
DIRICHLET’S UNIT THEOREM

KEITH CONRAD

1. Introduction

Dirichlet’s unit theorem describes the structure of the unit group of orders in a number
field.

Theorem 1.1 (Dirichlet, 1846). Let K be a number field with r1 real embeddings and 2r2
pairs of complex conjugate embeddings. The unit group of an order in K is finitely generated
with r1 + r2 − 1 independent generators of infinite order.

More precisely, letting r = r1 + r2− 1, each order O in K contains multiplicatively inde-
pendent units ε1, . . . , εr of infinite order such that every unit in O can be written uniquely
in the form

ζεm1
1 · · · εmr

r ,

where ζ is a root of unity in O and the mi’s are in Z. Abstractly, O× ∼= µ(O)× Zr1+r2−1,
where µ(O) is the finite cyclic group of roots of unity in O.

Units u1, . . . , uk are called multiplicatively independent, or just independent, when they
satisfy no multiplicative relations except the trivial one: um1

1 · · ·umk
k = 1 ⇒ mi = 0 for all

i. It then follows that exponents in such a product are unique: if um1
1 · · ·umk

k = un1
1 · · ·unk

k
then mi = ni for all i. This looks like linear independence, and that is exactly what it is:
when we view O× as a Z-module using its group law, multiplicative independence means
Z-linear independence.

If r1 > 0 then µ(O) = {±1} since ±1 are the only roots of unity in R. If r1 = 0 we might

also have µ(O) = {±1}, e.g., O = Z[
√
d] for d < −1.

It is important that the unit groups of all orders in K have the same number of inde-
pendent generators of infinite order: r1 + r2 − 1. Therefore [O×K : O×] is finite. A choice of
generators ε1, . . . , εr for O× (really, for the quotient group O×/µ(O)) is called a system of
fundamental units. We call r1 + r2 − 1 the rank of the unit group.

The unit groups of orders in number fields were, historically, the first important examples
of finitely generated abelian groups. Finding algorithms to produce explicit generators for
unit groups is one of the tasks of computational number theory.

In Section 2 we will look at some examples of the unit theorem. The theorem will be
proved in Section 3 and some more examples are described in Sections 4 and 5.

2. Examples

Example 2.1. For Q(
√

2) we have r1 + r2 − 1 = 1, so the unit group of each order
in Q(

√
2) has the form ±εZ for some unit ε. In particular, Z[

√
2]× = ±(1 +

√
2)Z and

Z[3
√

2]× = ±(17 + 12
√

2)Z.
1
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Table 1 describes unit groups in the full ring of integers in several number fields. The
unit ε in the row for Q( 3

√
2, ζ3) is

ε =
−1 + 2 3

√
2 + 3
√

4

3
+

1− 3
√

2 + 3
√

4

3
ζ3.

K r1 r2 r1 + r2 − 1 µ(OK) O×K
Q(
√

3) 2 0 1 ±1 ±(2 +
√

3)Z

Q(
√

5) 2 0 1 ±1 ±(1+
√
5

2 )Z

Q(ζ5) 0 2 1 µ10 µ10(
1+
√
5

2 )Z

Q( 3
√

2) 1 1 1 ±1 ±(1 + 3
√

2 + 3
√

4)Z

Q( 3
√

6) 1 1 1 ±1 ±(1− 6 3
√

6 + 3 3
√

36)Z

Q( 4
√

2) 2 1 2 ±1 ±(1 + 4
√

2)Z(1 +
√

2)Z

Q( 3
√

2, ζ3) 0 3 2 µ6 µ6 · εZεZ
Q(
√

2,
√

3) 4 0 3 ±1 ±(1 +
√

2)Z(
√

2 +
√

3)Z(
√
2+
√
6

2 )Z

Table 1. Unit Group of OK

Example 2.2. The unit group of an order is finite if and only if r1+r2−1 = 0. This means
(r1, r2) is (1, 0) or (0, 1), so K is Q or an imaginary quadratic field. Moreover, the unit
group of each order in an imaginary quadratic field is {±1} except for the maximal orders
Z[i] and Z[ζ3], whose units groups have size 4 and 6, respectively. There are a number of
important results in algebraic number theory that have a simpler form for Q and imaginary
quadratic fields than for other number fields, precisely because in these (and only these)
cases the unit group is finite.

Example 2.3. We have r1 + r2 − 1 = 1 if and only if (r1, r2) = (2, 0), (1, 1), or (0, 2), i.e.,
K is real quadratic (e.g., Q(

√
2)), a cubic field with only one real embedding (e.g., Q( 3

√
2)),

or a totally complex quartic field (e.g., Q(ζ5)).

Example 2.4. If K is a totally real cubic field then r1 + r2 − 1 = 2, so each order in K
has unit group of the form ±εZ1 εZ2 .

Example 2.5. We always have r1 + r2 − 1 ≤ n− 1, where n = [K : Q] = r1 + 2r2. Easily
r1 + r2 − 1 = n− 1 if and only if r2 = 0, i.e., K is a totally real number field.

Example 2.6. Let’s look at a unit group with rank greater than 1 and see how to find
multiplicative relations between units numerically, by using logarithms to discover them as
linear relations. Set K = Q(α) where α3−3α−1 = 0. The polynomial f(T ) = T 3−3T −1
has 3 real roots, so O×K has rank r1 + r2 − 1 = 3− 1 = 2.

