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Chapter 0

Introduction

The topic of this lecture is transcendence theory. Recall:

Definition 0.1. A complex number α is callecd algebraic if there is a non-zero
polynomial P in Q[T ] such that P (α) = 0. It is called transcendental otherwise.

The algebraic numbers form an algebraically closed field, which we denote
Q. Note that we have fixed an embedding Q ⊂ C. This will remain the case for
the rest of the semester.

The set Q is countable because there are only countably many polynomials
with coefficients in the countable set Q and they have finitely many zeroes each.
On the other hand, C is uncountable. This means that most complex numbers
are transcendental

Question 0.2. Given a complex number α, can we tell whether it is transcen-
dental or not?

The most famous case is the number π. Lindemann (a professor at Freiburg
at the time) solved this in 1882. This finally settled the question of whether the
circle can be squared–no.

Shortly after, in his famous address at the ICM 1900, Hilbert asked in his
7th out of 23 problems whether α, β and γ = αβ can be algebraic numbers
simultaneously. There are some obvious cases: α = 0, α = 1 or β rational. Is
this the complete list? He considered this problem as more difficult to prove than
the Riemann hypothesis. To much surprise Gelfond and Schneider succeeded
in 1934 independently to answer Hilbert’s problem. Theodor Schneider was a
professor at Freiburg as well from 1959 to his retirement in 1976.

Exercise 0.1. Show that the following two statements are equivalent:

(i) α, β, αβ ∈ Q implies α = 0, 1 or β ∈ Q.

(ii) If log(α) and log(γ) for α, γ ∈ Q∗ are Q-linearly dependent, then they are
Q-linearly dependent.
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Note that αβ has to be defined as exp(β(log(α))). The number depends on the
choice of branch of log. The above statements apply to all choices of branch.

A generation later, Baker generalised from 2 to arbitrary many logarithms.

Theorem 0.3 (Baker 1967). Let α1, . . . , αn ∈ Q∗. If log(α1), . . . , log(αn) are
Q-linearly dependent, then they are Q-linearly dependent.

Exercise 0.2. Work out the relation between the rank of the multiplicative
abelian group 〈α1, . . . , αn〉 ⊂ Q∗ and the Q-vector space 〈log(α1), . . . , log(αn)〉.

Similar considerations were also made in different geometric settings. In
1932 Siegel showed that the periods of an elliptic curve over Q cannot both be
algebraic. Shortly after, in 1935, Schneider showed that, actually, they are both
transcendental. In fact, we now know that they are Q-linearly independent,
unless the elliptic curve has complex multiplication, i.e., End(E)Q = Q(τ) for
imaginary quadratic Q(τ)/Q. We are going to come back to the geometry of
this situation later.

The culmination of these developments was the Analytic Subgroup Theorem
proved by Wüstholz in 1989. All the above mentioned results and much more
can be deduced from it. Let us formulate it.

Theorem 0.4 (Wüstholz). Let G be a connected commutative algebraic group
over Q. Let b ⊂ Lie(G) be a subvector space. Assume that the analytic subgroup
B = exp(bC) of Gan contains an algebraic point 0 6= P ∈ G(Q). Then there is
an algebraic subgroup H ⊂ G such that Lie(H) ⊂ b and P ∈ H(Q).

This is not very digestible, in particular for readers not familiar with complex
Lie groups. We will explain this later. Examples of connected commutative
algebraic groups are elliptic curves, the additive and the multiplicative group.

Example 0.5. The multiplicative group Gm is the algebraic variety V (XY −
1) ⊂ A2. It is defined over Z, but we consider it as a Q-variety. Hence

V (XY − 1) = {(x, y) ∈ Q2|xy = 1}.

We can identify it with Q∗ via the projection to the first coordinate. Now note
that Q∗ is an abelian group. The group multiplication is given by the formula

V (X1Y1 − 1)× V (X2Y2 − 1)→ V (XY − 1), (x1, y1, x2, y2) 7→ (x1x2, y1y2),

hence it is morphism of algebraic varieties. The same is true for the inversion
map.

The Lie algebra of this group is simply Q. When replacing Q by C as field
of definition, we get a complex Lie group, namely C∗ with Lie algebra C. The
exponential map of the abstract theory identifies with

exp : C→ C∗.

The theorem says something about exp(α) for α ∈ Q or conversely, about log(β)

for β ∈ Q∗. It is not hard to deduce transcendence of log(β), but we leave this
for later.
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Exercise 0.3. Determine the coordinate ring of Gm and the ring homomor-
phisms induced by the group multiplication map and the inversion.

Plan

(i) As a warm-up, we are going to look into the elementary theory of tran-
scendence and some classical results.

(ii) We then turn to the analytic subgroup theorem in the affine case. The

group G is then equal to Qa × (Q∗)b, so we do not need abstract theory.
We will give the proof following Baker–Wüstholz and deduce the above
mentioned results on π and values of log.

(iii) Depending on the background of participants, we are going to spend time
on the fundamentals of commutative groups in the category of algebraic
varieties and in the category of complex manifolds. We will then be able
to revisit the statement of the Analytic Subgroup Theorem. Particular
attention will be paid to the case of elliptic curves.

(iv) Finally, we aim for the proof of the full theorem following Wüstholz’s
original article.

Literature

(i) Alan Baker, Gisbert Wüstholz: Logarithmic Forms and Diophantine Ge-
ometry, Cambridge University Press, 2007.

(ii) Alan Baker: Transcendental number theory, Cambridge University Press,
1975.

(iii) Michel Waldschmidt, Diophantine Approximation on linear algebraic groups,
Springer 2000.

(iv) Gisbert Wüstholz: Algebraische Punkte auf analytischen Untergruppen
algebraischer Gruppen. Ann. of Math. (2) 129 (1989), no. 3, 501–517.

(v) Annette Huber, Gisbert Wüstholz, Transcendence and linear relations of
1-periods, Preprint on arXiv, new version in preparation.
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Chapter 1

Elementary theory of
transcendence

Theorem 1.1 (Liouville). If α is an algebraic number of degree n > 1, then,
for all rationals p/q (here p, q ∈ Z, q > 0) we have∣∣∣∣α− p

q

∣∣∣∣ > c

qn

for some constant c > 0 (depending only on α).

The degree of an algebraic number is the degree of its minimal polynomial.

Example 1.2. The number

ξ =

∞∑
j=1

10−j! = 0, 110001000000000000000001 . . .

is transcendental.

Proof. The number is not rational because its decimal expansion is neither finite
nor periodic. Suppose it is algebraic of degree n > 1. Let c be the constant
from the theorem.

Let pk = 10k!
∑k
j=1 10−j!, qk = 10k!. Then the pk/qk are the partial sums of

ξ, and we have∣∣∣∣ξ − pk
qk

∣∣∣∣ =

∞∑
j=k+1

10−j! < 10−(k+1)!
∞∑
j=0

10−j =
10

9
q
−(k+1)
k

(check by induction that (j)! > (k + 1)! + j − k − 1 for j ≥ k + 1). Hence

c

qnk
<

10

9
q
−(k+1)
k ⇒ 9c

10
< qn−k−1

k

for all k. This is a contradiction because the sequence on the right tends to
0.
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Proof of Liouville’s Theorem. If α /∈ R, then |α − p/q| ≥ |Im(α)| and the the-
orem holds with c = |Im(α)|. Hence from now on α ∈ R. It suffices to find a
bound for those p, q for which |α − p/q| < 1 (in the other cases the bound 1 is
enough).

Let P be the minimal polynomial of α over Q. We choose it integrally such
that the leading coefficient is positive and the gcd of the coefficients equals 1.
By the mean value theorem, we have

P (α)− P (p/q) = (α− p/q)P ′(ξ)

for some ξ between α and p/q. As p/q was assumed close to α, we have ξ ∈
(α− 1, α+ 1). The value |P ′(ξ)| is bounded on this interval, say by 1/c. Since
P (α) = 0, we get ∣∣∣∣α− p

q

∣∣∣∣ > c

∣∣∣∣P (pq
)∣∣∣∣ .

Since P is irreducible of degree n > 1, the rational number p/q cannot be a
zero. Moreover, |qnP (p/q)| is an integer and hence at least of absolute value 1.
This gives

|P (p/q)| > 1/qn

and the estimate follows.

Exercise 1.1. Work out c for
√

2 and 3
√

2.

Exercise 1.2. (Possible talk) The theory of continued fractions gives for every
real number a sequence of fractions that converges very quickly. Explain the
algorithm and compare to Liouville’s theorem. The topic is typically covered in
books on elementary number theory.

Theorem 1.3. The number e is transcendental.

We follow Baker’s book and start with a bit of preparation.

Lemma 1.4. Let f ∈ R[x] be a polynomial of degree m, t ∈ C. Then

I(t) =

∫ t

0

et−uf(u)du

satisfies

I(t) = et
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(t).

Proof. Induction on m. If m = 0, then f is constant. We have

I(t) =

∫ t

0

et−ufdu = −fet−u|t0 = −e0f + etf

as claimed.
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Let m ≥ 1. By integration by parts we have

I(t) =

∫ t

0

et−uf(u)du

= −et−uf(u)|t0 −
∫ t

0

−et−uf ′(u)du

= etf(0)− f(t) +

∫ t

0

et−uf ′(u)du.

The polynomial f ′ has degree m − 1, so we can use the inductive hypothesis
and find the formula.

Lemma 1.5. Let f ∈ R[X] and f the polynomial obtained by replacing each
coefficient by its absolute value. Then

|I(t)| ≤ |t|e|t|f(|t|).

Proof.

|I(t)| ≤
∫ t

0

|et−uf(u)|du.

We then use the triangle inequality and handle each summand seperately. In
this case we use the estimate∫ t

0

|et−uun|du ≤ |t|e|t||t|n

of an integral versus the length of the path and an upper bound for the integrand.

Proof of transcendence. Suppose that e is algebraic, so that

q0 + q1e + . . . qnen = 0

for n > 0, q0 6= 0, q0, . . . , qn ∈ Z. We shall compare estimates for

J = q0I(0) + q1I(1) + · · ·+ qnI(n)

where I(t) is as in the lemma with

f(x) = xp−1(x− 1)p . . . (x− n)p

where p is a large prime.
By the lemma, we have

J =

n∑
k=0

qk

ek
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(k)


=

m∑
j=0

n∑
k=0

qk

(
ekf (j)(0)− f (j)(k)

)
.
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The terms with f (j)(0) do not contribute by the defining equation for the qi.
Hence we are left with

J = −
m∑
j=0

n∑
k=0

qkf
(j)(k)

where m = (n+ 1)p− 1. We claim that the integer J is divisble by (p− 1)!, but
not by p!. We investigate the summands one by one.

For j < p, k > 0 we have f (j)(k) = 0. The same holds for j < p − 1 and
k = 0. For j ≥ p, the number is divisble by p!. The only case left is j = p− 1,
k = 0. We have

f (p−1)(0) = (p− 1)!(−1)np(n!)p.

This is divisble by (p − 1)!. If we choose p > n, then this summand is not
divisble by p!, hence J is non-zero and thus

|J | ≥ (p− 1)!.

On the other hand we have the estimate from the second lemma

|J | ≤ |q1|ef(1) + |q2|2e2f(2) + . . . |qn|nenf(n) .

We also have f(k) ≤ (2n)m (expand the product for f(x) and take every sum-
mand with a positive sign. Each is an m-fold product of numbers at most n.
There are fewer than 2m summands.) Together this gives

(p− 1)! ≤ (2n)m < Cp

for some C independent of p. This is a contradiction for p large enough.

Theorem 1.6. The number π is transcendental.

Proof. Let θ = iπ. Suppose it is algebraic of degree d. Let l be the leading coef-
ficient of the minimal polynomial of θ (chosen with coprime integral coefficients,
l > 0). This makes lθ an algebraic integer.

