"Kommutative Algebra und Einführung in die algebraische Geometrie" SS 2013 — Übungsblatt 6

Ausgabe: 31.05.2013, Abgabe: 06.06.2013

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetischegeometrie/lehre/ss13/kommalg.html

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Sei k ein algebraisch abgeschlossener Körper.

Aufgabe 6.1: Sei $V \subset \mathbb{A}^2_k$ die affine Varietät, welche durch die Gleichung $x^2 + y^2 = 1$ beschrieben wird. Sei f die auf $U_1 = V \setminus \{(1,0),(0,1)\}$ definierte Funktion $\frac{xy}{x+y-1}$. Sei g die auf $U_2 = V \setminus \{(-1,0),(0,-1)\}$ definierte Funktion $\frac{(x+1)(y+1)}{x+y+1}$.

1. Beweisen Sie, dass für $P \in U_1 \cap U_2$ die Gleichung

$$f(P) = q(P)$$

erfüllt ist.

2. Nach Definition ist also die Funktion

$$h(P) := \begin{cases} f(P) & P \in U_1, \\ g(P) & P \in U_2, \end{cases}$$

lokal algebraisch auf $V = U_1 \cup U_2$. Aus Satz 4.17 folgt daher, dass

$$h \in k[V] = k[x, y]/(x^2 + y^2 - 1).$$

Finden Sie ein repräsentierendes Polynom.

(4 Punkte)

Aufgabe 6.2: Sei $V \subset \mathbb{A}^n_k$ eine irreduzible affine Varietät und \wp das zugehörige Primideal. Wir haben gesehen, dass $R = S_\wp^{-1} k[x_1, \ldots, x_n]$ lokal ist, mit maximalem Ideal $\mathfrak{m} = S_\wp^{-1} \wp$. Der Quotient ist also ein Körper. Beweisen Sie:

$$R/\mathfrak{m} = k(V).$$

(4 Punkte)

(bitte wenden)

Aufgabe 6.3: Sei A ein kommutativer Ring, $S \subset A$ multiplikativ. Beweisen Sie: Die Abbildung $I \mapsto S^{-1}I$ induziert eine Bijektion

{Primideale von A mit
$$S \cap I = \emptyset$$
} $\xrightarrow{\sim}$ { Primideale von $S^{-1}A$ }.

Gilt dieselbe Aussage auch mit "echte Ideale", bzw. "maximale Ideale" statt "Primideale" (mit Beweis/Gegenbeispiel)?

(4 Punkte)

Aufgabe 6.4: Sei V eine algebraische Varietät, $f \in k[V]$. Konstruieren Sie eine *natürliche* Bijektion (mit Beweis):

$$U_f \xrightarrow{\sim} \{ \text{ maximale Ideale in } S_f^{-1}k[V] \}.$$

Zusatz (ohne Beweis): In Satz 4.17 werden wir sehen, dass $S_f^{-1}k[V]$ gleich dem vorher bereits definierten Ring $\mathcal{O}(U_f)$ ist. Gilt die Aussage

$$U \xrightarrow{\sim} \{ \text{ maximale Ideale in } \mathcal{O}(U) \}.$$

(bzgl. einer natürlichen Abbildung) für beliebige offene Mengen $U \subset V$, die nicht notwendigerweise standard-offen sind?

(4 Punkte)