Before looking at O×K , let’s show OK = Z[α]. Since disc(Z[α]) = −4(−3)3 − 27(−1)2 =
81 = 34, [OK : Z[α]] divides 9. Therefore elements ofOK when written in the basis {1, α, α2}
have coefficients with denominator dividing 9. Since f(T + 1) = T 3 + 3T 2 − 3 is Eisenstein
at 3 with α−1 as a root, elements of OK when written in the basis {1, α−1, (α−1)2} have
coefficients with denominator prime to 3. This carries over to {1, α, α2}, so OK = Z[α].
(The Minkowski bound is exactly 2, and there is no prime ideal with norm 2 since T 3−3T−1
is irreducible modulo 2, so h(K) = 1: Z[α] is a PID.)
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We now write down several units in Z[α]. For a, b ∈ Q, NK/Q(aα + b) = −a3f(−b/a).
Check with this formula that α, α+ 1, α− 2, and 2α+ 3 all have norm ±1, so they are all
in Z[α]×. The three roots of f(T ) are α, 2− α2, and α2 − α− 2, so 2− α2 and α2 − α− 2
are in Z[α]×. The product of all three roots of f(T ) is −f(0) = 1.

Since Z[α]× has rank 2, the nontrivial units we just wrote down must admit some nontriv-
ial multiplicative relations. How can we find such relations? We will use the three different
embeddings K → R. Call them σ1, σ2, and σ3. The real roots of f(T ) are σ1(α), σ2(α),
and σ3(α). Arranging the roots in increasing order,

σ1(α) = −1.532 . . . , σ2(α) = −.347 . . . , σ3(α) = 1.879 . . . .

For γ ∈ K, NK/Q(γ) = σ1(γ)σ2(γ)σ3(γ). For u ∈ O×K , |σ1(u)σ2(u)σ3(u)| = 1. Taking
logarithms,

(2.1) u ∈ O×K =⇒ log |σ1(u)|+ log |σ2(u)|+ log |σ3(u)| = 0.

Define the logarithmic mapping L : K× → R3 by

L(γ) = (log |σ1(γ)|, log |σ2(γ)|, log |σ3(γ)|).
We will use such a map L in the proof of the general unit theorem; here we will see how this
map is useful computationally. Easily L is a group homomorphism and by (2.1), L(O×K) is in

the hyperplane {(x, y, z) ∈ R3 : x+y+z = 0}. The kernel of L on O×K is {±1} (why?). Table
2 gives numerical approximations to the images of units under the logarithmic mapping.

γ L(γ) (approx.)
α (.4266,−1.0575, .6309)

α+ 1 (−.6309,−.4266, 1.0575)
α− 2 (1.2618, .8532,−2.1151)
2α+ 3 (−2.7460, .8352, 1.9108)
2− α2 (−1.0575, .6309, .4266)

α2 − α− 2 (.6309, .4266,−1.0575)
Table 2. Log Images of Units

From the table, it appears that L(α − 2) = −2L(α + 1) = L(1/(α + 1)2), so α − 2 =
±1/(α + 1)2. You can check that the minus sign is needed. Using a computer algebra
package, the 3 × 3 matrix (L(α) L(α + 1) L(2α + 3)) has (2,−3, 1) in its kernel, so
α2(α + 1)−3(2α + 3) has L-value 0. Therefore 2α + 3 = ±α−2(α + 1)3. Check that the
plus sign holds. Since it looks like L(2− α2) = L(α+ 1)− L(α), 2− α2 = ±(α+ 1)/α and
the minus sign is needed. Then, since the three roots of f(T ) multiply to 1, α2 − α − 2 =
1/(α(2− α2)) = (1/α)(−α/(α+ 1)) = −1/(α+ 1).

This evidence suggests that α and α+ 1 are a system of fundamental units for Z[α]×.

3. Proof of the unit theorem

Our proof of the unit theorem is based on [3, Sect. 1.5] and [4, pp. 214–215] (see also [5,
p. 5]), and is deduced from a compactness theorem: the unit theorem is a consequence of a
certain group being compact.

We will use Minkowski’s convex-body theorem in our proof. This is a standard tool for
proofs of the unit theorem, although by comparison with typical applications of Minkowski’s



4 KEITH CONRAD

theorem we will be able to get by with a crudely chosen convex body: a sufficiently large
ball will work.

Dirichlet did not use Minkowski’s theorem; he proved the unit theorem in 1846 while
Minkowski’s theorem appeared in 1889. Dirichlet’s substitute for the convex-body theorem
was the pigeonhole principle. (An account of Dirichlet’s proof in German is in [2, Sect. 183]
and in English is in [6, Sect. 2.8–2.10].) Dirichlet did not state the unit theorem for all
orders, but only those of the form Z[α], since at the time these were the kinds of rings that
were considered. According to an oft-repeated story, the main idea for the proof of the unit
theorem came to Dirichlet while he attended a concert in the Sistine Chapel.1

We set some notation. As in the statement of the unit theorem, K is a number field
of degree n, r1 is the number of real embeddings of K and 2r2 is the number of complex
embeddings of K (that is, embeddings K → C whose image is not in R), so n = r1 + 2r2.
Set V = Rr1 × Cr2 , so dimR(V ) = n. The Euclidean embedding θK : K → V is defined
using the real and complex embeddings of K, as follows. Let the real embeddings of K be
σ1, . . . , σr1 and let the complex embeddings of K be σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 , where
we collect the complex embeddings into conjugate pairs σj , σj . For α ∈ K, we set2

θK(α) = (σ1(α), · · · , σr1(α), σr1+1(α), · · · , σr1+r2(α)) ∈ V.
Algebraically, V is a commutative ring using component wise operations. Give V its natural
topology as a Euclidean space and all subsets of V will be given the subspace topology. A
particular subset we will care about is V × = (R×)r1 × (C×)r2 .