Let θ1, . . . , θd be the conjugates of θ. Then

(eθ1 + 1) . . . (eθd + 1) = 0

because θ is among the conjugates and eθ = −1 by Euler’s identity. We expand
the left-hand side and obtain 2d terms of the form eΘ where

Θ = ε1θ1 + · · ·+ εdθd

with εi = 0, 1. We assume that precisely n of these numbers Θ are non-zero
and denote them by α1, . . . , αn. Note that the lαk are also algebraic integers.
We then have

q + eα1 + · · ·+ eαn = 0

where q = 2d − n. We compare estimates for

J = I(α1) + · · ·+ I(αn)
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with I(t) as in Lemma 1.4 with

f(x) = lnpxp−1(x− α1)p . . . (x− αn)p = xp−1(lx− lα1)p . . . (lx− lαn)p

for a large prime p. As in the proof of transcendence of e, we obtain

J =

n∑
k=1

eαk

m∑
j=0

f (j)(0)−
n∑
k=1

m∑
j=0

f (j)(αk)

= −q
m∑
j=0

f (j)(0)−
m∑
j=0

n∑
k=1

f (j)(αk)

with m = (n+ 1)p− 1.
For j < p, the derivatives f (j)(αk) vanish. For j ≥ p, we claim that the sum

over k gives an integer divisible by p!. The expression over k is symmetric in
the αk, which are in turn symmetric in the θi. Hence the expression is invariant
under the Galois group of Q/Q and gives a rational number. Actually, it is an
algebraic integer divisible by p!. To see this note that the derivatives of f(x) are
computed using the product rule. When evaluating at αk only the summands
where (x− αk)p was derived at least p times contribute. This gives a factor of
p! in front of every summand. The summand has fewer that np factors (there
are (n + 1)p − 1 factors in f , but the number went down by at least p), hence
the lnp in front makes every factor integral.

For j < p − 1, the derivatives f (j)(0) vanish. For j ≥ p the expression is
again symmetric in the αk, hence in Q. Again it is even an integer divisble by
p!.

This leaves the derivative f (p−1)(0). We have

f (p−1)(0) = (p− 1)!(−l)np(α1 . . . αn)p.

This is an integer divisble by (p−1)! but not by p! for p sufficiently large. Hence
we get the estimate

(p− 1)! ≤ |J |.
From the second lemma we get as in the proof of transcendence of e

|J | ≤
n∑
k=1

|αk|e|αk|f(|αk|) ≤ Cp

for some C independent of p.
For large p this is a contradiction.

Both are special cases of Lindemann’s theorem.

Theorem 1.7 (Lindemann). Whenever α0, . . . , αn are distinct algebraic num-

bers and β0, . . . , βn ∈ Q∗ we have

β0eα0 + · · ·+ βneαn 6= 0.

For the proof we refer to [Baker, Theorem 1.4].

Exercise 1.3. Deduce the transcendence of e, π and log(2) from Lindemann’s
theorem.
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Chapter 2

Commutative algebraic
groups I

We work over an algebraically closed field k of characteristic 0. (Actually any
field or even Z would be ok, but let’s fix the setting.)

Definition 2.1. An algebraic group over k is a connected k-variety G together
with morphisms of varieties

µ : G×G→ G

and
ι : G→ G

making the underlying set of (G,µ) into a group with ι(g) = g−1. It is called
linear if G is affine. It is called commutative if (G,µ) is commutative.

We often write G(k) for the underlying group.

Example 2.2. The general linear group Gln has as elements the invertible ma-
trices in Mn(k). It is an algebraic variety because it is defined by the polynomial
inequality

det(A) 6= 0.

It is affine because we can identify it with the subset of An2+1 defined by the
equation

det(A)T = 1

where T is the extra coordinate. The group multiplication is given by polyno-
mials in the coefficients, so it is a morphism of algebraic varieties. The map
A 7→ A−1 is given explicitly by Cramer’s rule, so again by polynomials.

For n = 1 we recover the multiplicative group Gm from the introduction.
For n ≥ 2, the group is not commutative.

Example 2.3. The additive group Ga is the algebraic variety A1 with the group
law +. It is a commutative linear algebraic group.

11
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Exercise 2.1. (i) Check that the special linear group Sln, the group of ma-
trices with determinant 1 is a linear algebraic group.

(ii) (harder) Check the same for the projective linear group PGln with under-
lying group Gln(k)/k∗ is a linear algebraic group.

Algebraic groups form a category.

Definition 2.4. Let G,G′ be algebraic groups over k. A morphism f : G→ G′

of algebraic groups is a morphism of algebraic varieties which is compatible with
µ. It is an isomorphism if it has an inverse in the category of algebraic groups.

Exercise 2.2. Consider the group U(n) of upper triangular matrices with di-
agonal entries equal to 1. Show that:

(i) it is an algebraic group isomorphic to Am as a variety. (Determine m)

(ii) U(2) is isomorphic to Ga as an algebraic group.

(iii) For n ≥ 3, the algebraic groups U(n) and Gma are not isomorphic.

Lemma 2.5. Let G be a commutative algebraic group, X a variety. Then
Mor(X,G) has a natural structure of commutative group. If X is an algebraic
group, then the same is true for the subset of morphisms of algebraic groups.

Proof. Given f, g : X → G, we can define

f + g : X
∆−→ X ×X (f,g)−−−→ G×G µ−→ G

where ∆ is the diagonal morphism. This composition is again a morphism of
algebraic varities. The group axioms follow from the properties of (G,µ).

If f, g : G′ → G are compatible with the group structure, then the same is
true for f + g.

Remark 2.6. Identities for maps of varieties hold true, if they are satisfied
on the underlying sets. Hence we are back in ordinary group theory. The
non-formal part is the construction of f + g as a morphism of varieties.

We write Hom(G′, G) for the group of morphisms of algebraic groups.
In this chapter we restrict attention to linear commutative algebraic groups.

Definition 2.7. (i) An algebraic group V ∼= Gna is called vector group of
dimension n.

(ii) An algebraic group T ∼= Grm is called torus of dimension r.

Theorem 2.8. Under our assumptions on k, every linear commutative algebraic
group is isomorphic to a product V × T for a vector group V and a torus T .

Proof. Barsotti 1955, Chevalley 1960, Demazure-Gabriel Ch. IV §3 Théoréme
1.1, Serre 1988 Ch. III Proposition 12.
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For the next chapters, we are going to restrict to G of the form V ×T . By the
theorem this is not really a restriction. The next step is to analyse morphisms
for such G.

Proposition 2.9. We have

Hom(Gm,Ga) = Hom(Ga,Gm) = 0

and
Hom(Gm,Gm) = Z, Hom(Ga,Ga) = k.

Proof. A morphism f : Gm → Ga is the same as an algebra homomorphism

φ : k[X]→ k[Y, Y −1].

It is uniquely determined by the Laurent-polynomial φ(X) = F ∈ k[Y, Y −1].
The commutative diagram

Gm ×Gm //

��

Gm

��
Ga ×Ga // Ga

translates into

k[Y1, Y
−1
1 , Y2, Y

−1
2 ] k[Y, Y −1]
Y 7→Y1Y2oo

k[X1, X2]

Xi 7→F (Yi)

OO

k[X].
X 7→X1+X2

oo

X 7→F (Y )

OO

so the condition is
F (Y1Y2) = F (Y1) + F (Y2).

If F has degree n, then the left-hand side has total degree 2n and the right-hand
side has degree n. This is only possible for n = 0, so F = c is constant. Then
the condition turns into c = 2c⇒ c = 0.

For Hom(Ga,Gm) a morphism f corresponds to an algebra homomorphism

φ : k[Y, Y −1]→ k[X].

The image of Y is a unit of k[X], so it is a constant c ∈ k∗. The compatibility
with the group structure gives the condition c = c2, so c = 1. This is the
constant map to the neutral element of Gm.

We turn to Hom(Gm,Gm). Elements correspond to ring homomorphisms

φ : k[Y, Y −1]→ k[Y, Y −1],

which are uniquely determined by the image F of Y in k[Y, Y −1]∗. We first
determine these units. We have F = Y nF ′ for n ∈ Z, F ′ ∈ k[Y ]. We choose n,
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so that F ′ is not divisible by Y . We write it cG such that G has constant term
1. Then F−1 = c−1Y −nG−1, so we concentrate on G. We have

G = c0Y
m + c1Y

m−1 + · · ·+ 1, G−1 =

b∑
i=−a

diY
i

and hence

1 = GG−1 =
∑
l

∑
i+j=l

cjdiY
l.

We compare coefficients. The sum on the right starts with l = −a and coefficient
1d−a. This vanishes for a < 0, so we have a ≥ 0. This makes G a unit in k[Y ],
so it is constant. We have shown

k[Y, Y ]∗ = k∗Y Z.

It remains to check compatibility with multiplication. The condition is

F (Y1Y2) = F (Y1)F (Y2)⇒ cY n1 Y
n
2 = c2Y n1 Y

n
2 .

This implies c = 1. All elements of Hom(Gm,Gm) are of the form z 7→ zn for
some n ∈ Z.

Now Hom(Ga,Ga). The morphism is determined by F ∈ k[X]. The condi-
tion is

F (X1 +X2) = F (X1) + F (X2).

Let F = cnX
n + . . . . In total degree n, the equality is

cnX
n
1 + cnnX

n−1
1 X2 + · · ·+ cnX

n
2 = cnX

n
1 + cnX

n
2 .

This is only possible for n ≤ 1. (We are using characteristic 0 here!). So
F = aX + b and the equation is

a(X1 +X2) + b = aX1 + b+ aX2 + b,

so simply b = 0. The map is identified with the image a of 1 ∈ Ga.

Exercise 2.3. Check that the identifications of Hom(Gm,Gm) and Hom(Ga,Ga)
are compatible with the group laws on both sides.

Exercise 2.4. Check that there is an equivalence of categories between vector
groups over k and finite dimensional k-vector spaces.

Definition 2.10. Let G ∼= V × T for a vector group V and torus T . We call

X(G) = Hom(G,Gm), X∗(G) = Hom(Gm, G)

the character group and cocharacter group of G.
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Corollary 2.11. We have

X(G) ∼= Zr, X∗(G) ∼= Zr.

for some r ≥ 0.

Proof. We have G ∼= V × T ∼= Gsa ×Grm. Then

X(G) ∼= X(Gsa ×Grm) ∼= X(Ga)s ×X(Gm)r = Zr

by the proposition. The same argument applies to X∗(G).

Lemma 2.12. Let T be a torus with character group X(T ). Then its coordinate
ring is the group ring

k[T ] = k[X(T )] =
⊕

χ∈X(T )

kχ .

Proof. Every character is a map T → Gm, so it defines a function χ : T → k.
This remark defines a map from right to left. It is natural in T . Hence it suffices
to prove the claim for T = Grm. The map is also compatible with product of
tori:

k[T × T ′] = k[T ]⊗k k[T ′]← k[X(T )]⊗k k[X(T ′)] = k[X(T )×X(T ′)].

This reduces the claim to T = Gm. In this case

k[Gm] = k[X,X−1] ∼= k[Z]

where n ∈ Z is identified with Xn.

Proposition 2.13. Let T be a torus and H ⊂ T an algebraic subgroup. Then H
is a torus itself and identifies with the intersection of the kernels of all χ ∈ X(T )
vanishing on H. Every character of H lifts to a character of G.

Proof. We have a commutative diagram

k[T ] // // k[H]

k[X(T )]

∼=

OO

// k[X(H)]

OO

This makes the map k[X(H)] → k[H] surjective. An element in the kernel
is a k-linear combination of characters that vanishes when viewed as a map
H → k. However, it is a standard fact from algebra that characters are linearly
independent in Homk(H, k), so the kernel is trivial.

This makesX(T )→ X(H) surjective, soX(H) is a finitely generated abelian
group. It is torsion free because H is connected. Hence k[X(H)] ∼= k[Grm] and
H is a torus.
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Theorem 2.14. Let G ∼= V ×T for a vector group V and a torus T . Let G′ ⊂ G
be a subgroup. Then G′ is of the form V ′ × T ′ for a subvector group V ′ ⊂ V
and a subtorus T ′ of T .

