Übungen zur Vorlesung "Algebraische Zahlentheorie" $SS\ 2008$ Blatt 8

Ausgabe: 20.06.2008, Abgabe: 27.06.2008

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetische-geometrie/lehre/azt.html Alle Lösungen sind vollständig zu begründen.

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Aufgabe 8.1: Sei A ein Ring. Eine Teilmenge $S \subseteq A$ heisst multiplikativ abgeschlossen wenn $1 \in S$ und für alle $x,y \in S$ auch $x \cdot y \in S$ ist. Sei M ein A-Modul und $S \subseteq A$ eine multiplikativ abgeschlossene Teilmenge. Wir definieren eine Äquivalenzrelation \sim auf $M \times S$ durch $(m,s) \sim (m',s')$ genau dann wenn ein $s'' \in S$ existiert, so dass gilt s''(s'm-sm')=0.

Zeigen Sie, dass die Menge $S^{-1}M$ der Äquivalenzklassen einen A-Modul bildet, und dass $M \to S^{-1}M : m \mapsto (m,1)$ ein A-Modul-Homomorphismus ist.

(4 Punkte)

Aufgabe 8.2:

- (a) Sei A ein beliebiger Ring, $S \subseteq A$ eine multiplikativ abgeschlossene Teilmenge. Zeigen Sie, dass eine Bijektion existiert zwischen (1) der Menge der Primideale von $S^{-1}A$ und (2) der Menge derjenigen Primideale von A, die zu S disjunkt sind.
- (b) Folgern Sie daraus, dass für einen beliebigen Ring A gilt

$$\dim A = \sup_{\mathfrak{p}} (\dim A_{\mathfrak{p}}),$$

wobei das Supremum über alle Primideale $\mathfrak{p} \subseteq A$ genommen wird.

(8 Punkte)

Aufgabe 8.3: Zeigen Sie, dass die Körpererweiterung $\mathbb{Q}(i, \sqrt{-5})/\mathbb{Q}(\sqrt{-5})$ über allen Primidealen von $\mathbb{Q}(\sqrt{-5})$ unverzweigt ist.

Hinweis: Benutzen Sie, dass $\mathbb{Q}(\sqrt{5})$ ebenfalls ein Zwischenkörper der Erweiterung $\mathbb{Q}(i,\sqrt{-5})/\mathbb{Q}$ ist.

(8 Punkte)