Let N: V → R by

N(x1, . . . , xr1 , z1, . . . , zr2) = x1 · · ·xr1 |z1|2 · · · |zr2 |2 = x1 · · ·xr1z1z1 · · · zr2zr2 .
On the image of K in V , N looks like the norm: N(θK(α)) = NK/Q(α) for all α ∈ K. Set

G = {v ∈ V × : |N(v)| = 1}.
This is a subgroup of V ×, and it is closed in V since G is the inverse image of {1} under
the continuous map V → R given by v 7→ |N(v)|. Thus G is a closed subgroup of V ×.

Let O be an order in K and set

U = θK(O×) = G ∩ θK(O).

(Think “U = units”.) We have U ⊂ G since O× = {α ∈ O : |NK/Q(α)| = 1}. Since we give
G the subspace topology from V and the image of O in V under the Euclidean embedding
is discrete, U is discrete in G. We will be interested in the quotient group G/U .

1For instance, in 1905 Minkowski [9, pp. 156–7] wrote “Es wird erzählt, da nach langjährigen vergeblichen
Bemühungen um das schwierige Problem Dirichlet die Lösung in Rom in der Sixtinischen Kapelle während
des Anhörens der Ostermusik ergründet hat. Inwieweit dieses Faktum für die von manchen behauptete
Wahlverwandtschaft zwischen Mathematik und Musik spricht, wage ich nicht zu erörtern.” (translation:
“People say that, after many years of unsuccessful efforts in trying to solve this difficult problem, Dirichlet
found the solution in Rome in the Sistine Chapel while listening to Easter music. I do not dare to discuss
to what extent this fact confirms the conjectured (by some people) relationship between mathematics and
music.”)

2The Euclidean embedding of K, as defined here, depends on the ordering of the different real and complex
embeddings as well as on the choice of one complex embedding from each conjugate pair. A coordinate-free
way of defining the Euclidean embedding uses tensor products: the natural mapping K → R ⊗Q K where
α 7→ 1⊗ α is a ring homomorphism into a finite-dimensional real vector space of dimension n, just like V .
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Example 3.1. Let K = Q(
√

2) and O = OK = Z[
√

2]. Then V = R2 and N: V → R
by N(x, y) = xy. The Euclidean embedding θ : Q(

√
2) → R2 places Z[

√
2]× on the curve

G = {(x, y) ∈ R2 : |xy| = 1}, a union of two hyperbolas. We know Z[
√

2]× = ±(1 +
√

2)Z

and U = θK(Z[
√

2]×) is a discrete subset of G (“equally spaced” in a multiplicative sense).
See Figure 1.

θ((1 +
√
2)2)θ(1)

θ
(
−1

1+
√
2

)

θ(−(1 +
√
2))

θ(−(1 +
√
2)2) θ(−1)

θ
(

1
1+
√
2

)
θ(1 +

√
2)

s ss
s

s s s
s

Figure 1. Units in Z[
√

2] on G = {(x, y) ∈ R2 : |xy| = 1}.

Let’s see how the subgroup U moves G around by multiplication in Figure 1. Multiplying
G by some u ∈ U moves the arcs between consecutive points of U in Figure 1 to other arcs
between consecutive point, and it exchanges the hyperbolas y = 1/x and y = −1/x if
N(u) = −1. Multiplication by θ(−1) = (−1,−1) on G exchanges the two branches on each
hyperbola.

Modulo U each (x, y) ∈ G is congruent to a point on the arc between θ(1) and θ((1+
√

2)2),
so the map [1, (1+

√
2)2]→ G/U given by x 7→ (x, 1/x)U is surjective and continuous, which

implies G/U is compact.

In Example 3.1 we used knowledge of the unit group of Z[
√

2] to see G/U is compact.
The key to proving the unit theorem is showing the compactness of G/U without knowing
the structure of the unit group in advance.

Lemma 3.2. For nonzero a in O, [O : (a)] = |NK/Q(a)|.
Proof. This follows from O being a free Z-module of rank [K : Q]. �

Lemma 3.3. For each positive integer N , finitely many a ∈ O satisfy |NK/Q(a)| = N up

to multiplication by O×. That is, there are a1, . . . , ak ∈ O, where k depends on N , such
that |NK/Q(ai)| = N and each a ∈ O satisfying |NK/Q(a)| = N is a unit multiple of an ai.

Proof. If |NK/Q(a)| = N then [O : (a)] = N by Lemma 3.2, so NO ⊂ (a) ⊂ O. Since O/NO
is finite, there are only finitely many principal ideals between NO and O. Let (a1), . . . , (ak)
be those ideals. Then (a) = (ai) for some i, so a and ai are unit multiples. �
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Theorem 3.4. The group G/U is compact in the quotient topology.

