Algebraic Number Theory 2018 - Set 8

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de
Deadline: 12.00 on Thursday, the 21st of June, 2018

Exercise 1. Compute the class number of $\mathbb{Q}(\sqrt{-p})$ for $p=5,11$, and 13 .
Exercise 2. Let $K \subset \mathbb{R}$ be a finite extension of \mathbb{Q} with ring of integers \mathcal{O}_{K}. Prove that $\mathcal{O}_{K}^{*} \subset \mathbb{R}$ is dense if and only if $[K: \mathbb{Q}] \geq 4$ or K is totally real cubic. (A field is totally real if all its complex embeddings have image $\subset \mathbb{R}$.)

Theorem (Strong Minkowski bound). Let R be the ring of integers in a number field K of degree n with s pairs of complex embeddings. Then every ideal class of $\mathrm{Cl}(R)$ contains an integral ideal with norm not exceeding

$$
M_{R}=\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}}|D|^{1 / 2}
$$

You may use this theorem without proof.

Exercise 3.

(a) Let d be a positive integer. Show that there is an integer n such that for all number fields K with $D<d$ one has $[K: \mathbb{Q}]<n$.
(b) Let $K \neq \mathbb{Q}$ be a number field. Show that $D \neq \pm 1$.

Exercise 4 (Lagrange's four squares theorem). Let p be a prime number.
(i) Show that there exist $u, v \in \mathbb{Z}$ such that $u^{2}+v^{2}+1 \equiv 0(\bmod p)$.
(ii) For $u, v \in \mathbb{Z}$ with $u^{2}+v^{2}+1 \equiv 0(\bmod p)$ show that the lattice

$$
L_{u, v}=\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid c \equiv u a+v b \quad(\bmod p) \quad \text { and } \quad d \equiv u b-v a \quad(\bmod p)\right\}
$$

has volume p^{2} in \mathbb{R}^{4}.
(iii) Show that every positive integer is the sum of four squares.

Hints for (iii): For a prime number p, observe that the open ball of radius $\sqrt{2 p}$ contains a lattice point of $L_{u, v}$. Then use the multiplicativity of the norm $N: \mathbb{R}[i, j, k] \rightarrow \mathbb{R}$ of the quaternion algebra.

Exercise 5 (Sage). In this exercise we will gather numerical evidence for a theorem of Hirzebruch. Let N be a big number, say $N=10^{4}$.
(1) Generate a list P containing all the primes $3<p<N$ such that $p \equiv 3(\bmod 4)$.
(2) Write a function ascf (alternating sum continued fraction) that takes as input a prime number p, and outputs an integer. It does the following: let $\left[b_{0} ;\left(b_{1}, \ldots, b_{r}\right) *\right]$ be the continued fraction expansion of \sqrt{p}. Then the output is $\sum_{i=1}^{r}(-1)^{i} b_{i}$. (Hint: Define sqrtp by K.<sqrtp> = QuadraticField(p). Use cf $=$ continued_fraction(sqrtp) to compute the continued fraction of \sqrt{p}. You can access the period of cf with cf.period().)
(3) For all $p \in P$, verify Hirzebruch's theorem, which is the following statement: if the class number of $\mathbb{Q}(\sqrt{p})$ is 1 , then the class number of $\mathbb{Q}(\sqrt{-p})$ is $\operatorname{ascf}(p) / 3$.

