Algebraic Number Theory 2018 - Discussion set

Date: Monday, the 23d of April, 2018

Exercise 0 (Generators of ideals). Let R be a commutative ring, and let S be a subset of R. Write $\langle S\rangle$ for the subset of R consisting of elements $x \in R$ of the form $x=r_{1} s_{1}+r_{2} s_{2}+\ldots+r_{n} s_{n}$, with $n \in \mathbb{Z}_{\geq 0}$, $r_{i} \in R$, and $s_{i} \in S$.

Show that $\langle S\rangle$ is the smallest ideal of R that contains S. It is the ideal generated by S.
Exercise 1 (Operations on ideals). Let R be a commutative ring, and let I and J be ideals of R. We define the ideal $I+J$ as the ideal generated by $\{i+j \mid i \in I, j \in J\}$. Similarly, we define the ideal $I \cdot J$ as the ideal generated by $\{i \cdot j \mid i \in I, j \in J\}$. The ideals I and J are called coprime if $I+J=R$.
(a) Show that $I \cap J$ is an ideal of R. Show with an example that $I \cup J$ is in general not an ideal.
(b) Let J_{1} and J_{2} be two ideals of R. Prove: $I \cdot\left(J_{1}+J_{2}\right)=I \cdot J_{1}+I \cdot J_{2}$
(c) Suppose that I and J are coprime. Prove: $I \cap J=I \cdot J$.

Exercise 2. Let m and n be two integers. Compute $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$.
Exercise 3. Show that every element of a Noetherian ring can be written as product of finitely many irreducible elements. (Warning: this factorisation is in general not unique!)

Exercise 4. Consider the ring $R=\mathbb{Z}[\sqrt{-19}]$. Inside this ring we can factor 20 as $2 \cdot 2 \cdot 5$ into a product of irreducible elements of R. Write 20 as product of two irreducible elements of R.