Proof. We will find a compact subset S of G that represents all cosets in G/U . The con-
tinuous map S → G/U is onto and thus G/U is compact. (Usually G itself is not compact.
See Figure 1.)

We begin with a remark about volumes. For v ∈ V ×, multiplication of V = Rr1 ×Cr2

by v is an R-linear map (hence continuous) given by a matrix with determinant N(v), so
for a region R ⊂ V with finite volume, the volume of vR is |N(v)| times the volume of R.
In particular, if v ∈ G then vol(vR) = vol(R) because |N(v)| = 1. When R is compact so is
vR, by continuity of multiplication.

Pick a compact, convex, centrally symmetric region C ⊂ V with vol(C) > 2n vol(θK(O)),
where the “volume” of the lattice θK(O) means the volume of a fundamental domain for
this lattice as a subset of V . For instance, C could be a large ball in V centered at the
origin. For each g ∈ G, gC is also compact and centrally symmetric. It is convex too,
since multiplication by g on V is an invertible linear transformation, and invertible linear
transformations send convex sets to convex sets. Using g−1 instead of g, Minkowski’s convex
body theorem applies to g−1C and the lattice O ⊂ V (we identify O with θK(O)):

g−1C ∩ (O − {0}) 6= ∅.
Let a be a nonzero element of O lying in g−1C. Then |NK/Q(a)| = |N(a)| ∈ |N(g−1C)| =

|N(C)|, which is a bounded subset of R since C is compact. Note |N(C)| is independent of
g. The number |NK/Q(a)| is also an integer, so |NK/Q(a)| lies in a finite set (a bounded set
of integers is finite). Combining that with Lemma 3.3, there is a finite set {a1, . . . , am} of
nonzero elements of O such that every g−1C meets some aiO× = aiU , which implies every
gU meets some a−1i C.

We have shown the quotient group G/U is represented by G ∩ ⋃m
i=1 a

−1
i C. The union⋃m

i=1 a
−1
i C is a compact subset of V , since each a−1i C is compact, and since G is closed

in V the intersection G ∩ ⋃m
i=1 a

−1
i C is compact in G. Hence G/U has a compact set of

representatives in G, so G/U is compact in the quotient topology. �

Now we prove the unit theorem. Recall that, by definition, G = {v ∈ V : |N(v)| = 1}.
Each element of V = Rr1 ×Cr2 can be written in the form (x1, . . . , xr1 , zr1+1, . . . , zr1+r2).
Define the logarithmic mapping L : V × → Rr1+r2 by

L(x1, . . . , zr1+r2) := (. . . , log |xi|, . . . , 2 log |zj |, . . . ),
where the coefficients 2 in this formula are related to the exponents 2 in the definition of
N. The function L is a continuous group homomorphism and, for each g ∈ G, L(g) lies in
the hyperplane

H = {(y1, . . . , yr1+r2) ∈ Rr1+r2 :
∑

i

yi = 0}.

It is easy to see that L(G) = H, so L(G) has dimension r1 + r2− 1 over R. What we really
care about is L(U), which provides a linearized geometric picture for U (once we determine
the kernel of L|U ). The basic plan is to show L(U) is a “full” lattice in the hyperplane L(G)
and the kernel of L restricted to U is finite cyclic (coming from roots of unity in U).

First we treat the kernel of L|U . As a map out on V ×, L has compact kernel:

kerL = {±1}r1 × (S1)r2 .

Every root of unity in U gets sent to 0 by L. Let’s check these are the only elements of
U = O× in kerL. Since U is closed in V × (all discrete subsets are closed), the kernel of
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L|U is closed and thus (as a subset of {±1}r1 × (S1)r2) is compact. Since O is discrete in
V (it’s a lattice), U is discrete in V ×, so the kernel of L|U is also discrete (a subset of a
discrete set is discrete), so ker(L|U ) is compact and discrete: it is finite! A subgroup of U
with finite order can only contain roots of unity. Therefore the elements of ker(L|U ) are
the roots of unity in U = O×, which form a finite cyclic group since every finite subgroup
of K× is a cyclic group. (Warning: it is false that the kernel of L as a map out of K× is
only the roots of unity in K. An element of K× that has all of its Q-conjugates lying on
the unit circle must be in the kernel of L. An example is 3/5 + (4/5)i, or more generally
a/c+ (b/c)i where (a, b, c) is a Pythagorean triple. But these are not algebraic integers, so
they don’t belong to U .)

Now we look at the image L(U) in the hyperplane L(G) ⊂ Rr1+r2 . We have already
seen (and used) that the group U is discrete in V ×, so also in G. The image of a discrete
set under a continuous map need not be discrete (consider Z2 → R by (m,n) 7→ m+n

√
2),

but L(U) is discrete in L(G) since there are only finitely many elements in L(U) that lie in
a bounded region of Rr1+r2 . Indeed, consider the box

{(y1, . . . , yr1+r2) ∈ Rr1+r2 : |yi| ≤ b}.
Suppose L(u) is in this box for some u ∈ U . The real embeddings3 of u have absolute

value at most eb and the complex embeddings of u have absolute value at most eb/2. That
puts an upper bound in terms of b (and n = [K : Q]) on the coefficients of the polynomial∏
σ(T − σ(u)) ∈ Z[T ]. The coefficients have only finitely many possibilities, since there are

finitely many integers with absolute value below a given bound, so there are finitely many
such polynomials. As u is a root of such a polynomial, there are finitely many choices for
u. This shows L(U) is discrete.

