Algebraic Number Theory 2018 — Set 8

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de Deadline: 12.00 on Thursday, the 21st of June, 2018

Exercise 1. Compute the class number of $\mathbb{Q}(\sqrt{-p})$ for p = 5, 11, and 13.

Exercise 2. Let $K \subset \mathbb{R}$ be a finite extension of \mathbb{Q} with ring of integers \mathcal{O}_K . Prove that $\mathcal{O}_K^* \subset \mathbb{R}$ is dense if and only if $[K : \mathbb{Q}] \geq 4$ or K is totally real cubic. (A field is *totally real* if all its complex embeddings have image $\subset \mathbb{R}$.)

Theorem (Strong Minkowski bound). Let R be the ring of integers in a number field K of degree n with s pairs of complex embeddings. Then every ideal class of Cl(R) contains an integral ideal with norm not exceeding

$$M_R = \left(\frac{4}{\pi}\right)^s \frac{n!}{n^n} \left|D\right|^{1/2}$$

You may use this theorem without proof.

Exercise 3.

- (a) Let d be a positive integer. Show that there is an integer n such that for all number fields K with D < d one has $[K : \mathbb{Q}] < n$.
- (b) Let $K \neq \mathbb{Q}$ be a number field. Show that $D \neq \pm 1$.

Exercise 4 (Lagrange's four squares theorem). Let p be a prime number.

- (i) Show that there exist $u, v \in \mathbb{Z}$ such that $u^2 + v^2 + 1 \equiv 0 \pmod{p}$.
- (*ii*) For $u, v \in \mathbb{Z}$ with $u^2 + v^2 + 1 \equiv 0 \pmod{p}$ show that the lattice

$$L_{u,v} = \left\{ (a, b, c, d) \in \mathbb{Z}^4 \mid c \equiv ua + vb \pmod{p} \text{ and } d \equiv ub - va \pmod{p} \right\}$$

has volume p^2 in \mathbb{R}^4 .

(*iii*) Show that every positive integer is the sum of four squares.

Hints for (*iii*): For a prime number p, observe that the open ball of radius $\sqrt{2p}$ contains a lattice point of $L_{u,v}$. Then use the multiplicativity of the norm $N: \mathbb{R}[i, j, k] \to \mathbb{R}$ of the quaternion algebra.

Exercise 5 (Sage). In this exercise we will gather numerical evidence for a theorem of Hirzebruch. Let N be a big number, say $N = 10^4$.

- (1) Generate a list P containing all the primes $3 such that <math>p \equiv 3 \pmod{4}$.
- (2) Write a function ascf (alternating sum continued fraction) that takes as input a prime number p, and outputs an integer. It does the following: let [b₀; (b₁,..., b_r)*] be the continued fraction expansion of √p. Then the output is ∑^r_{i=1}(-1)ⁱb_i. (Hint: Define sqrtp by K.<sqrtp> = QuadraticField(p). Use cf = continued_fraction(sqrtp) to compute the continued fraction of √p. You can access the period of cf with cf.period().)
- (3) For all $p \in P$, verify Hirzebruch's theorem, which is the following statement: if the class number of $\mathbb{Q}(\sqrt{p})$ is 1, then the class number of $\mathbb{Q}(\sqrt{-p})$ is $\operatorname{ascf}(p)/3$.