Übungen zur Vorlesung "Algebraische Zahlentheorie" SS 2008 Blatt 5

Ausgabe: 30.05.2008, Abgabe: 06.06.2008

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetische-geometrie/lehre/azt.html Alle Lösungen sind vollständig zu begründen.

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Aufgabe 5.1: Seien $\mathfrak{a}, \mathfrak{b}$ und \mathfrak{c} Ideale in einem Ring R.

(a) Zeigen Sie die folgende Identität:

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

(b) Sei nun R ein Dedekindring. Zeigen Sie die folgenden Identitäten:

$$a \cap (b + c) = (a \cap b) + (a \cap c),$$
 $a + (b \cap c) = (a + b) \cap (a + c)$

(4 Punkte)

Aufgabe 5.2:

- (a) Formulieren Sie das Gauß'sche Reziprozitätsgesetz (mit Literaturangabe).
- (b) Benutzen Sie das Reziprozitätsgesetz, um die folgenden Legendre-Symbole zu berechnen:

$$\left(\frac{6}{11}\right), \quad \left(\frac{18}{23}\right), \quad \left(\frac{205}{307}\right).$$

(c) Ist (2311) prim in $\mathbb{Z}[\sqrt{1965}]$?

(8 Punkte)

Aufgabe 5.3: Geben Sie die Primidealfaktorisierungen der Ideale (5) und (7) in $\mathbb{Z}[\rho]$ an, wobei ρ eine dritte Einheitswurzel ist.

(3 Punkte)

Aufgabe 5.4: Sei $K = \mathbb{Q}(\sqrt[3]{2})$. Geben Sie die Primidealfaktorisierungen der Ideale (7) und (31) in \mathcal{O}_K an. Dabei dürfen Sie annehmen, daß $(1, \sqrt[3]{2}, (\sqrt[3]{2})^2)$ eine Basis von \mathcal{O}_K ist. Erläutern Sie, wo genau diese Voraussetzung benutzt wird.

(5 Punkte)

Bonus-Aufgabe 5.5: Sei K/\mathbb{Q} ein Zahlkörper vom Grad n, und seien $b_1, \ldots, b_n \in \mathcal{O}_K$ linear unabhängig über \mathbb{Q} . Wir setzen $\Delta = D(b_1, \ldots, b_n)$. Zeigen Sie, daß für jedes $x \in \mathcal{O}_K$ gilt $\Delta x \in \langle b_1, \ldots, b_n \rangle_{\mathbb{Z}}$.

(4 Punkte)