Since L(U) is a discrete subgroup of L(G) ∼= Rr1+r2−1, L(U) ∼= Zr
′

where r′ ≤ r1+r2−1.
Since L : G→ L(G) is a continuous and surjective group homomorphism, the induced map
G/U → L(G)/L(U) is also continuous and surjective where both quotient groups get the
quotient topology. From Theorem 3.4, G/U is compact so L(G)/L(U) is compact. Since
L(G) is (r1+r2−1)-dimensional over R and L(U) has Z-rank r′ ≤ r1+r2−1, compactness of
L(G)/L(U) forces r′ = r1 + r2− 1: Euclidean space modulo a discrete subgroup is compact
only when the subgroup has rank equal to the dimension of the space (e.g., R2/(Z × {0})
is a non-compact infinite cylinder). That proves L(U) ∼= Zr1+r2−1 and L(U) is a lattice in
the hyperplane H.

We’re now basically done. Let ε1, . . . , εr (r = r1 + r2 − 1) be elements of O× whose
Euclidean embeddings in U provide a Z-basis of L(U). The εi’s are multiplicatively inde-
pendent, since their L-images are Z-linearly independent. For ε ∈ O×, L(ε) = m1L(ε1) +
· · ·+mrL(εr) for some integers mi, so L(ε) = L(εm1

1 · · · εmr
r ). Since ker(L|U ) is the Euclidean

image of the roots of unity in O×, ε = ζεm1
1 · · · εmr

r for some ζ ∈ µ(O). This concludes the
proof of the unit theorem.

The most difficult part of the proof of the unit theorem is showing there are r1 + r2 − 1
independent units of infinite order. For instance, using the logarithmic map it was not hard
for us to show L(U) is a discrete subgroup of L(G) ∼= Rr1+r2−1, so O× ∼= U ∼= W × Zr

′

where r′ ≤ r1 + r2 − 1 and W is the group of roots of unity in O×. Thus O× has at most
r1 + r2 − 1 independent units of infinite order, but this alone doesn’t tell us there are units

3We are identifying U = θK(O×) with O× when we speak of real embeddings of u. If we did not make
that identification, and wrote u = θK(α), then we would speak instead of real embeddings of α, which are
the initial coordinates of u.
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of infinite order in O×. The place in the proof where saw there are units of infinite order
(if r1 + r2− 1 > 0) is when we went from r′ ≤ r1 + r2− 1 to r′ = r1 + r2− 1. This happened
two paragraphs up and relied on G/U being compact.

4. Fundamental Unit in the Rank 1 Case

As noted already in Example 2.3, an order O in number field K has a rank 1 unit group
precisely when K is real quadratic, cubic with 1 real embedding (that is, a cubic field that
is not totally real), or a totally complex quartic field. In the first two cases, the only roots
of unity in K are ±1, which are always in O, so O× = ±εZ.4 Viewing K in R, the choice
of ε > 1 is called the fundamental unit of O.

Example 4.1. Since Z[
√

2]× = ±(1 +
√

2)Z, the fundamental unit of Z[
√

2] is 1 +
√

2.

Example 4.2. Since Z[3
√

2]× = ±(17 + 12
√

2)Z, Z[3
√

2] has fundamental unit 17 + 12
√

2.

Example 4.3. In Example 4.9 we will show Z[ 3
√

6]× = ±(109 + 60 3
√

6 + 33 3
√

36)Z, so
109 + 60 3

√
6 + 33 3

√
36 ≈ 326.990 is the fundamental unit of Z[ 3

√
6].

In a real quadratic field, one way to find the fundamental unit in an order is by brute
force: if we write a unit greater than 1 as a+b

√
d or a+b(1+

√
d)/2 with a, b ∈ Z, necessarily

a ≥ 0 and b ≥ 1 (check!). This allows one to systematically search for the smallest unit
greater than 1 by sifting through pairs of integers in the first quadrant by increasing values
of a and b. (There is a more efficient method, using continued fractions.)

To give examples of fundamental unit computations in the cubic case, we will use an
inequality due to Artin [1, pp. 169–170]. Mordell [10], near the end of his review of [1] in
1962, described Artin’s inequality as a “surprise” since “one would have thought that there
was not much opportunity for new results on cubic units”.

Theorem 4.4 (Artin). Let O be an order in a cubic field K with r1 = 1. Viewing K in
R, if v > 1 is a unit of O× then |disc(O)| < 4v3 + 24.

Proof. This argument is similar to Artin’s in [1] and may look like a messy calculation.
Consider reading the corollary and its applications first, and then return to this proof.

Since v is a unit and is not ±1, v 6∈ Q. Thus Q(v) = K, so Z[v] is an order inside O.
From Z[v] ⊂ O, | disc(O)| ≤ | disc(Z[v])|. We will show | disc(Z[v])| < 4v3 + 24.

Let σ : K → C be one of the non-real embeddings of K. Then NK/Q(v) = vσ(v)σ(v) =

v|σ(v)|2 > 0, so v has norm 1. Let x =
√
v (as a positive real number), so 1 = x2|σ(v)|2.

