Algebraic Number Theory 2018 - Set 7

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de Deadline: 12.00 on Thursday, the 14th of June, 2018

Exercise 1 (8 points). A map $Q: \mathbb{Z}^2 \to \mathbb{Z}$ of the form $(x, y) \mapsto ax^2 + bxy + cy^2$ is called a (binary) quadratic form. An integer $n \in \mathbb{Z}$ is called *representable* by \mathbb{Q} if there exist $x, y \in \mathbb{Z}$ such that Q(x, y) = n. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic extension of \mathbb{Q} with discriminant Δ . Show that

- (1) The norm map $N_{K/\mathbb{Q}}: \mathcal{O}_K \to \mathbb{Z}$ is a quadratic form with respect to every choice of basis.
- (2) If K has class number $h_K = 1$, and p is a prime number unramified in K, then $\pm p$ is representable by $N_{K/\mathbb{Q}}$ if and only if $(\frac{\Delta}{p}) = 1$.
- (3) Generalise (2) for class number $h_K > 1$: Let $\mathfrak{a}_1, \ldots \mathfrak{a}_{h_K}$ be ideals representing the ideal classes of K. To \mathfrak{a}_i , associate the function $Q_i: \mathfrak{a}_i^{-1} \to \mathbb{Z}$ given by $Q_i(\alpha) = \frac{N(\alpha)}{N(\mathfrak{a}_i^{-1})}$. Show that Q_i is a quadratic form. Show that $\pm p$ is representably by one of these quadratic forms if and only if $(\frac{\Delta}{p}) = 1$.
- (4) Illustrate (3): Choose a quadratic extension K/\mathbb{Q} such that $h_K > 1$, and explicitly calculate the quadratic forms Q_i . Explicitly represent a prime number by one of these quadratic forms.

Hints: $\left(\frac{\Delta}{p}\right) = 1$ if and only if there is an ideal \mathfrak{p} with $N(\mathfrak{p}) = p$. Write $\mathfrak{p} = a \cdot \mathfrak{a}_i$, and note that $a \in \mathfrak{a}_i^{-1}$.

Exercise 2. (See definition 3.2.2 and the lines following it, in the lecture notes.) Let V be an n-dimensional real vector space, and let $\Gamma \subset V$ be a lattice. Prove that the following are equivalent.

- (0) Γ is complete.
- (1) $V = \bigcup_{\gamma \in \Gamma} (\Phi + \gamma)$, where Φ is a principal mesh (Grundmasche) for Γ .
- (2) The natural map $\Gamma \otimes_{\mathbb{Z}} \mathbb{R} \to V$ is an isomorphism.
- (3) V/Γ is compact.

Exercise 3.

- (i) Let $A \to B$ be a ring homomorphism between two commutative rings. Let M be a free A-module. Show that $M \otimes_A B$ is a free B-module.
- (*ii*) Let V be a finite-dimensional vector space over a field K. Show that there is a natural isomorphism $\phi: V \otimes V^* \to \operatorname{End}(V)$. Show that there is a natural map $\operatorname{ev}: V \otimes V^* \to K$. Show that $\operatorname{ev} \circ \phi^{-1}$ is the trace map $\operatorname{End}(V) \to K$.