Proof. Let V ′ be the kernel of the projection G′ → G → T . It is an algebraic
subgroup of V . Let T ′ be the kernel of the projection G′ → G → V . It is an
algebraic subgroup of T . Elements in the intersection are in the kernel of both
projections, hence the intersection is trivial. We have found

V ′ × T ′ ⊂ G′ ⊂ V × T.

We claim that V ′ × T ′ = G′.
View G as subgroup of some Gln via the embedding Ga ⊂ Gl2. The elements

g ∈ G are in Jordan normal form. By the Jordan decomposition, we have

g = gugs

where gu is unipotent (En + N with N nilpotent) and gs semi-simple (diago-
nalisable). The elements gu and gs are uniquely determined by these properties
and the fact that they commute. (Of course we can read off gu and gs directly
from the matrix of g.) Moreover—this is the crucial information for us—gu and
gs are in G′. Obviously gu ∈ V ′ and gs ∈ T ′, so we have written any element
of G′ as an element of V ′ × T ′.

Now consider V ′ ⊂ V ∼= Gsa. With every element v it also contains the
infinite set {v, 2v, 3v, . . . } (characteristic 0!). This set is Zariski-dense in Gav,
hence V ′ contains Gav. This implies that V ′ ⊂ V is a subvector space, itself a
vector group.

Finally, T ′ ⊂ T was considered already.

Exercise 2.5. (talk) report on the proof of the Jordan decomposition in the
form claimed in the proof. References: Springer, Linear alg. groups or Borel,
same title.

We add a general property that we have used already.

Lemma 2.15. Let G be an algebraic group and H ⊂ G an algebraic sub-
group (i.e., it is an algebraic group and the inclusion is a morphism of algebraic
groups). Then H is a closed subvariety of G.

Proof. Consider the closure H of H. The morphisms µ : H × H → H and
ι : H → H extend to µ : H × H → H and ι : H → H. They satisfy the
identities of a group because these identities are satisfied on the dense subset
H. This makes H an algebraic group. We replace G by H for the rest or the
argument, i.e., H is dense. We claim H = G.

The boundary D = G r H has smaller dimension than dimH. Its closure
D keeps this dimension. Hence H contains an open subset U ⊂ G. We have

H =
⋃
h∈H

Uh,
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hence H ⊂ G is open. Let S ⊂ G be a set of representatives for the cosets of H
in G. Then

G =
⋃
s∈S

Hs.

Each coset is open. It is also the complement of the union of all the other cosets,
hence closed. This makes it an open and closed subset of G. It particular, H
itself is closed in G. This means H = G, as claimed.
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Chapter 3

Tangent spaces and the
exponential map

Our aim is to define the exponential map from the Lie algebra of G to G.

Definition 3.1. Let G be an algebraic group. The Lie algebra of G is the
tangent space of G in e, or, equivalently, the k-vector space of G-left invariant
vector fields. We denote it Lie(G) or g.

The vector space g has an additional structure, the Lie bracket. We do not
need it and will not discuss it. (It vanishes in the commutative case we are in.)

In order to make sense of the above definition, we need to define tangent
spaces. We first discuss them informally. Let V be an algebraic variety, P ∈ V a
point. The tangent space TPV of V in P is the space of all tangent directions in
P . They form a vector space. It dual is the cotangent space T ∗PV . For varying
P we get the tangent bundle and the cotangent bundle

TV =
∐
P∈V

TPV, T ∗V =
∐
P∈V

T ∗PV.

They can be given structures of algebraic varieties, but again, we do not need
this structure and do not discuss it. Sections of TV , i.e., maps

X : V → TV X(P ) ∈ TPV

are called vector fields. Sections of T ∗V are called differential forms. Given a
morphism f : V →W of algebraic varieties, we get induced linear maps

dfP : TPV → Tf(P )W, f∗ : T ∗f(P )W → T ∗PV.

Vector fields are covariant, while differential forms are contravariant.

Example 3.2. Consider V = V (XY − 1) ⊂ A2. For every point in A2, we
have a 2-dimensional space of tangent directions. Let P = (x0, y0) ∈ V . We

19
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identify V with the graph of X 7→ 1/X. The tangent direction in P is given by
the derivative −1/X2, so the tangent space TPV ⊂ TPA2 = k2 is spanned by
(1,−1/x2

0). It is the line with the equation

Y = − 1

x2
0

X ⇔ 1

x0

2

X + Y = 0.

This can be rewritten in the form

y0X + x0Y = 0.

More generally: if V = V (F ), then the tangent line in P = (x0, y0) has the
equation

∂F

∂X
(P )X +

∂F

∂Y
(P )Y = 0.

In other word, these are the vectors dual to the differential

dF (P ) =
∂F

∂X
(P )dX +

∂F

∂Y
(P )dY = 0.

Exercise 3.1. Use the formulas of the example to give TV the structure of an
algebraic variety in the case V = V (F ) ⊂ A2.

We want to write this in a way that is independent of an embedding. So
what is a tangent vector? It is direction on V . We identify them with directional
derivatives. Given a function near P (an element in the local ring OP ), we may
take its derivative in some direction. We turn this on its head.

Definition 3.3. Let V be an algebraic variety, P ∈ V . A derivation is a k-linear
map

D : OP → k

satisfying the Leibniz rule

D(fg) = f(P )D(g) + g(P )D(f).

Let TPV be the space of all derivations in P .

Example 3.4. Let V = An, P = (x1, . . . , xn). Then

∂i : f 7→ ∂f

∂Xi
(P )

(deriving polynomials and their fractions formally) is a derivation.

Lemma 3.5. The set TPV is a vector space. It is dual to mP /m
2
P .

Proof. Obviously sums and multiples of derivations are derivations. For every
f , we have

D(1f) = 1D(f) + f(P )D(1)⇒ D(1) = 0.
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By k-linearity this implies D(a) = 0 for all constant functions.
Every f ∈ OP can be written as f = f(P ) + g with g ∈ mP . We have

D(f) = 0 +D(g),

hence derivations are uniquely determined by their values on mP .
Let f, g ∈ mP . Then

D(fg) = f(P )D(g) + g(P )D(f) = 0 + 0 = 0.

In total, we have seen that a derivation induces a k-linear map mP /m
2
P → k

and is uniquely determined by it.
We claim that the converse also holds. Let φ : mP /m

2
P → k be k-linear. We

put D(f) = φ(f − f(P )) and need to check that it is a derivation. Clearly it is
k-linear. We have

D(fg)−f(P )D(g)−g(P )D(f) = φ(fg−f(P )g(P ))−φ(f(P )(g−g(P )))−φ(g(P )(f−f(P )))

= φ(fg − f(P )g(P )− f(P )g + f(P )g(P )− g(P )f + g(P )f(P ))

= φ((f − f(P ))(g − g(P ))) = 0

because φ vanishes on m2
P .

Example 3.6. For U ⊂ An open, the tangent space TPU is generated by ∂
∂Xi

for i = 1, . . . , n where X1, . . . , Xn are the coordinates on An. This applies in
particular for G = V × T ⊂ As+r for V a vector group of dimension s and T a
torus of dimension r.

Exercise 3.2. Use the description of Gm = V (XY − 1) ⊂ A2. Compare
the definition via derivations with the geometric interpretation as tangent lines.
Make the comparison of the tangent spaces of V (XY − 1) and the open subset
of A1 explicit.

Exercise 3.3. Show that TPV is always finite dimensional of dimension at least
dimV .

Exercise 3.4. Let t ∈ k be fixed. Compute the tangent space of 0 on the curve
with equation Y 2 = X(X − t)(X − 1).

We now have made sense of the definition of the Lie algebra of G as the
tangent space in e. It is anti-climatic for our G = V ×T : just kn for n = dimG.
Nevertheless, the definition tell us what the induced map is for morphisms of
varieties.

Definition 3.7. Let f : V →W be a morphism of varieties, P ∈ V . We define

dfP : TPV → Tf(P )W

by mapping a derivation D : OP → k to the composition

f∗D : Of(P )
g 7→g◦f−−−−→ OP

D−→ k.
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We are interested in this functoriality for the left multiplication by an ele-
ment g ∈ G on an algebraic group:

τg : G→ G, x 7→ µ(g, x).

Note that it is a morphism of algebraic varieties.

Definition 3.8. Let G be an algebraic group. A vector field φ : G → TG is
called left-invariant if

(dτg)xφx = φgx

for all x ∈ G and g ∈ G.

Example 3.9. Let G = Ga with coordinate X. Then the vector field ∂ = ∂
∂X

is left-invariant. Indeed, for every f ∈ Og+x ⊂ k(X) we have by the chain rule

((dτg)x∂)f =
∂(f ◦ τg)
∂X

(x) =
∂f

∂X
(x+ g)

∂τg
∂X

(x) =
∂f

∂X
(x+ g) = ∂f

because τg is the function X 7→ g +X with derivative 1.

Lemma 3.10. Let G be an algebraic group. Then the space of left-invariant
vector fields is naturally isomorphic to the tangent space in e. The isomorphism
is induced by mapping φ : G→ TG to φe.

Proof. For all g ∈ G, we have g = τge and hence by the definition of a left-
invariant vector field

φg = (dτg)eφe.

The vector field is uniquely determined by φe. Conversely every choice of φe
extends to a vector field.

Example 3.11. Consider G = Gm. By restriction from A1, we have the vector
field ∂. It is no longer invariant: For every f ∈ Ogx we have

((dτg)x∂)f =
∂(f ◦ τg)
∂X

(x) =
∂f

∂X
(gx)

∂τg
∂X

(x) = g
∂f

∂X
(gx) = g∂f

because τg is the function X 7→ gX with derivative g. In fact, the invariant
vector field is X∂. By this we mean x 7→ x∂ ∈ TxGm. We check:

(dτg)xx∂ = x(dτg)x∂ = xg∂.

Corollary 3.12. Let G = Gsa × Grm with coordinates X1, . . . , Xs, Y1, . . . , Yr.
Then (

∂

∂X1
, . . . ,

∂

∂Xs
, Y1

∂

∂Y1
, . . . , Yr

∂

∂Yr

)
is a basis for the space of invariant vector fields on G.

Proof. Evaluation at the neutral element gives the standard basis of ks+r.

Exercise 3.5. Show that there is a natural isomorphism between T ∗eG = me/m
2
e

and the space Ω(G)G of left-invariant differential forms. What is the invariant
form on Ga and Gm?
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The exponential map

So far, we have been working with algebraic varieties and algebraic groups.
Everything is compatible with base change, e.g., from the ground field Q to C.

Over the complex numbers, an algebraic group G also gives rise to a complex
manifold Gan. It is a complex Lie group, i.e., the group law and inversion are
holomorphic (=complex differentiable).

Example 3.13. If G = Gsa×Grm, then Gan = Cs× (C∗)r viewed as a subspace
of Cs+r with the metric topology.

The exponential function is a concept from differential geometry. Given a
Riemann manifold M and point P ∈M , there is map

exp : U →M

defined on an open neighbourhood U of 0 ∈ TPM mapping an interval contain-
ing 0 to a geodesic through P . In the case of a Lie group, this map is even
globally defined. We are only interested in the cases M = C and M = C∗ and
their products.

Definition 3.14. Let Gan be a commutative complex Lie group. The exponen-
tial map is the unique holomorphic group homomorphism

expG : Lie(G)→ Gan

such that
(d expG)0 : Lie(G)→ TeG

an

is the identity.

Lemma 3.15. The map expG exists and is uniquely determined by these as-
sumptions for G = V × T where V is a vector group and T a torus. It is given
by the identity on V and coordinatewise by the complex exponential function on
T .

Proof. Let v ∈ Lie(G). We have to show that there is a unique holomorphic
group homomorphism

C→ Gan

whose differential maps ∂/∂t to v. The statement is invariant under isomor-
phisms of Lie groups and compatible with products. Hence it suffices to consider
the cases G = Ga and G = Gm separately.