Therefore |σ(v)| = 1/x, so in polar form σ(v) = x−1eit for some real number t. Then

disc(Z[v]) = ((σ(v)− v)(σ(v)− v)(σ(v)− σ(v)))2

= ((x−1eit − x2)(x−1e−it − x2)(x−1eit − x−1e−it))2
= ((x−2 + x4 − 2x cos t)(−2ix−1 sin t))2

= −4(sin2 t)(x3 + x−3 − 2 cos t)2.

Since x > 1, x3 + x−3 > 2. Set a = (x3 + x−3)/2, so a > 1 and by taking absolute values,

|disc(Z[v])| = 4(sin2 t)(2a− 2 cos t)2

= 16(1− cos2 t)(a− cos t)2.(4.1)

4Don’t confuse ±εZ with ε±Z; the latter is just εZ.
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Set y = cos t, so y ∈ [−1, 1]. Then (4.1) is

f(y) = 16(1− y2)(a− y)2

and we want to maximize this on [−1, 1]. Let a maximum occur at y0. Since f(y) ≥ 0 on
[−1, 1] with f(1) = f(−1) = 0 and f(0) = 16a2 > 0, we have y0 ∈ (−1, 1) and f ′(y0) = 0.

By the product rule, f ′(y) = 32(a− y)(2y2 − ay − 1) and the root of the linear factor is
a > 1, so 2y20 − ay0 − 1 = 0. Rewrite this as

(4.2) ay0 = 2y20 − 1.

Thus

(4.3) | disc(Z[v])| = f(cos t) ≤ f(y0) = 16(1− y20)(a− y0)2.
Expanding (a− y0)2 and using the relation (4.2) a couple of times, we get

16(1− y20)(a− y0)2 = 16(a2 + 1− y40 − y20).

Substituting a = (x3 + x−3)/2 into this,

f(y0) = 16

(
x6

4
+

3

2
+

(
x−6

4
− y40 − y20

))
.

We will show x−6/4 < y20, so the right side is less than 16(x6/4+3/2) = 4x6+24 = 4v3+24.
Then by (4.3), | disc(Z[v])| < 4v3 + 24, as desired.

Let h(y) = 2y2−ay−1, the quadratic factor of f ′(y), so h′(y0) = 0. The roots of h(y) have
product −1/2, so they have opposite sign. Since h(1) = 1− a < 0 and h(y) > 0 for large y,
h(y) has a root in (1,∞). Thus −1 < y0 < 0, and recall x > 1, so the inequality x−6/4 < y20
is the same as y0 < −1/(2x3). The graph of h(y) is a concave up parabola and y0 is the
smaller root of h(y), so to prove y0 < −1/(2x3) it is enough to show h(−1/(2x3)) < 0:

h

(−1

2x3

)
=

2

4x6
+

a

2x3
− 1 =

1

2x6
+

1

2x3
x3 + x−3

2
− 1 =

3

4x6
− 3

4
=

3

4

(
1

x6
− 1

)
< 0

since x > 1. �

Remark 4.5. The condition on v in Theorem 4.4 is v > 1, not v > 0. If we could use
0 < v < 1 in Artin’s inequality, then replacing v with a high power of itself would imply
|disc(O)| < 24, which is false for all cubic orders with one exception. See Footnote 6 below.

Corollary 4.6. Let O be an order in a cubic field K with r1 = 1. Viewing K inside R, let
ε > 1 be the fundamental unit of O. For each unit u > 1 in O×, if 4u3/m + 24 ≤ | disc(O)|
for an integer m ≥ 2 then u = εk where 1 ≤ k < m. In particular, if 4u3/2 + 24 ≤ |disc(O)|
then u = ε.

Proof. The group O× is ±εZ, so u = εk for some positive integer k. Artin’s inequality using
v = ε says

| disc(O)| < 4ε3 + 24 = 4u3/k + 24.

If k ≥ m then |disc(O)| < 4u3/k + 24 ≤ 4u3/m+ 24 ≤ |disc(O)|, so we have a contradiction.
Thus k < m. �

Example 4.7. Let K = Q( 3
√

2), so OK = Z[ 3
√

2] and disc(OK) = disc(T 3 − 2) = −108.
Since

1 =
3
√

2
3 − 1 = (

3
√

2− 1)(
3
√

4 +
3
√

2 + 1),

we have a unit u = 1 + 3
√

2 + 3
√

4 ≈ 3.847. Since 4u3/2 + 24 ≈ 54.185 < 108, u is the
fundamental unit of OK .
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Example 4.8. Let K = Q(α), where α3+2α+1 = 0. The polynomial is irreducible modulo
3, so K/Q is cubic. It has one real root, approximately −.45. Since disc(T 3+2T+1) = −59,
OK = Z[α]. Clearly α is a unit. We view K in R. Since α ≈ −.45, we get a unit greater
than 1 using

u = − 1

α
≈ 2.205.

Since 4u3/2 + 24 ≈ 37.10 < 59, u is the fundamental unit of OK .

Example 4.9. Let K = Q( 3
√

6). This will be an example where the unit u we find will

satisfy 4u3/2 + 24 > | disc(OK)|, so we will have to be more creative to prove u is the
fundamental unit.

