"Kommutative Algebra und Einführung in die algebraische Geometrie" SS 2014 — Übungsblatt 1

Ausgabe: 01.05.2014, Abgabe: 08.05.2014

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetischegeometrie/lehre/ss14/kommalg.html

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Aufgabe 1.1: Sei $Y \subseteq \mathbb{A}^3$ gegeben durch $Y = \{[t, t^2, t^3] \in \mathbb{A}^3 \mid t \in k\}$. Zeigen Sie, dass Y eine affine Varietät ist und dass $\mathcal{O}(Y) \cong k[t]$ in natürlicher Weise.

(4 Punkte)

Aufgabe 1.2: Skizzieren Sie graphisch das reelle Bild der folgenden Varietäten im \mathbb{A}^2 :

(i)
$$V(x^3 + y^3 - 1)$$
 (ii) $V(x^4 + y^4 - 1)$ (iii) $V(x^2 - x - xy + y)$ (iv) $V(x^2 + y^2 - 1, x - y)$ (4 Punkte)

Aufgabe 1.3: Für die folgenden Mengen $S \subset \mathbb{C}[x,y]$ von Polynomen, geben Sie jeweils einen Punkt in V(S) an, oder kombinieren Sie die 1 aus den Polynomen in S.

1.
$$S = \{x^2 + y^2 - 1, y - 5\}.$$

2.
$$S = \{x^2 + y^2 - 1, x - 1, y - 1\}.$$

3.
$$S = \{x^2 - y^2 - 1, x + y\}.$$

4.
$$S = \{x + y, x - 1, y - 1\}.$$

5.
$$S = \{x^2 - y^3 - 1, x - 3\}.$$

6.
$$S = \{x^2 - y^2, x^2 - xy\}.$$

(3 Punkte)

Aufgabe 1.4: Sei k ein Körper und sei $\phi: k[x] \to k[y]$ ein Ringhomomorphismus. Unter welchen Bedingungen ist ϕ ein Isomorphismus? (Mit Beweis)

(4 Punkte)