Tutorium zur kommutativen Algebra SS17 SS17 Blatt 5

Ausgabe: 22.5.2017, keine Abgabe

Aufgabe T.5.1: Ein topologischer Raum X heißt Hausdorff-Raum falls für alle Punkte $x,y\in X$ mit $x\neq y$ stets offene Umgebungen $U\ni x$ und $V\ni y$ mit $U\cap V=\varnothing$ existieren. Beweisen Sie: Ein Hausdorff-Raum X ist noethersch genau dann wenn X eine endliche Menge ist.

Aufgabe T.5.2: Geben Sie ein maximales Ideal des Ringes $\mathbb{R}[X]$ an, welches widerlegt, dass der Nullstellensatz auch über den reellen Zahlen gilt.

Aufgabe T.5.3: Geben Sie ein detailliertes Argument:

- 1. Der topologische Raum \mathbb{A}^1 mit der Zariski-Topologie hat Dimension 1.
- 2. Der topologische Raum \mathbb{A}^n mit der Zariski-Topologie hat Dimension $\geq n$.

Aufgabe T.5.4: Wir betrachten die Hyperbel $H \subset \mathbb{A}^2$, die durch das Ideal

$$I := (xy - 1)$$

in k[x, y] definiert wird.

- 1. Wie viele Zusammenhangskomponenten hat H in der üblichen Topologie der reellen Zahlen falls $k=\mathbb{R}?$
- 2. Wie viele Zusammenhangskomponenten hat H in der üblichen Topologie der komplexen Zahlen falls $k=\mathbb{C}?$
- 3. Wie viele Zusammenhangskomponenten hat H in der Zariski-Topologie für k beliebig? Ist H irreduzibel?
- 4. Zeigen Sie, dass $\mathcal{O}(H)$ nicht zum Ring $\mathcal{O}(\mathbb{A}^1)$ isomorph ist.

Aufgabe T.5.5: Sei k ein Körper mit unendlich vielen Elementen. Sei $f \in k[X_1, \ldots, X_n]$ ein Element. Zeigen Sie: Gilt $f(x_1, \ldots, x_n) = 0$ für alle $(x_1, \ldots, x_n) \in \mathbb{A}^n$, dann gilt f = 0. Geben Sie ein Gegenbeispiel für den Fall eines Körpers k mit nur endlich vielen Elementen.