First we show OK = Z[ 3
√

6]. Since

disc(Z[
3
√

6]) = disc(T 3 − 6) = −2235 = −972 = [OK : Z[
3
√

6]]2 disc(OK),

the index [OK : Z[ 3
√

6]] is a factor of 2 · 32. At the same time, since T 3 − 6 is Eisenstein
at 2 and 3 the index [OK : Z[ 3

√
6]] is not divisible by 2 or 3. Therefore the index is 1, so

OK = Z[ 3
√

6].
To find units in OK , we seek two different descriptions of a principal ideal in OK : if

(α) = (β) then α = βu where u is a unit. Here is a table of how the first few primes p
decompose in OK , based on how T 3 − 6 mod p decomposes.

p T 3 − 6 mod p (p)

2 T 3 p32
3 T 3 p33
5 (T − 1)(T 2 + T + 1) p5p25
7 (T − 3)(T − 5)(T − 6) p7p

′
7p
′′
7

The only ideal of norm 2 is p2. We will prove p2 is principal by finding an element of
absolute norm 2. For c ∈ Z, NK/Q( 3

√
6 + c) = c3 + 6. Therefore NK/Q( 3

√
6 − 2) = −2, so

the ideal ( 3
√

6− 2) has norm 2 and must be p2. We have the equality of principal ideals

(2) = p32 = (
3
√

6− 2)3 = ((
3
√

6− 2)3),

so the numbers 2 and ( 3
√

6− 2)3 are equal up to a unit multiple in OK . Since ( 3
√

6− 2)3 ≈
−.0061, to get a unit greater than 1 we use the ratio5

u = − 2

( 3
√

6− 2)3
≈ 326.9908.

Let ε > 1 be the fundamental unit of Z[ 3
√

6]. Does u = ε? By the unit theorem u = εk

for some k ≥ 1 and we want to show k = 1. Artin’s inequality with v = ε says that in R,

| disc(OK)| < 4ε3 + 24 =⇒ 972 < 4u3/k + 24.

For large k this inequality must fail, since the right side tends to 4 + 24 = 28 as k → ∞.
In fact 4u3/4 + 24 ≈ 331.5 < 972, so k is either 1, 2, or 3. How do we rule out u = ε2 and
u = ε3?

Here’s a great idea: to prove an algebraic integer is not a square or cube, prove it is not a
square or cube modulo p for some prime ideal p. Looking at the above table of prime ideal
factorizations, we will use the ideals p5 and p7.

5Explicitly, u = 109 + 60 3
√

6 + 33 3
√

36, but this representation will not be needed.
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In OK/p5 ∼= Z/(5) we have 3
√

6 ≡ 1 mod p5, so u ≡ 2/(2− 1)3 ≡ 2 mod p5. The nonzero
squares in Z/(5) are 1 and 4, so u is not a square in OK/p5 and thus is not a square in OK .

In OK/p7 ∼= Z/(7) we have 3
√

6 ≡ 3 mod p7, so u ≡ 2/(2 − 3)3 ≡ −2 ≡ 5 mod p7. The
nonzero cubes in Z/(7) are 1 and 6, so u is not a cube in OK . (Using p′7 or p′′7 would have
led to the same conclusion.)

We have shown k = 1, so u = ε is the fundamental unit of Z[ 3
√

6].

Example 4.10. Let K = Q(α) where α3 − α − 1 = 0. The polynomial T 3 − T − 1 is
irreducible mod 5, so K/Q is cubic. The polynomial has one real root α ≈ 1.324, so r1 = 1.
Since disc(T 3 − T − 1) = −23 is squarefree, OK = Z[α]. Clearly α is a unit in OK . It is
natural to wonder if α is the fundamental unit of OK since it is so close to 1 in the real
embedding. We can’t use Artin’s inequality because | disc(OK)| < 24,6 so for every unit

u > 1 and positive integer m, |disc(OK)| < 4u3/m + 24.
Since we know the unit group of OK (modulo ±1) is infinite cyclic, to show α is the

fundamental unit we show α is the smallest unit greater than 1: no unit u ∈ Z[α]× satisfies
1 < u < α. Let σ : K → C be one of the complex embeddings of K, so NK/Q(u) =

uσ(u)σ(u) = u|σ(u)|2 > 0. Therefore NK/Q(u) = 1. Since u 6∈ Q, the minimal polynomial

of u over Q is T 3 +aT 2 + bT − 1 for some integers a and b. The roots are u, σ(u), and σ(u),
so

a = −(u+ σ(u) + σ(u)), b = uσ(u) + uσ(u) + σ(u)σ(u).

Then
|a| ≤ u+ 2|σ(u)|, |b| ≤ 2u|σ(u)|+ |σ(u)|2.

Since 1 = u|σ(u)|2, the bound 1 ≤ u implies |σ(u)| ≤ 1, so from 1 < u < α we get

|a| < α+ 2 ≈ 3.3, |b| ≤ 2α+ 1 ≈ 3.6.

Thus a and b both lie in {0,±1,±2,±3}. Among the 49 polynomials T 3 + aT 2 + bT − 1
with a and b in this set, every such polynomial that has a unit u > 1 of OK as a root
must have discriminant equal to a nonzero square multiple of disc(OK) = −23 (because
disc(Z[u]) = [OK : Z[u]]2 disc(OK)). There are four such polynomials (see table below),
including T 3 − T − 1 itself, and the real root of each polynomial other than T 3 − T − 1 is
larger than α.

