Algebraic Number Theory 2018 - Set 9

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de Deadline: 12.00 on Thursday, the 28st of June, 2018

Exercise 1. Compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for all squarefree integers $2 < d \leq 15$.

Exercise 2. Let $K_1 = \mathbb{Q}(\sqrt{d_1})$ and $K_2 = \mathbb{Q}(\sqrt{d_2})$ be distinct real quadratic fields. Define $K_3 = \mathbb{Q}(\sqrt{d_1d_2})$ and $K = K_1K_2$.

(i) Show that $\mathcal{O}_{K_1}^* \mathcal{O}_{K_2}^* \mathcal{O}_{K_3}^*$ has finite index in \mathcal{O}_K^* .

(*ii*) Take $d_1 = 2$ and $d_2 = 3$. Is $\sqrt{2} + \sqrt{3}$ in $\mathcal{O}_{K_1}^* \mathcal{O}_{K_2}^* \mathcal{O}_{K_3}^*$?

Exercise 3. Let m and $n \ge 0$ be integers, and denote with ϕ the Euler function. Prove that there is a number field K such that $\mathcal{O}_K^* \cong \mathbb{Z}/m\mathbb{Z} \oplus \mathbb{Z}^n$ if and only if m is even and $\phi(m)$ divides 2(n+1).

Exercise 4. Let $K \subset L$ be an extension of number fields. Show that $[\mathcal{O}_L^* : \mathcal{O}_K^*]$ is finite if and only if K is a totally real field and L is a totally complex quadratic extension of K. (A number field is called *totally* real (resp. complex) if the image of every complex embedding lies dense in \mathbb{R} (resp. \mathbb{C}).)

Exercise 5 (Sage). Implement an algorithm in Sage that takes as input a squarefree positive integer d and computes the fundamental unit of $\mathbb{Q}(\sqrt{d})$.

(Of course you are not allowed to use the existing implementation in Sage.)