We start with Gm. We want a holomorphic map

E : C→ C∗,

so it is given by a converging power series E(z) =
∑∞
i=0 aiz

i. We have a0 =
E(0) = 1 because it is a group homomorphism and a1 = 1 because E′(0) = 1.
The property of being a group homomorphism translates into the identity

E(z1)E(z2) = E(z1 + z2)⇔
∑
i,j

aiajz
i
1z
j
2 =

∑
n

an(z1 + z2)n.
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Comparison of coefficients gives the system of equations

aiaj =

(
i+ j

i

)
ai+j ⇒ ai = (i+ 1)ai+1 ⇒ ai =

1

i!
.

Hence E is the ordinary exponential function.
In the case Ga, the same argument gives E(z) = z.

Exercise 3.6. Let Gan = Cs × (C∗)r. Show that Lie(Gan) is the universal
covering space of Gan and deduce π1(Gan) ∼= Zr. If you know about homology:

Compute Hsing
1 (Gan,Z).

The analytic subgroup theorem in our case

We are now ready to formulate:

Theorem 3.16 (Wüstholz). Let G = V ×T be the product of a vector group and
a torus over Q. Let b ⊂ Lie(G) be a subvector space. Assume that the analytic
subgroup B = exp(bC) of Gan contains an algebraic point 0 6= P ∈ G(Q). Then
there is an algebraic subgroup 0 6= H ⊂ G such that Lie(H) ⊂ b and P ∈ H(Q).

Corollary 3.17. The number π is transcendental.

Proof. Assume 2πi is algebraic. We consider the algebraic group G = Ga×Gm.

Its Lie algebra is Q2
. By assumption v = (1, 2πi) is an element. Let b = Qv.

Its image B ⊂ C× C∗ contains

P = expG(v) = (1, exp(2πi)) = (1, 1) ∈ G(Q).

By the analytic subgoup theorem there exists an algebraic subgroup H ⊂ G
such that Lie(H) ⊂ b and P ∈ H(Q). By the structure theory for groups of the
form V ×G, the subgroup H has to be in the list

{(0, 1)},Ga × {1}, {0} ×Gm,Ga ×Gm.

The only ones containing P are Ga × {1} and Ga × Gm. In the first case,
the Lie algebra is Q × {0} and does not contain v. In the second case Lie(G)
has dimension 2, so it cannot be contained in the 1-dimensional b. This is a
contradiction.

Exercise 3.7. Let α ∈ Q∗, not a root of unity. Let β, γ be different choices of
log(α). Show that they are Q-linearly independent.

Corollary 3.18 (Extended Baker Theorem). Let α1, . . . , αn ∈ Q∗ be multi-
plicatively independent. Then the system

(1, 2πi, log(α1), . . . , log(αn))

is Q-linearly independent.
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Proof. Suppose they are linearly dependent. This means that there are a, b, c1, . . . , cn ∈
Q (not all of them 0) such that

a+ b2πi+ c1 log(α1) + · · ·+ cn log(αn) = 0.

We consider G = Ga ×Gn+1
m . Its Lie algebra is Qn+2

. Let

b = (a, b, c1, . . . , cn)⊥ ⊂ Lie(G)

(orthogonal complement with respect to the standard “scalar product”). The
vector v = (1, 2πi, log(α1), . . . , log(αn)) is in bC. Its image

P = expG(v) = (1, 1, α1, . . . , αn)

is in G(Q). We are in the situation of the analytic subgroup theorem. Hence
there is an algebraic subgroup H ⊂ G with P ∈ G(Q) and Lie(H) ⊂ b.

By the structure theory for linear commutative algebraic groups, H is of the
form V × T for a vector group V ⊂ Ga and a torus T ⊂ Gn+1

m . From the shape
of P , we see that V = Ga. As b ( Lie(G), the torus T is a proper subtorus of
Gn+1
m . Hence there is a non-trivial character χ : Gn+1

m → Gm which vanishes on
T . It is of the shape (z0, . . . , zn) 7→ zm0

0 . . . zmn
n . This gives

χ(1, α1, . . . , αn) = αm1
1 . . . αmn

n = 1.

By assumption the αi are multiplicatively independent, hence m1 = · · · = mn =
0. This holds for all non-trivial characters and T is the intersection of the
characters vanishing on it. Hence {1} ×Gnm ⊂ T . Together

V × {1} ×Gnm ⊂ H.

We have even equality, because H 6= G. This means

Lie(H) = Q× {0} ×Qn ⊂ b.

By definition of b this implies a = c1 = · · · = cn = 0. Our linear relation reduces
to b2πi = 0, so also b = 0. We have reached a contradiction.
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Chapter 4

Reduction to the
semi-stable case

We introduce an ad-hoc terminology:

Definition 4.1. Let π : G → G′ be a surjective morphism of commutative
algebraic groups. We say that it is a proper quotient if the kernel is connected
and different from 0 and G.

Proposition 4.2. Let 0 6= H ( G be an inclusion of commutative algebraic
groups. Then G/H is algebraic and π : G→ G/H a proper quotient.

Proof. We only treat the case G = V × T . We put the general case on a todo
list for later/refer to the literature.

In the linear case, we have H = V ′ ×H ′, so we do the vector case and the
torus case separately. For a subvectorspace V ′ ⊂ V , the quotient vector space
V/V ′ is indentified with a power of Ga by choice of a basis. The k-linear map
V → V/V ′ is a morphism of algebraic groups.

For a subtorus T ′ ⊂ T , we get a surjective map X(T ) → X(T ′). Its kernel
X ′′ is a free abelian group of finite rank. Hence the group ring k[X ′′] defines a
torus T ′′ with character group X ′′. This is T/T ′.

Definition 4.3. Let G be commutative algebraic group over Q, V ⊂ Lie(G) a
sub vector space. We put

τ(G,V ) =
dimV

dimG
.

The vector space is called semi-stable if for all surjective morphisms ofcom-
mutative algebraic groups π : G → G′ with dimG′ < dimG and G′ 6= 0, we
have

τ(G′, π∗V ) ≥ τ(G,V ).

Remark 4.4. Let W = Lie(G). The choice of the subvector space can be
interpreted as a filtration on W indexed by 0, 1, 2:

F 2W = 0 ⊂ F 1W = V ⊂ F 0W = W.

27
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In the theory of filtered vector bundels (here: filtered vector spaces) there is the
notion of the slope of a filtration:

µ(F ∗W ) =
∑
i

i
dimF iW/F i+1W

dimW
.

In our case this is τ(G,V ). There is also the notion of semi-stability in the
theory of filtered vector bundles. The exact relation is not clear to me.

Note that dimV ≤ dimG, hence τ(G,V ) ≤ 1 with equality for V = Lie(G).

Example 4.5. (i) V = Lie(G) is semi-stable because π∗V = Lie(G′) and
1 ≥ 1.

(ii) V = 0 is semi-stable because π∗V = 0 for all π and 0 ≥ 0.

Semi-stability is about the interaction of V and the subvector space Ker(π∗) ⊂
Lie(G). Let us consider the two extremes: Let d = dimV , d′ = dimπ∗(V ),
n = dimG, n′ = dimG′.

• If Ker(π∗) ∩ V = 0, then d = d′ and hence

τ(G,V ) =
d

n
≤ d

n′
= τ(G′, π∗(V ))

because n′ ≤ n. This is allowed for semi-stable V .

• If Ker(π∗) ⊂ V , then d′ = d−m, n′ = n−m for m = dim Ker(π∗), so

τ(G,V ) =
d

n
>
d−m
n−m

= τ(G′, π∗(V ))

(unless m = 0). This is not allowed for semi-stable V .

Exercise 4.1. Determine all semi-stable subspaces V for G = G2
m, G = G2

a

and G = Gm ×Ga.

Proposition 4.6. Let G be a non-trivial commutative algebraic group over Q,
V ⊂ Lie(G) a subvector space. Then there is a surjective morphism of com-
mutative algebraic groups π : G→ G∗, either the identity or a proper quotient,
such that τ(G∗, V ∗) (here V ∗ = π∗(V )) is minimal. Moreover, V ∗ ⊂ Lie(G∗) is
semi-stable.

Proof. We show existence. If (G,V ) is semi-stable, there is nothing to show.
Otherwise, we consider all proper quotients π : G → G′ with dimG′ < dimG.
There are only finitely many possibilities for dimG′ and only finitely many pos-
sibilities for dimπ∗(V ). Hence the set of τ(G′, π∗(V )) is finite and the minimum
is attained in some (G∗, V ∗).

We check that (G∗, V ∗) is semi-stable. Let π : G∗ → G′ be surjective and
τ(G′, π′(V ∗)) < τ(G∗, V ∗), then G → G∗ → G′ is also surjective. Let H be
the connected component of the kernel of G → G′. Then the map factors via
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G → G/H → G′ and dimG/H = dimG′. This implies that G/H → G′ is an
isomorphism on tangent spaces. Hence

τ(G/H, V ′) = τ(G′, V ′) < τ(G∗, V ′).

This contradicts the minimality of τ(G∗, V ∗).

Exercise 4.2. (not obvious) [Baker-Wüstholz] p. 138 claim that (G∗, V ∗) is
unique if dimG∗ is chosen minimal. Deduce this from the theory of the Harder-
Narasimhan filtration, see for example [Faltings-Wüstholz] p. 117/118.

Lemma 4.7. Let G, b, B, P be as in the analytic subgroup theorem. Assume that
(G,B) is semi-stable. If there is an algebraic subgroup H ( G with Lie(H) ⊂ b
and P ∈ H(Q), then P = 0.

In other words: in the semi-stable case the analytic subgroup theorem pre-
dicts vanishing of G(Q) ∩B or b = Lie(G).

Proof. Consider π : G→ G/H. We have Ker(π∗) = Lie(H) ⊂ b. As we worked
out in the example, this is excluded by semi-stability. Hence Lie(H) = 0 and H
is trivial. As P ∈ H(Q) this means also P = 0.

Proposition 4.8. Suppose the analytic subgroup theorem holds whenever, in
addition, B is stemi-stable. Then it holds in general.

Proof. We argue by induction on dimG. If G is of dimension 1, then b ⊂ Lie(G)
has dimension 0 or 1. In the first case, B = 0, in the second B = Gan. In both
cases it is algebraic.

Suppose now that the theorem holds for all groups of dimension less than
n. Let G be an algebraic group of dimension n, b ⊂ Lie(G), B = expG(bC),
P ∈ G(Q)∩B. If B is semi-stable, the subgroup theorem holds by assumption.
Otherwise, let π : G → G∗ be the projection such that (G∗, B∗) with B∗ =
π∗(B) is semi-stable. As (G, b) was not semi-stable, we have

τ(G∗, b∗) < τ(G, b) ≤ 1.

In consequece b∗ ( Lie(G∗) is a proper subspace and dimB < dimGan. Con-
sider P ∗ = π(P ) ∈ B∗ ∩ G∗(Q). By the analytic subgroup theorem in the
semi-stable case, we have P ∗ = 0 (this was the lemma).

In other words, P ∈ Ker(π) =: K. The map G → G∗ is a proper quotient,
i.e., K is connected and K ( G. We apply the analytic subgroup theorem to K,
b ∩ Lie(K), P . This is possible by inductive hypothesis. We find an algebraic
subgroup H ⊂ K with Lie(H) ⊂ b ∩ Lie(H) ⊂ b and P ∈ H(Q). This is the
analytic subgroup theorem for the original data.

So the actual work is in proving:

Theorem 4.9 (Semi-stability theorem). Let G a commutative algebraic group
over Q, b ⊂ Lie(G) a subvector space which is semi-stable. Then G(Q)∩B = 0
(where as before B = expG(bC)).

Exercise 4.3. Show that it is enough to establish the theorem in the case where
dim b = dimG− 1.
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Chapter 5

Analytic tools for the proof

Multiplicity estimates

Let again k be an algebraically closed field of characteristic 0. Throughout,
G will be a quasi-projective algebraic group over k and we fix an embedding
G ⊂ PN . We also fix a subvector space V ⊂ Lie(G) and a point g ∈ G.

Example 5.1. Let G = V × T be the product of a vector group and a torus.
By a choice of isomorphism to Gsa×Grm we get an embedding G ⊂ As+r ⊂ Ps+r.

In fact, all algebraic groups are quasi-projective, so the assumption is not a
restriction.

