Übungen zur Vorlesung "Funktionentheorie II" WS16/17 Blatt 4

Ausgabe: 15.11.2016, Abgabe: 22.11.2016

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithgeom/lehre/ws16/ftheorie2/ftheorie1617.htm

Alle Lösungen sind vollständig zu begründen.

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Aufgabe 4.1: Zeigen Sie, dass es auf $\widehat{\mathbb{C}}$ keine holomorphe Differentialform außer Null gibt.

Sie dürfen benutzen, dass jede holomorphe Differentialform auf $\mathbb C$ die Form f(z)dz besitzt, wobei f eine holomorphe Funktion auf $\mathbb C$ ist.

(4 Punkte)

Aufgabe 4.2: Sei $f: X \to Y$ eine Überlagerung Riemannscher Flächen. Weiter sei $\gamma: [0,1] \to Y$ ein Weg.

1. Zeigen Sie, dass dann für jeden Punkt $x \in X$ mit $f(x) = \gamma(0)$ ein Weg $\tilde{\gamma}: [0,1] \to X$ existiert, sodass erstens $\tilde{\gamma}(0) = x$, sowie zweitens

$$f(\tilde{\gamma}(t)) = \gamma(t)$$
 für alle $t \in [0, 1]$

gilt.

- 2. Zeigen Sie, dass für jedes $x \in X$ ein solches $\tilde{\gamma}$ sogar eindeutig bestimmt ist.
- 3. Falls γ ein geschlossener Weg ist, d.h. $\gamma(0) = \gamma(1)$, ist dann $\tilde{\gamma}$ auch immer ein geschlossener Weg? Geben Sie entweder einen Beweis oder ein Gegenbeispiel an.

(6 Punkte)

Aufgabe 4.3: Sei Ω ein Gitter der Form $\Omega = \{\mathbb{Z} \cdot \lambda_1 + \mathbb{Z} \cdot \lambda_2\}$ mit $\lambda_1, \lambda_2 \in \mathbb{C}$.

- 1. Zeigen Sie, dass $\omega := dz$ eine holomorphe Differentialform auf \mathbb{C}/Ω definiert.
- 2. Berechnen Sie

$$\int_{\gamma_i} dz$$

auf \mathbb{C}/Ω , wobei $\gamma_i(t) := t\lambda_i$ (für i = 1, 2 und $0 \le t \le 1$). Folgern Sie, dass dz auf \mathbb{C}/Ω keine Stammfunktion besitzt.

3. Wir verallgemeinern diese Aussage:

$$\left\{ \int_{\gamma} dz \middle| \gamma \text{ geschlossener Weg} \right\} = \Omega,$$

d.h. die Kenntnis der Werte aller Integrale über geschlossene Wege auf \mathbb{C}/Ω erlaubt uns die Rekonstruktion von Ω .

4. Da für eine Differentialfrom ω die Menge

$$P = \left\{ \int_{\gamma} \omega \, \middle| \, \gamma \text{ geschlossener Weg auf } X \right\}$$

offenbar interessant ist, lohnt es sich, mit anderen Räumen zu experimentieren. Berechnen Sie P für $X := \mathbb{C}^{\times}$ und $\omega = \frac{1}{z} dz$.

(6 Punkte)

Aufgabe 4.4: Sei X eine einfach zusammenhängende Riemannsche Fläche und $f:X\to\mathbb{C}^{\times}$ eine holomorphe Funktion.

Zeigen Sie, dass es eine holomorphe Funktion $g: X \to \mathbb{C}$ gibt, die $\exp(g(z)) = f(z)$ erfüllt. Wir können g einen Logarithmus von f nennen.

(3 Punkte)

Bonus-Aufgabe 4.5:

Wir wollen die Aussage aus Aufgabe 1 verstärken. Sei $f: X \to Y$ eine Überlagerung Riemannscher Flächen und $\gamma_1, \gamma_2: [0,1] \to Y$ Wege. Zeigen Sie: Sind γ_1 und γ_2 zueinander homotop, so sind auch die eindeutigen Hochhebungen $\tilde{\gamma}_1$ und $\tilde{\gamma}_2$ zueinander homotop.

(Idee: Falls $H:[0,1]\times[0,1]\to Y$ eine konkrete Homotopie zwischen γ_1 und γ_2 bezeichnet, so müsste man ähnlich wie wir die Wege geliftet haben, auch ein $\tilde{H}:[0,1]\times[0,1]\to X$ konstruieren...)

(6 Punkte)