Algebraic Number Theory 2018 - Set 4

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de
Deadline: 12.00 on Thursday, the 17th of May, 2018
Each exercise is worth 4 points. The bonus exercise is also worth 4 points. If you get more then 16 points, you can transfer the excess points to other exercise sets.

Exercise 1. Let $\alpha \in \mathbb{C}$ be a root of $X^{3}-X^{2}+1$, and let $\beta \in \mathbb{C}$ be a root of $X^{3}+X+1$. Compute the ring of integers \mathcal{O}_{K} for $K=\mathbb{Q}(\alpha)$ and $K=\mathbb{Q}(\beta)$.

Exercise 2. Let K be the number field $\mathbb{Q}(\sqrt{-23})$. Let

$$
I_{0}=(1), \quad I_{1}=\left(2, \frac{\sqrt{-23}-1}{2}\right), \quad \text { and } \quad I_{2}=\left(2, \frac{\sqrt{-23}+1}{2}\right)
$$

be three ideals of \mathcal{O}_{K}. Draw a picture of the lattices I_{0}, I_{1}, and I_{2}. Show that these three ideals define three different classes in the class group of K.

Exercise 3. Let R be a Dedekind domain. Show that R is a unique factorisation domain if and only if R is a principal ideal domain.

Exercise 4. Let R be a Dedekind domain. Prove that every ideal of R can be generated by 2 elements. Hint: Let $I \subset R$ be a non-trivial ideal. (1) It suffices to show that every ideal in R / I is principal. (2) Use unique ideal factorisation in R : Decompose $I=P_{1}^{e_{1}} \cdots P_{n}^{e_{n}}$ into a product of powers of prime ideals. (3) Apply the Chinese remainder theorem to R / I. (4) It suffices to show that every ideal in $R /\left(P^{e}\right)$ is principal, where $P \subset R$ is a prime ideal, and $e \in \mathbb{Z}_{>0}$. (5) If $e=1$, show that you are done. (6) If $e>1$, take an element $x \in P \backslash P^{2}$. Show that every proper ideal of $R /\left(P^{e}\right)$ is generated by a power of $x(\bmod P)^{e}$.

Exercise 5 (Bonus). For all the following three polynomials:

$$
f=X^{2}-X+174, \quad X^{2}-X+190, \quad \text { and } \quad X^{2}+546
$$

perform the following computation in Sage. Let $\alpha \in \mathbb{C}$ be a root of f. Let \mathcal{O} be the ring of integers of $\mathbb{Q}(\alpha)$. Use Sage to compute the following data about \mathcal{O} :

- the discriminant;
- the class number;
- generators of the class group;
- the order of every generator in your list.