Let G be the closure of G in PN and S[G] its homogeneous coordinate
ring. Recall that S[G] is a graded ring. The multiplication on G extend to an
operation

G×G→ G.

Exercise 5.1. Write down S[G] for G = Gsa ×Grm.

We want to choose the coordinates on PN such that no multiple of g lies on
the hyperplane X0 = 0. This is possible.

Lemma 5.2. Let Γ ⊂ G be a finitely generated subgroup. Then there is a
hyperplane H ⊂ PN that does not meet Γ.

Proof. The definition of G and the finitely many generators of Γ only involves
finitely many polynomials over k. Hence G and Γ can be defined over a field k0

which is finitely generated over Q. It suffices to show that there is a hyperplane
in PNk which does not contain any point in PN (k0). Let K/k0 be a field extension
of degree N + 1. (Such an extension exists because k0 is finitely generated over
Q.) Let ω0, . . . , ωN be a k0-basis of K. We consider the hyperplane

ω0X0 + ω1X1 + · · ·+ ωNXN = 0.
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Let [a0 : · · · : aN ] ∈ PN (k0). If it was on the hyperplane, then we would have

N∑
i=0

aiωi = 0,

contradicting the linear independence of the basis vectors.

Let U0 = G r V (X0). Its coordinate ring is generated by Yi = Xi/X0 for
i = 1, . . . , N .

Example 5.3. For G = G3
a with coordinates Y1, Y2, Y3, we can use N = 3

and G = P3. The homogeneous coordinate ring is k[X0, . . . , X3]. In this case
U0 = G and k[U0] = k[Y1, Y2, Y3]. A polynomial P of degree D in S[G] gives
rise to a function P0 on U0, itself an inhomogeneous polynomial of degree at
most D.

Recall that a polynomial P in one variable has a zero of order bigger than T
in a point a if the first T derivatives vanish in a. Analogously we can say that
a polynomial in several variables has a zero of order bigger than T in a point a
if the mixed derivatives of total order up to T vanish.

Example 5.4. The polynomial P = X2Y 3 has zero of order bigger than 4 in
(0, 0) because the derivatives

∂i

∂Xi

∂j

∂Y j
X2Y 3

vanish in (0, 0). Indeed, the first (only) non-vanishing derivative is for i = 2,
j = 3.

Exercise 5.2 (Taylor expansion). Let P ∈ k[Y1, . . . , Yn], a = (a1, . . . , an).
Show that P can be written uniquely in the form

P =
∑
t∈Nn

0

1

t!

∂t

∂Y t
P (a)(Y1 − a1)t1 . . . (Yn − an)tn

with only finitely many terms non-zero. Here we use multi-index notation as in
analysis. Determine the vanishing order from the expansion.

If the vanishing order is high compared to the degree, then P has to vanish.
We want to generalise this in several directions:

• use more than 1 point where the vanishing order is prescribed;

• do not use partial derivatives in all coordinate directions but only a d-
dimensional space of tangent vectors instead;

• replace Gna by some commutative algebraic group.
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Lemma 5.5. Let ∂ ∈ Lie(G) viewed as an invariant vector field, U ⊂ G affine.
Then ∂ defines an operator

L : k[U ]→ k[U ]

such that for all x ∈ U and f ∈ k[U ] we have

(Lf)(x) = ∂xf.

Proof. The formula defines L(f) as a function U → k. We claim that it is
algebraic. This follows from the general theory of the algebraic tangent bundle.
We only verify the case G = V ×T . It suffices to consider the cases Ga and Gm.
We have explicit formulas for the basis of Lie(G). They are of the form ∂/∂X
and X∂/∂X in the standard coordinates on G. In both cases the value is given
by algebraic functions.

By shrinking U , we get an operator

L : OP → OP .

Exercise 5.3. Let ∂1 and ∂2 be linearly independent. Show that the induced L1

and L2 commute.

Exercise 5.4. Consider expG : LieGan → Gan. Let ∂ ∈ Lie(Gan) and L∂
the corresponding invariant vector field. We may also view ∂ as an element in
T0LieGan and extend it to an invariant vector vield of LieGan. Consider

d expx : TxLieGan ∼= T0LieGan → Texp(x)G
an

for x ∈ Lie(Gan).

(i) Make this explicit for G = Ga and G = Gm.

(ii) Verify that d expx is the map ∂ 7→ (L∂)x, for G = Gm and in general.

Exercise 5.5. Let Gan be the complex Lie group attached to a commutative
algebraic group. Fix ∂ ∈ Lie(Gan). Let φ : C → Gan be the holomorphic group
homomorphism inducing ∂/∂z 7→ ∂. Show that the operator L on holomorphic
functions near 0 is the derivative in direction φ.

Definition 5.6. Let V ⊂ Lie(G) with basis ∂1, . . . , ∂d, f ∈ OP . Let L1, . . . , Ld
be the associated differential operators. We say that f vanishes of order bigger
than T in direction V if for all t1, . . . , td with

∑
ti ≤ T all

Lt11 . . . Ltdd f

vanish at P .
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This is also written using the translation operator

TP : OP → O0, f 7→ f ◦ τP

where τP : G → G is the morphism defined by adding P . The condition than
becomes vanishing of the

TPL
t1
1 . . . Ltdd f

in 0.

Theorem 5.7 (Multiplicity estimate). Let G be a commutative algebraic group,
V ⊂ Lie(G) semi-stable. Let L1, . . . , Ld be a basis of the space of linear operators
of V and g ∈ G. Then there is a constant c depending only on G and V such
that:

Given S, T,D ∈ N0 with ST d > cDn and 0 6= P ∈ S[G]D viewed as
a function on U0 such that P vanishes of order bigger than T in the points
0, g, 2g, . . . , Sg, then there is 0 < s′ < S such that s′g = 0.

We defer the proof, even in the special case and first want to see how it is
used.

Holomorphic one parameter subgroups

We are still in the same situaton: G a commutative algebraic group, g ∈ G a
point, b ⊂ Lie(G) such that g ∈ B = expG(bC). We are interested in the case
when all this data is defined over Q, but now look at the complex points from
the analytic point of view.

Lemma 5.8. Let g 6= 0. There is a holomorphic group homomorphism

Φ : C→ Gan

such that Φ(1) = g. It is uniquely determined by the image u in Lie(Gan) of
d/dz The image of Φ is contained in B.

Proof. Let u ∈ Lie(Gan) be the preimage of g under the exponential map. It is
different from 0. We get Φ as

C→ Lie(Gan)
expG−−−→ Gan

where the first map is 1 7→ u. We have u ∈ bC, hence Cu ⊂ bC and Φ(C) ⊂
B.

The image Φ(C) is a 1-parameter subgroup. It is a Riemann surface with the
additional structure of an abelian group. Its Lie algebra has dimension one and
the tangent vector is contained in b.

Exercise 5.6. Show that Φ(C) is isomorphic to one of: C, C∗, C/Z + τZ for
τ ∈ Cr R.
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Proposition 5.9. Let P0 ∈ k[U0] be an algebraic function that vanishes to
order at least T in the points 0, g, 2g, . . . , Sg. Then Φ∗(P0) is holomorphic in
0, 1, . . . , S and vanishes to order at least T in these points.

Proof. By definition Φ∗(P0) = P0◦Φ is holomorphic and defined on the preimage
of U0 under Φ. We always have 0, g, . . . , Sg ∈ U0 and hence 0, 1, . . . , S in the
preimage.

We have to compute the derivatives of Φ∗(P0). This is nothing but the
directional derivative of P0 in the direction given by the one-parameter group.
Let L1, . . . , Ld be a basis of b. We have

∂

∂z
=

d∑
i=1

aiLi, ai ∈ C

and by the chain rule

∂

∂z
P ◦ Φ =

d∑
i=1

aiLiP.

This is evaluated in Φ(s) = sg for 0 ≤ s ≤ S. Hence the assumption on the
vanishing of the Lt11 . . . Ltdd P0(sg) for

∑
ti ≤ T translates into the vanishing of

the derivatives of the Φ∗(P0).

Exercise 5.7. For G = V × T and G = PN , show that Φ∗(P ) is defined on all
of C.

The proof of the analytic subgroup theorem is done via estimates for Φ∗(P )
for suitable polynomials P .

Some complex analysis

Consider holomorphic functions on a disc BR(0). For 0 < r < R we define for
all holomorphic functions on BR(0)

‖f‖r = sup
|z|=r

|f(z)|.

By the maximum principle we have |f(z)| ≤ ‖f‖r for all z with |z| ≤ r. In
particular

‖f‖r′ ≤ ‖f‖r
for 0 < r′ < r.

Lemma 5.10. Let 0 ≤ s ≤ r′ ≤ r. Then for |z| = r∣∣∣∣ r2 − sz
r(z − s)

∣∣∣∣ = 1

and for |z| = r′

r2 + r′2

2rr′
≤
∣∣∣∣ r2 − sz
r(z − s)

∣∣∣∣
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Proof. We want to check

|r2 − sz| = |r(z − s)| ⇔ (r2 − sz)(r2 − sz) = r2(z − s)(z − s)
⇔ r4 − r2s(z + z) + s2zz = r2(zz − s(z + z) + s2)

The last equation holds with zz = r2.
We turn to the second claim. By squaring both sides, using zz = |z|2 = r′2

and multiplying with the denominators we obtain the equivalent inequality

(r2 + r′2)2r2(z − s)(z − s) ≤ 4r2r′2(r2 − sz)(r2 − sz)

or, after dividing by r2,

(r4 + 2r2r′2 + r′4)(r′2 − s(z + z) + s2) ≤ 4r′2(r4 − r2s(z + z) + s2r′2).

Expand the products:

r4r′2 − r4s(z + z) + r4s2 + 2r2r′4 − 2r2r′2s(z + z) + 2r2r′2s2

+ r′6 − r′4s(z + z) + r′4s2

≤ 4r4r′2 − 4r2r′2s(z + z) + 4r′4s2.

For the multiples of s(z+ z), we obtain for the difference of right hand side and
left hand side

r4 + r′4 − 2r2r′2 = (r2 − r′2)2 ≥ 0

and for the same difference for the other terms

s2(3r′4 − r4 − 2r2r′2) + r′2(3r4 − r′4 − 2r2r′2).

If 3r′4 − r4 − 2r2r′2 ≤ 0, we can calculate

s2(3r′4 − r4 − 2r2r′2) + r′2(3r4 − r′4 − 2r2r′2)

≥ r′2(3r′4 − r4 − 2r2r′2) + r′2(3r4 − r′4 − 2r2r′2)

= r′2(3r′4 − r4 − 2r2r′2 + 3r4 − r′4 − 2r2r′2)

= 2r′2(r4 + r′4 − 2r2r′2)

≥ 0.

Otherwise, we already have s2(3r′4 − r4 − 2r2r′2) ≥ 0 and because of r ≥ r′

trivially 3r4 − r′4 − 2r2r′2 ≥ 0.

Proposition 5.11 (Variant of the Schwarz Lemma). Let f be holomorphic
function on a disc BR(0) for R > 0. Assume that f has zeroes of order at least
T in the points 0, 1, . . . , S. Let S ≤ r′ ≤ r. Then

log ‖f‖r′ ≤ log ‖f‖r + (S + 1)T log

(
2rr′

r2 + r′2

)
.
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Proof. We use the auxiliary function

g(z) =

S∏
s=0

(
r2 − sz
r(z − s)

)T
.

By the lemma ‖g‖r = 1.
The product fg is holomorphic on BR(0). As remarked before, we have

‖fg‖r′ ≤ ‖fg‖r ≤ ‖f‖r ‖g‖r = ‖f‖r .

By the lemma, we also get the estimate(
r2 + r′2

2rr′

)(S+1)T

‖f‖r′ ≤ ‖fg‖r′ .

Together this gives

‖f‖r′ ≤ ‖f‖r

(
2rr′

r2 + r′2

)(S+1)T

Exercise 5.8. Formulate the Schwarz Lemma and go through the proof.

Remark 5.12. We are going to apply the estimate the function Φ∗(P0) for
P0 ∈ k[U0] and the one parameter group Φ studied before.