Polynomial Discriminant Real Root

T 3− T − 1 −23 α ≈ 1.324
T 3 − 2T 2 + T − 1 −23 α2 ≈ 1.754
T 3 − 3T 2 + 2T − 1 −23 α3 ≈ 2.324
T 3 − 2T 2 − 3T − 1 −23 α4 ≈ 3.079

Thus α is the fundamental unit of OK .

5. Units in a multiquadratic field

A real quadratic field has unit rank 1. A biquadratic field Q(
√
m,
√
n), where m,n, and

mn are positive integers and not squares, has unit rank 4−1 = 3. There are three quadratic
subfields, Q(

√
m), Q(

√
n), and Q(

√
mn), and each has a fundamental unit. A choice of

one unit from each quadratic subfield need not be a set of 3 fundamental units for the
biquadratic field.

6 This field K is the only cubic field, up to isomorphism, with absolute discriminant less than 24, so OK

is the only cubic order with absolute discriminant less than 24.
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Example 5.1. In the field Q(
√

2,
√

3), a system of fundamental units is 1 +
√

2,
√

2 +
√

3,

and
√
2+
√
6

2 (see Table 1).

Q(
√

2,
√

3)

Q(
√

2) Q(
√

3) Q(
√

6)

Q

Fundamental units for the three quadratic subfields are u1 = 1 +
√

2, u2 = 2 +
√

3, and

u3 = 5 + 2
√

6. In terms of the fundamental units of Q(
√

2,
√

3), u2 =
(√

2+
√
6

2

)2
and u3 =

(
√

2 +
√

3)2. In terms of the fundamental units of the quadratic subfields, the fundamental
units we listed for Q(

√
2,
√

3) are u1,
√
u3,
√
u2.

Example 5.2. In the field Q(
√

3,
√

5), a system of fundamental units is 1+
√
5

2 , 4 +
√

15,

and 3+
√
3+
√
5+
√
15

2 .

Q(
√

3,
√

5)

Q(
√

3) Q(
√

5) Q(
√

15)

Q

Fundamental units of the quadratic subfields are u1 = 2+
√

3, u2 = 1+
√
5

2 , and u3 = 4+
√

15.

In terms of the fundamental units of Q(
√

3,
√

5), u1 = 1
4+
√
15

(
3+
√
3+
√
5+
√
15

2

)2
by PARI. In

terms of the fundamental units of the quadratic subfields, the fundamental units we listed
for Q(

√
3,
√

5) are u2, u3,
√
u1u3.

Kuroda [7] showed that for every real biquadratic field Q(
√
m,
√
n), with fundamental

units u1, u2, u3 for its 3 quadratic subfields, a set of fundamental units for the biquadratic
field is one of the following 7 lists up to relabeling the ui’s:

{u1, u2, u3}, {
√
u1, u2, u3}, {

√
u1u2, u2, u3}, {

√
u1u2u3, u2, u3},

{√u1,
√
u2, u3}, {

√
u1u2,

√
u3, u2}, {

√
u1u2,

√
u2u3,

√
u3u1}.

Examples 5.1 and 5.2 illustrate two of these possibilities and the list shows 〈−1, u1, u2, u3〉
has index 1, 2, 4, or 8 in the unit group of the biquadratic field.

Consider now a general multiquadratic field

K = Q(
√
d1, . . . ,

√
dk),

where the di’s are nonsquare positive integers that are multiplicatively independent modulo
squares (that is, they are independent in Q×/(Q×)2). By Galois theory and induction,
[K : Q] = 2k and Gal(K/Q) ∼= (Z/2Z)k by making sign changes on every

√
di. The unit

rank of K is r1−1 = 2k−1, and this is also the number of quadratic subfields: such subfields
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are of the form Q(
√
dI), where I = {i1, . . . , im} is a nonempty subset of {1, 2, . . . , k} and

dI = di1 · · · dim . Since each Q(
√
dI) has unit rank 1, it is natural to suspect that choosing

one unit (besides ±1) from each quadratic subfield of K should give us a multiplicatively
independent set of units in K.

Theorem 5.3. With notation as above, let uI be a unit in Q(
√
dI) other than ±1. These

units are multiplicatively independent: if
∏
I u

aI
I = 1, where the exponents aI are in Z, then

each aI is 0.

Proof. Our argument is taken from [8, Lemma 2] (which includes some extraneous hypothe-
ses on the di’s). The special feature of a unit in a real quadratic field is that its Q-conjugate
is, up to sign, its inverse: u′ = ±u−1. This fact will interact well with multiplication rela-
tions.

One Q-basis of K is all the square roots
√
dI together with 1 (we could set d∅ = 1 and

1 =
√
d∅). For each nonempty subset J of {1, 2, . . . , k}, there is a σ ∈ Gal(K/Q) such that

σ(
√
dJ) = −√dJ and σ(

√
dI) =

√
dI for all I 6= J . Since σ is the identity on Q(

√
dI) and

is nontrivial on Q(
√
dJ), σ(uI) = uI while σ(uJ) = ±u−1J .

Applying σ to
∏
I u

aI
I = 1 turns it into

∏
I 6=J u

aI
I · (±u−1J )aJ = 1. Dividing one multi-

plicative relation by the other, (±u2J)aJ = 1. Since uJ has infinite order, aJ = 0. �

Corollary 5.4. The units uI generate a subgroup of O×K with finite index.

Proof. By their multiplicative independence, the uI ’s generate a group of rank 2k−1, which
is the rank of O×K . �
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