punkte)

Bonus-Aufgabe 4.6:

(a) Sei K/\mathbb{Q} ein Zahlkörper vom Grad n, und $b_1, \ldots, b_n \in \mathcal{O}_K$ linear unabhängig über \mathbb{Q} . Bezeichne M die abelsche Untergruppe $\langle b_1, \ldots, b_n \rangle_{\mathbb{Z}}$ von \mathcal{O}_K , und $m = [\mathcal{O}_K : M]$ den Index von M in \mathcal{O}_K . (Machen Sie sich klar, dass der Quotient \mathcal{O}_K/M wirklich endlich ist.) Sei ausserdem a_1, \ldots, a_n eine Basis von \mathcal{O}_K . Dann gilt

$$D(b_1,\ldots,b_n)=m^2D(a_1,\ldots,a_n).$$

(b) Benutzen Sie (a) und Aufgabe 3.3, um eine Basis des Ganzheitsringes von $\mathbb{Q}(\theta)$ zu bestimmen, wobei θ eine Lösung der Gleichung $x^3 + 2x + 1 = 0$ ist.

(6 Punkte)