In the non-affine case, a suitable modification of the definition will be used
in order to get a holomorphic function on all of C, not only Φ−1(U0).
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Chapter 6

Weil heights

Reference: Silverman, The classical theory of heights, in: Cornell-Silverman,
Arithemtic geometry, Springer Verlag.

Our aim is find a good polynomial P ∈ Q[X0, . . . , XN ] feeding into our
estimates. We will find it as the solution of the system of linear equations given
by the vanishing conditions. We also want this polynomial to have “small”
coefficients. This is measured via heights.

We start with the case of rational numbers.

Lemma 6.1 (Siegel’s lemma). Let M,N be integers with N > M > 0. For
1 ≤ j ≤ N and 1 ≤ i ≤ M let aij be an integer of absolute value at most Ai.
Then there are integers x1, . . . , xN , not all zero with absolute value at most

X =

M∏
i=1

(NAi)
1

N−M ,

and such that
N∑
j=1

aijxj = 0, 1 ≤ i ≤M.

Note that the system of linear equations has solutions in Q because there
are more variables than equations. By multiplying by a suitable denominator
we can make the solution integral. The point of the lemma is about limiting
the size of the solutions.

We follow Baker-Wüstholz Chapter 1.4.

Proof. Let −Vi,Wi be the sums (wrt j) of the negative and positive aij , respec-
tively. Note that

Vi +Wi ≤ NAi.
Let B = [X]. There are (B + 1)N tuples (x1, . . . , xN ) of integers with

0 ≤ xi ≤ B. Let

yi(x) =

N∑
j=1

aijxj .

39
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Then
−ViB ≤ yi(x) ≤WiB.

Hence there are at most
M∏
i=1

(NAiB + 1)

possible tuples y(x). By definition of B, we have

(B + 1)(N−M) >

M∏
i=1

(NAi)

and because Ai ≥ 1 this implies

(B + 1)N >

M∏
i=1

(NAi).

Hence there are two tuples x which give rise to the same y(x). Their difference
is the required solution.

We want to generalise this to coefficients in algebraic integers. The absolute
value is replaced by the Weil height. We recall some facts from algebraic number
theory.

Let K/Q be finite, m = [K : Q]. A place of K is the equivalence class of
non-trivial absolute values on K. Here two absolute values are equivalent if they
induce the same topology on K. This happens precisely if

| · |1 = | · |λ2

for some λ > 0. Places are classified: there is one non-archimedian one for every
prime ideal of the ring of integers OK (i.e., the integral closure of Z in K) and
one archimedian one for every conjugacy class of embeddings K→ C.

Exercise 6.1. (talk) Report on the proof of Ostrowski’s theorem classifying the
places of Q.

For every place v, there is a completion Kv. It is a finite extension of Qv.
The possible values for Qv are Qp (for a prime number p) and R. We write v|p
and v|∞, respectively. We normalise the absolute values by the condition

‖p‖v = p−[Kv :Qp] v|p
‖x‖v = |x|[Kv:R] v|∞

With this normalisation, we have∏
v

‖x‖v = 1

for all x ∈ K∗. Moreover:
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Exercise 6.2. Verify the product formula for K = Q.

Comment: In the case v =∞,Kv = C, the function ‖·‖v = | · |2 is not actually
an absolute value—the triangle inequality fails. This will be an issue when
applying a polynomial with bounded height to a point of bounded height. It
would be better to use its m-th root through-out and formulate all bounds for
the absolute rather than the relative height. We stick with the notation used in
the literature.

Exercise 6.3. Consider K = Q(
√

3) and K = Q(
√
−3). Work out the infi-

nite/finite places and the Kv. For information: OQ(
√

3) = Z[
√

3] and OQ(
√
−3) =

Z[ 1+
√
−3

2 ].

Definition 6.2. Let K/Q be finite. For x = [x0 : · · · : xN ] ∈ PN (K) we put

HK(x) =
∏
v

max
i
‖xi‖v .

The function H is called Weil height. The function

h(x) =
1

[K : Q]
logHK(x)

is called absolute logarithmic Weil height.

Note that the height is well-defined by the product formula.

Remark 6.3. The above definition of HK is not compatible with inclusions of
number fields, but the absolute logarithmic height is.

Exercise 6.4. Let K = Q. Show that the Weil height on P1 is given by the
following formula: Let x = [x0 : x1] with coprime integers x0, x1. Then

H(x) = max{|x0|, |x1|}.

In particular, heights are bounded below!

Lemma 6.4. Let x ∈ P1(K). Then

HK(x) ≥ 1, h(x) ≥ 0.

Proof. We write x = [1 : α] or [α : 1] with α ∈ K. Hence

HK(x) =
∏
w

max{‖α‖w , 1}

Each factor in this product is at least 1, hence so is the product.

Lemma 6.5 (Liouville inequality). Let v0 be a place of K, α 6= 0. Then

‖α‖v0 ≥
1

HK([1 : α])
, log(‖α‖v0) ≥ −[K : Q] h([1 : α]).
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Proof. If ‖α‖v0 ≥ 1, then the claim follows from the previous lemma. Assume
‖α‖v0 < 1. Then

HK([1 : α]) =
∏
v 6=v0

max{‖α‖v , 1} ≥
∏
v 6=v0

‖α‖v =
1

‖α‖v0

∏
v

‖α‖v =
1

‖α‖v0

Again this is the claim.

The Weil height can be restricted to any subvariety V of Pn defined over K.
It depends on the embedding.

The usual applications in arithmetic geometry use the following observation:

Proposition 6.6. Let K be a number field. Then for every C the set

SC = {x ∈ Pn(K)|H(x) < C}

is finite.

We omit the proof because we will not need this fact.

Remark 6.7. We can then ask for asymptotics for the size of SC for subvari-
eties. The proof of the famous Mordell conjecture (a curve of genus at least 2
over a number field has only finitely many points with coordinates in K) starts
by considering points of bounded height. This set is finite.

Exercise 6.5. (talk) Report on the use of heights in the proof of the Theorem of
Mordell-Weil (A(K) is a finitely generated abelian group for all abelian varieties
A), e.g., in the chapter by Silverman mentioned before. For the case of elliptic
curves, see also Silverman: Arithmetic of elliptic curves.

We are going to apply the Weil height to our G ⊂ PN and the points
0, g, 2g, . . . .

Lemma 6.8 (Height estimate). Let G be a commutative algebraic group over
K. Then there are are constants C1, C2, C3, κ such that for all g ∈ G(K) and
s ∈ N we

h(sg) ≤ C1s
2(h(g) + 1) + C2, h(g) ≤ C3s

κ(h(sg) + 1)

In the case G = V × T , we have

h(sg) ≤ s(h(g) + 1).

Proof. We only treat the case G = V × T . We start with Ga. The group law is
addition on Ga ⊂ P1, g = [1 : a] with a ∈ K, sg = [1 : sa]. By definition

HK(sg) =
∏
v

max{1, ‖sa‖v} =
∏
v

max{1, ‖s‖v ‖a‖v}
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For non-archemedian v, we have ‖s‖v ≤ 1. The factors ‖s‖v for the archimedian
places multiply to |s|m (where m = [K : Q]) and we get the estimate

HK(sg) ≤ smHK(g).

For the logarithmic height this gives

h(sg) ≤ log(s) + h(g) ≤ s(h(g) + 1).

We can use C1 = 1 and C2 = 0.

Now consider G = Gm. The group law is multiplication, g = [1 : a], sg =
[1 : as]. By definition

HK(sg) =
∏
v

max{1, ‖as‖v} =
∏
v

max{1, ‖a‖sv} =
∏
v

max{1, ‖a‖}s

and hence

h(sg) = sh(g) ≤ s2h(g).

Again C1 = 1 and C2 = 0 do the job.

For a product of Ga’s and Gm’s, we do the same estimats component wise
for g = [1 : a1, . . . , ar+s].

We leave the second estimate as an excercise.

Comment: We are going to use the estimate in the form

h(sg) ≤ Cs2 + C ′, for all s ∈ N0

below. This is Prop. 5 in Serre: Quelques Quelques propriétés des groupes
algébriques commutatifs Astérisque, tome 69–70 (1979), p. 191–202 for gen-
eral G. The second height estimate in the above form is Proposition 2.0 in
Wüstholz: Algebraische Punkte auf analytischen Untergruppen algebraischer
Gruppen, Source: Annals of Mathematics , May, 1989, Second Series, Vol. 129,
No. 3 pp. 501–517

Exercise 6.6. Show the estimate for h(g) in terms of h(sg) for G = Gm and
G = Ga, maybe K = Q. Determine κ.

Solving equations

Definition 6.9. Given a linear form

L = a1X1 + · · ·+ anXn

with coefficients in K, we put

h(L) = h([a1 : · · · : an]).
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Proposition 6.10 (Siegel’s lemma). Let K be a number field with m = [K : Q].
Suppose N > mM and let

Li =

N∑
j=1

aijXj

for i = 1, . . . ,M be linear forms with coefficients in K. There exist x1, . . . , xN ∈
Z not all zero such that

Li(x) = 0, i = 1, . . .M

and

h(x) ≤ mM

N −mM
(log(N) + maxh(Li)) .

Proof. Similar to the case K = Q. See Hindry, Silverman: Diophantine Geom-
etry, p. 319. They make a statement about the absolute value of the integers.
If we choose the solution with coprime entries, then this is the height.

Considerations on polynomials

Application to our case

Let G be a commutative algebraic group of dimension n over K, g ∈ G(K). Let
L1, . . . , Ld be linearly independent invariant vector fields.

We want to find a non-trivial homogeneous polynomial P ∈ K[X0, . . . , XN ]
of degree D vanishing in a point [b0 : · · · : bN ] ∈ PN (K). We treat the coefficients
of P as variables

P =
∑
|I|=D

aIX
I .

The vanishing P (b) = 0 gives the condition∑
|I|=D

aIb
I = 0.

The tuple {bI}|I|=D can itself be understood as a well-defined point of a pro-
jective space and hence has a height.

Lemma 6.11.

h([bI ]) = Dh(b).

Proof. We do the simpler case b ∈ PN (Q). We may choose the bi integral and
coprime and have

H(b) = max
i
{|bi||i = 0, . . . , N}.

By definition

H([bI ]) =
∏
v

max
I
{|bI |v}.
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Let v = p be a prime. Then there is bi with |bi|p = 1. The maximum is attained
in bDi and is 1. The finite primes do not contribute to the height.

Let v = ∞. There is bi such that H(b) = |bi|, i.e., the index where the
maximum is attained. We have

|bI | ≤ |bi|D = H(b)D.

This is the claim in the special case.

For the general case, wlog of generality b0 = 1. It suffices to show

max{
∥∥bI∥∥

v
} = max{‖bi‖}D

for every place v. We have ‖b0‖v = 1, hence the maximum on the right is at
least 1 and attained in bi. Then the maximum on the left is attained in bDi .

We also want to impose vanishing to higher order, so we have to understand
what happens when we apply differential operators.

Let L ∈ Lie(G). We interpret LP as the homogenisation of LP0. It has the
same degree as P .

Example 6.12. If G = Gm with S[G] = k[X0, X1] and L = Y ∂/∂Y , then
LP = X1∂/∂X1. If G = Ga and L = ∂/∂Y , then LP = X0∂/∂X1.

Let ∂ be one of the standard basis vectors for the Lie algebra of G = Gsa×Grm
and L the corresponding differential operator, say for the coordinate α. We
interpret

LP (b) = 0

as a linear equation for the coefficients. It reads either∑
I

aI iαb
i0+1
0 bi11 . . . b

ij−1
j . . . bnb

in = 0

or ∑
I

aI iαb
I = 0.

We abbreviate I ′ for the new exponent vector. Note that ij is an integer less or
equal than D. The same argument as in the lemma gives a bound of

log(D) +Dh(b)

for the height of the linear equation.

