Algebraic Number Theory 2018 - Set 1

Tutor: Vivien Vogelmann, vivienvogelmann@web.de
Deadline: Friday, the 27th of April, 2018

Each exercise is worth 4 points.
Exercise 1. Prove that the ring $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ is Euclidean.
Exercise 2. Let p be a prime number. Show that $x^{2}+2 y^{2}=p$ has an integral solution if and only if p is congruent to 1,2 , or $3(\bmod 8)$.

Exercise 3. Let K be a field ($=$ Körper), and let $H \subset K^{*}$ be a finite subgroup. Write down a proof that H is cyclic. (You are allowed use the Internet and/or books.)

Exercise 4. Show that for every element $x \in \mathbb{Z}[i] \backslash\{0\}$, the norm $N(x) \in \mathbb{Z}$ is the cardinality of the residue ring $\mathbb{Z}[i] /(x \mathbb{Z}[i])$.

Exercise 5 (Bonus). Show that there are no integral solutions to $x^{2}+1=y^{3}$. (Hint: Factor $x^{2}+1$ in $\mathbb{Z}[i]$ and show that $\operatorname{gcd}(x+i, x-i)=1$. Deduce that $x+i$ is a cube in $\mathbb{Z}[i]$ and derive a contradiction.)

