Algebraic Number Theory 2018 - Set 9

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de
Deadline: 12.00 on Thursday, the 28st of June, 2018

Exercise 1. Compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for all squarefree integers $2<d \leq 15$.
Exercise 2. Let $K_{1}=\mathbb{Q}\left(\sqrt{d_{1}}\right)$ and $K_{2}=\mathbb{Q}\left(\sqrt{d_{2}}\right)$ be distinct real quadratic fields. Define $K_{3}=\mathbb{Q}\left(\sqrt{d_{1} d_{2}}\right)$ and $K=K_{1} K_{2}$.
(i) Show that $\mathcal{O}_{K_{1}}^{*} \mathcal{O}_{K_{2}}^{*} \mathcal{O}_{K_{3}}^{*}$ has finite index in \mathcal{O}_{K}^{*}.
(ii) Take $d_{1}=2$ and $d_{2}=3$. Is $\sqrt{2}+\sqrt{3}$ in $\mathcal{O}_{K_{1}}^{*} \mathcal{O}_{K_{2}}^{*} \mathcal{O}_{K_{3}}^{*}$?

Exercise 3. Let m and $n \geq 0$ be integers, and denote with ϕ the Euler function. Prove that there is a number field K such that $\mathcal{O}_{K}^{*} \cong \mathbb{Z} / m \mathbb{Z} \oplus \mathbb{Z}^{n}$ if and only if m is even and $\phi(m)$ divides $2(n+1)$.

Exercise 4. Let $K \subset L$ be an extension of number fields. Show that $\left[\mathcal{O}_{L}^{*}: \mathcal{O}_{K}^{*}\right]$ is finite if and only if K is a totally real field and L is a totally complex quadratic extension of K. (A number field is called totally real (resp. complex) if the image of every complex embedding lies dense in \mathbb{R} (resp. \mathbb{C}).)

Exercise 5 (Sage). Implement an algorithm in Sage that takes as input a squarefree positive integer d and computes the fundamental unit of $\mathbb{Q}(\sqrt{d})$.
(Of course you are not allowed to use the existing implementation in Sage.)