The next step is to consider linear combinations

L =

n∑
j=1

cj∂j
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where ∂j is the standard basis vector corresponding to the coordinate j and
cj ∈ K. Then the equation defined by LP (b) = 0 takes the shape

∑
I

aI

∑
j

cjijb
I(j)

 = 0

where I(j) is is obtained from I as determined by the operator ∂j . The height of
the coefficient vector does not change when we scale the cj , so we may assume

without loss of generality cj ∈ OK . Again cjijb
I′ is integral and the same

argument as in the proof of the lemma gives a bound of

C + log(D) +Dh(b)

where we choose
C ≥ log(n ‖cj‖v).

for all j and v|∞.
The final step is to interate the procedure up to T times.

Lemma 6.13. Let L1, . . . , Ld be our basis of V ⊂ Lie(G). There is a constant
C (depending on the Li, G) such that the linear equation for the coefficients of
P

Lt11 . . . Ltdd P (b) = 0

with
∑
i ti ≤ T has height bounded by

TC + T log(D) +Dh(b).

Remark 6.14. In Wüstholz’s paper the bound in the general case is given in
the form

c′(D + T ) log(D + T ) + c′′Dh(b).

It follows from ours.

Proof. We only handle the case G = Gsa ×Grm.
Let ∂1, . . . , ∂n be the standard base of Lie(G). We write

Li =

n∑
j=1

cij∂i

with fixed cij ∈ K. Without loss of generality even cij ∈ OK. Choose C such
that

C ≥ log(n ‖cij‖v) for all i, j and v|∞.

Writing out the equation we find factors coming from the derivatives. They are
bounded by D and occur at most T times. We find products of cij , again at
most T times. They are bounded by exp(C)T . The rest of the argument is as
in proof of the lemma.



47

Proposition 6.15. Let T, S ∈ N, D such that

Dn ≥ 2mn!T dS′

where S′ is the number of elements of {0, g, . . . , Sg}. For T big enough, there
is a homogeneous polynomial P ∈ Z[X0, . . . , XN ] of degree D which does not
vanish on G and such that

(i)
Lt11 L

t2
2 . . . Ltdd P (sg) = 0

for
∑
ti ≤ T and s = 0, . . . , S

(ii) and the height of the coefficient vector of P is bounded by

c1(D + T ) log(D + T ) + c2DS
2

for constants depending on the data, but not on S, T,D.

Proof. We restrict to G = Gsa×Grm. Recall that G = Pn. We have n = N . The
space of homogeneous polynomials of degree D has dimension ND

2Dn ≥ ND =

(
D + n

n

)
≥ Dn

n!

(the first inequality for D ≥ 2, okay for T big enough). We treat the coefficients
of P as unknowns

P0 =
∑
|I|=D

aIX
I .

Each of the vanishing conditions amounts to a linear equation with coeffi-
cients in K. Let M be the number of conditions. There are (S + 1) choices for
s and at most T choices for each of the d numbers ti. Hence there are at most

M ≤ S′T d

many equations. For D satisfying the bound in the proposition, we have

ND ≥ 2mM

and the system has a non-trivial solution. We now want to apply Siegel’s lemma
to get a bound on the coefficients. For this we have to bound the heights of the
linear equations.

We have fixed g and view h(g) as a constant. By the height estimate, we
already have

h(sg) ≤ c1S2 + c2.

The height of the linear equations was determined in the last lemma. We get a
bound of

TC + T log(D) +Dc1S
2 +DC2
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for each of the heights of an equation. By Siegel’s lemma we get a solution (i.e,
the coefficients of our polynomial) with height bounded by

mM

ND −mM
(
log(ND) + TC + T log(D) +Dc1S

2 +DC2

)
We have ND ≥ 2mM and hence ND−mM ≥ mM . The fraction is less or equal
than 1. Using the estimate for ND from above, we get

(n+ T ) log(D) +Dc1S
2 +DC2.

A simpler argument estimates the heights of the derivates of P .

Lemma 6.16. Let P ∈ S[G]D. Let ∆ = Lt11 . . . Ltdd . Then

h(∆P ) ≤ c(D + T ) log(D + T ) + h(P )

for a constant c independent of P,D,∆. More precisely: let ∆P =
∑
qIX

I .
For non-archimedean v, we have

max{|qI |v} ≤ max{|aI |v}.

For archimedean v, we have

max{|qI |v} ≤ (nCD)T max{|aI |v}.

where C is the constant used in Lemma 6.13

Proof. Let P =
∑
i aIX

I as before. From taking the derivatives we get integral
factors and cij ’s as before. We have to estimate their norms for all v. As the
factors are integral, they are bounded by |aI |v for the finite places. At the
infinite places we get as before T -th powers of D and a bound for the cij . After
taking log this is less than the above.



Chapter 7

Proof

We fix the same setting as before: G a commutative algebraic group over Q,
b ⊂ Lie(G) a semi-simple subvector space, B = expG(bC), g ∈ B ∩ G(Q). We
want to show that g = 0, so we work under the assumption g 6= 0. We have
fixed a basis L1, . . . , Ld of b and an embedding G → PN such that Zg ⊂ U0.
Let K be a number field such that G, g and b are defined over K. Let ` ≥ 1 be
a big natural number.

Overview

We first explain how the argument works. We then need to fill in details on
appropriate choices of `, S, T,D and check some more estimates.

Let P ∈ S[G]D be the non-vanishing algebraic function constructed in
Proposition 6.15. It vanishes to order at least T in the points 0, . . . , Sg. More-
over, we have bound on the height of all ∆P where ∆ runs through the monomial
differential operators of degree at most T .

The one-parameter subgroup through g contains an element γ such that
`γ = g (take exp( 1

`u) for exp(u) = g). It is an element of B ∩G(Q). Let L be
a finite extension of K such that γ ∈ G(L).

Claim: P vanishes to order T/2 in the `S + 1 points 0, γ, . . . , `Sγ = Sg.

Admitting this claim, we apply Theorem 5.7. If

`S(T/2)d > cDn

(with the constant there), then γ is a torsion point of order less than `S + 1.
The inequality can be arranged. If g was not a torsion point, this finishes the
argument. If it is, we have to argue more carefully with the torsion order.

In order to prove the claim, we have to show that

δ := ∆P (sγ) = 0

49
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for all monomial differential operators of degree at most T/2 and s = 0, . . . , `S.
Assume that it is not. We will make estimates from above and below that lead
to a contradiction.

The upper bound uses the variant of the Schwarz lemma, Proposition 5.11.
The lower bound follows from height estimates.

Choices of parameters

Definition 7.1. Let S ≥ 1, big. Let S′ be the order of the set {0, g, . . . , Sg},
so S′ ≤ S. We have S′ ≥ 1.

D := 2mn!S′S4d

T := 2mn!S′(n−1)/dS4n

If g is torsion, we ask S bigger than the order of g.

Lemma 7.2. (i) The assumption of Proposition 6.15 (construction of P ) is
satisfied:

Dn ≥ 2mn!T dS′.

(ii) DS2 ≤ T , D + T ≤ 2T .

(iii) Let c be the constant in the multiplicity estimate, Theorem 5.7. The as-
sumption for the multiplicity estimate is satisfied for ` big enough:

B(T/2)d > cDn

where B = `S′ is the number of elements of {0, γ, . . . , `Sγ}.

Proof. The left-hand side is

Dn = (2mn!)nS′nS4dn ≥ (2mn!)S′T d = (2mn!)d+1S′nS4nd.

The second claim holds because

DS2 = 2mn!S′S4d+2 ≤ T = 2mn!S′(n−1)/dS4n

as (n− 1)/d ≥ 1, 4d+ 2 ≤ 4(n− 1) + 2 ≤ 4n. Moreover, D ≤ T .
Up to constants, the third claim is

BT d = BS′n−1S4nd ≥ Dn = S′nS4dn,

or equivalently,

B > c′S′.

If g is not torsion, we have B = `S + 1, S′ = S + 1. If g is torsion, then S′

is its torsion order and B = `S′. In both cases the equality holds for ` big
enough.
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Corollary 7.3. Let P be as in Proposition 6.15, ∆ a monomial differential
operator in direction b of order at most T . Then the height of ∆P is bounded
by

cT log(T )

for a new constant c.

Proof. The height estimate for h(P )

c1(D + T ) log(D + T ) + c2DS
2

is combined with the estimate of Lemma 6.16 for the derivatives

c(D + T ) log(D + T ) + h(P ).

We then simplify using the estimate for DS2 and D + T .

At this point we have to be more careful with the choice P . By the proof of
Proposition 6.15 it can be chosen with integral coefficients. We specify that we
want to have it in primitive form, i.e., the coefficients are coprime. In particular

H(P ) = max
I
|aI |.

This turns the height bound of Proposition 6.15 into a bound on the coefficients.

Corollary 7.4. The coefficients of ∆P are bounded by

cT log T

for a constant c.

Proof. Go through the proof of Lemma 6.16 to deduce the bound for the deriva-
tives from the bound for the coefficients of P .

Estimates from above

Recall the one-parameter curve Φ : C → Gan. The polynomical ∆P gives rise
to a holomorphic function

ψ : C→ Gan → C.

We want to estimate

‖ψ‖r = sup
|z|≤r

|ψ(z)| = sup
|z|=r

|ψ(z)|.

Lemma 7.5. Assume that ∆ is a differential operator of order at most T/2.
There is a constant C such that

log ‖ψ‖r ≤ C(T log(T ) +Dr).
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Proof. We identify LieGan ∼= Cn via our preferred coordinates. The image
of Br(0) under C → LieGan is contained in the ball B‖u‖r(0) where u is our
preimage of g. It remains to bound

log ∆P (1, exp1(z1), . . . , expn(zn))

where expi is the exponential function for the i-th factor. It is bounded by
exp ‖z‖. The polynomical ∆P has degree D, so less than Dn+1 monomials (this
was established in the proof of Proposition 6.15). Each of them has absolute
value at most eD‖u‖r. The coefficients are bounded by cT log(T ). Together this
gives

|∆P (1, exp1(z1), . . . , expn(z1))| ≤ Dn+1cT log(T )eD‖u‖r

and after taking logarithms and changing constants (and because D + T is of
the same order as T )

log ‖ψ‖r ≤ c
′ log(D + T )(D + r).

As D + T is of the same order as T , this is the claim.

Remark 7.6. In the non-affine case, the bound is with r2 instead of r.

Corollary 7.7. There is a constant such that for big enough S

log ‖ψ‖S ≤ −CST log(S).

In particular,

log |ψ(sγ)| ≤ −CST log(S)

for all 0 ≤ s ≤ `S.

Proof. Our function ψ has a zero of order at least T/2 in the points 0, . . . , S.
We apply the variant of the Schwarz lemma (Proposition 5.11) with r′ = S and
r = S2 and obtain

log ‖ψ‖S ≤ log ‖ψ‖S2 +
(S + 1)T

2
log

(
2S3

S4 + S2

)
≤ CT log(T ) +DS2 +

(S + 1)T

2
log

(
2S

S2 + 1

)
.

The summand DS2 is eaten by the first summand. We then have a term of
order

T log(T ) ≤ T (c1 + c2 log(S))

and a second of order

ST log(S)

with a negative sign. For a big enough S the second summand dominates.
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Estimate from below

We need to bound h(sγ). Note that γ is not necessarily defined over K, but
it is defined over a finite extension L with degree [L : K] ≤ `2n (actually `n is
enough in the linear case because at most we are extracting an `th root in each
component).

Lemma 7.8. For 0 ≤ s ≤ `S′ we have

h(sγ) ≤ c(S2 + `c
′
).

Proof. We decompose
sγ = s′g + s′′γ

with 0 ≤ s′ ≤ S and 0 ≤ s′′ < `. In the linear case, there is a n estimate of the
form

h(sγ) ≤ h(s′g) + h(s′′γ) + [L : Q] log(2).

By the second height estimates, we have

h(γ) ≤ C3`
κ

(treating h(g) as a constant). By the first height estimate we also have

h(s′g) ≤ C1S
2(h(g) + 1) + C2 = C ′1S

2 + C2,

h(s′′γ) ≤ C1`
2(C3`

κ + 1) + C2.

Together this gives

h(sγ) ≤ C ′1S2 + C1`
2 + C ′′1 `

κ+2 + `2nC

Choosing c′ ≥ 2 + κ, 2n and adjusting contants this gives the claim.

Exercise 7.1. Show the estimate for the group law for G = Ga and G = Gm.

Lemma 7.9. For x = [1 : x1 : · · · : xn] ∈ Pn(L) we have

h([1 : ∆P0(x)]) ≤ CT log(T ) +Dh(x)

Proof. Let

∆P = Q =
∑

qIX
I .

There are
(
D+n
n

)
≤ (D + 1)n many monomials. We estimate each |Q(x)|v.

For each monomial we have

max
I
|qIxI |v ≤ max

I
|qI | max

i=0,...,N
|xi|Dv

(if all |xi|v for i = 1, . . . , N are less than 1, then the maximum of all |xI | is also
at most 1. If one is bigger than 1, than the maximum is less than the maximal
|xi|v to the maximal power, D.)



54 CHAPTER 7. PROOF

For non-archimedean v, this implies

max
I
|qIxI |v ≤ max |xi|vD.

(use Lemma 6.16 and aI ∈ Z). By the ultra-metric inequality even

|Q(x)|v ≤ (max |xi|v)D.

Note that the right hand side is bigger or equal to 1 because x0 = 1.
In the archimedean case, the triangle inequality with Lemma 6.16 gives

|Q(x)|v ≤
(
D + n

n

)
max
I
|qI |v max |xi|Dv

≤ (D + 1)n
(
(nCD)T max{|aI |}

)
max |xi|Dv

≤ (D + 1)n(nCD)TH(P ) max |xi|Dv
Note again that this is at least 1 if we assume C ≥ 1, as we may.

We raise this to the power [Lv : Qv]/[L : Q] and multiply. As the sum of the
local degrees for v|∞ is [L : Q], we obtain

H([1 : Q(x)]) =
∏
v

max{1, |Q(x)|v} ≤ (D + 1)n(nCD)TH(P )H(x)D.

After applying log and get

h([1 : Q(x)]) ≤ C ′D + C ′T log(D) + h(P ) +Dh(x).

With our estimates for D and h(P ) this gives the claim.

Proposition 7.10. Either ψ(`−1s) = 0 or

log |ψ(`−1s)| ≥ −C`2n(T log(T ) + c`c
′
)

for 0 ≤ s ≤ `S′.

Proof. Note that sγ and hence ψ(`−1s) = ∆P (sγ) are algebraic numbers. We
use Liouville’s inequality for the place v0 attached to L ⊂ C

log
∥∥ψ(`−1s)

∥∥
v0
≥ −[L : Q]h([1 : ψ(s)]).

Recall that
∥∥ψ(`−1s)

∥∥
v0

= |ψ(s)|[Lv :R] and [L : Q] ≤ `2n[K : Q]. In all

log |ψ(`−1s)| ≥ −c0`2nh([1 : ψ(s)]).

It remains to bound h([1 : ∆P (sγ)]) from above. This is what we have done in
the last lemmas

h([1 : ∆P (sγ)] ≤ CT log(T ) +Dh(sγ)

≤ CT log(T ) + cD(S2 + `c
′
)

and DS2 is bounded by T . This gives the estimate as we claimed it.
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Corollary 7.11. If S is a high enough power of `, then ψ(`−1s) = 0.

Proof. If ψ(`−1s) 6= 0, then the combination of the two estimates gives

−C ′`2n(T log(T ) + c`c
′
) ≤ −CST log(S)

with positive constants C,C ′, c, c′. We have

log(T ) ≤ c0 log(S)

by our choice of T . This means

c1`
2n(T log(S) + c2`

c′) ≥ CST log(S)

The inequality is false for S big compared to `.

Conclusion

With our choice for D,S, T and ` and S a high power of `, we have seen that
∆P vanishes to order T/2 in the points 0, γ, . . . , `S′γ = S′g. For big enough
`, the assumption of the multiplicity estimate is satisfied with S replaced by
the number B of elements of {0, γ, . . . , S`γ = Sg} and T replaced by T/2.
Applying Theorem 5.7, we get that γ is a torsion point of order less that `S′.
This contradicts the definition of S′ as the order of g.

Hence g = 0. This establishes the semi-stability theorem (Theorem 4.9). We
have seen in there that it implies the full theorem.

Addendum

The analytic subgroup theorem can be strengthened without extra effort.

Theorem 7.12 (Alternative version). Let b ⊂ Lie(G) be a subvector space,
u ∈ bC such that P = expG(u) ∈ G(Q). Then there is an algebraic subgroup
H ⊂ G such that u ∈ Lie(H)an, P ∈ H(Q) and Lie(H) ⊂ b.

Proof. If u = 0, we can use H = 0. Assume u 6= 0 but P = 0. The kernel of
expG is discrete in Lie(G)C, hence there is n ∈ N such that u′ = 1

nu is not in
the kernel. Then P ′ = expG(u′) is a torsion element of G. All torsion elements
are in G(Q). We also have P ′ ∈ B because u′ ∈ b. Without loss of generality,
P 6= 0.

By the analytic subgroup theorem we find H1 such that P ∈ H1(Q) and
Lie(H1) ⊂ b.

If u ∈ Lie(H1)C, we are done. Otherwise we consider G/H and the image u
of u in Lie(G/H1)C. By induction on the dimension, there is H2 ⊂ G/H1 such
that such that Lie(H2) ⊂ b/Lie(H1) and u ∈ Lie(H2)C. We then choose H as
the preimage of H2 under G→ G/H2. It has the required properties.
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Outlook

We have brought the first half of the lecture to a close: We have proved the
analytic subgroup theorem in the case of groups of the form Gsa×Grm. We have

seen that this implies transcendence of π, log(α) for α ∈ Q∗ (except for the
branch log(1) = 0) and Baker’s theorem.

Plan for the second half

• The next topic we want to get into are general commutative algebraic
groups. We will discuss the case of elliptic curves in some detail, then
present the structure theory in general. In particular, we will need to
construct embeddings G ⊂ PN . The emphasis will be on understanding
the facts rather than providing detailed proofs.

• In the context of Hodge theory, Deligne introduced the category of 1-
motives: objects are of the form [L → G] where L (lattice) is a free
finitely generated abelian group and G a semi-abelian variety (extension
of an abelian variety by a torus). We will define the notion of a period of a
1-motives, formulate and prove a version of the analytic subgroup theorem
for 1-motives and use it to establish the period conjecture for 1-motives.

• For every pair of algebraic varieties Y ⊂ X over Q, there is a 1-motive
reflecting the properties of Hsing

1 (Xan, Y an,Q). We are going to explain
how the results on periods of 1-motives translate to period of algebraic
varities, i.e., integrals of the form ∫

γ

ω

where γ is a path with algebraic endpoints and ω an algebraic differential
form.

• If there is enough time and interest, we are going to look into the proof of
the multiplicity estimate, at least in the linear case.
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Chapter 8

Elliptic curves

Before reviewing the general theory of commutative algebraic groups, we want
to go into the details of a particular important example.

The algebraic story

We are going to work over an algebraically closed field k of characteristic 0.

Definition 8.1. An elliptic curve is a smooth proper algebraic curve over k of
genus 1 together with the choice of a point P0 ∈ E.

Recall that the genus of an algebraic curve is equal to the dimension of the
space algebraic differential forms, so 1 in our case. It appears in the theorem of
Riemann-Roch. In the case of elliptic curves it takes the shape

l(D)− l(−D) = degD

for all divisors D on E. Here

l(D) = dimL(D) = dim{f ∈ k(E)∗|div(f) ≥ −D}.

It vanishes for degD < 0.
We consider Dn = n[P0]. Note that l(−Dn) = 0 for n ≥ 1, so l(Dn) = n.

For n = 1, L(D1) = k are the constant functions. Let

x ∈ L(D2)− L(D1), y ∈ L(D3)− L(D2.

The function x has a double pole 2 and y has a pole of order 3. In L6 we have
the 7 elements

1, x, x2, x3, y, xy, y2.

They are linearly dependent, so we get an equation

a+ bx+ cx2 + dx3 + ey + fxy + gy2 = 0.
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The only terms of pole order 6 are x3 and y2. The other monomials have
pairwise distinct pole orders. We need d, g 6= 0 to cancel this pole. Without
loss of generality g = 1 and we rewrite

y2 = P (x) + yQ(x) (8.1)

where P is a cubic polynomial in x and Q is a linear polynomial in x. By
elementary arguments (see: Silverman, Arithmetic of elliptic curves) we can
make a change of variable and simplify to an equation of the form

y2 = 4x3 − g2x− g3.

(Weierstraß normal form). The point [x : y : 1] ∈ P2(k(E)) defines a rational
map

i : E → P2
k.

It is a morphism because E is a proper curve. The image is the subvariety E′

defined by the equation (8.1). The composition

[x : 1] : E → E′ → P1

has degree 2 (because the only pole of x is P0 and it is a double pole.) Hence
[k(E) : k(E′)] divides 2. With y instead of x we get [k(E) : k(E′)]|3, so the
function fields of E and E′ agree. If E′ is singular, then elementary considera-
tions with the explicit equation show that it has genus 0 (Silverman Prop. III
1.6). On the other hand it is birational to E, so it has genus 1. Hence E′ is
non-singular and E ∼= E′.

Exercise 8.1. Check out the proof of genus computation for singular curves in
Weierstraß form.

Corollary 8.2. All elliptic curves are projective. They are smooth planar cu-
bics.

The point P0 did not play a role in the arguments. Note that

i(P0) = [y−1x(P0) : 1 : y−1P0)] = [0 : 1 : 0],

so it is the point at infinity in the Weierstraß equation. Let Cl(E) be the divisor
class group, the group of divisors up to linear equivalence. We put

Φ : E → Cl0(E); P 7→ [P ]− [P0].

Proposition 8.3. This is a bijection The identifcation turns E into a group.

Proof. We are going to show:
Claim: Given P,Q ∈ E there is a unique R ∈ E such that

[P ]− [P0] + [Q] ∼ [R].
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Note that we can rewrite the claim

Φ(P ) + Φ(Q) ∼ Φ(R).

Putting Q = P0, the uniqueness part of the claim gives injectivity of Φ. For
surjectivity, we write a divisor D =

∑
ai[Pi] of degree 0 in the form

D =
∑

ai(Φ(Pi)).

The claim can be used to reduce this to a divisor of form Φ(P ).
We turn to the proof of the claim. It is about existence of g ∈ k(E)∗ with

div(g) = [R] + [P0]− [P ]− [Q].

Such a g is an element of L([P ]+[Q]− [P0]) and by Riemann-Roch the space has
dimension 1, making g and its zero R unique. Conversely, a non-trivial element
of the linear system has a zero in P0. There are no elements in k(E)∗ with only
a single pole, so g has two poles. They have to be in P and Q. The pole order
is 2, so g also has two zeroes. One is P0, the other we call R and have found a
solution. This finishes the proof of bijectivity.

The group law also has an explicit description in the plane. Let L be the
line through P and Q. It has a third intersection point R′ with E. Let L′ be
the line through P0 and R′. Its third intersection point with E is R.

Exercise 8.2. Verify this claim. For this write down the rational function g in
terms of the homogenuous polynomicals of degree 1 describing L and L′.

Theorem 8.4. The group law on E is algebraic.

Proof. For P 6= Q the geometric procedure can be written out explicitly and
gives explicit polynomials in terms of the coordinates. This gives

E × E −∆→ E

with the properties of an algebraic group. To extend to all of E×E either show
that the secant construction turns into the tangent. This can be done in the for-
mal completion, i.e., the powers series expansion of the formulas. Alternatively,
there is a theorem of Weil expanding ”biratonal group laws” into group laws,
see Serre: Algebraic Groups and Class fields, V §5 for precise references.

Finally, we also need to understand the Lie algebra. As dimE = 1, its Lie
algebra is also of dimension 1. Actually, it is easier to understand the cotangent
space.

Lemma 8.5. Let E be an elliptic curve in Weierstraß form. Then

ω =
dx

y

is an invariant algebraic differential.
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Proof. The form is obviously regular away from the poles of x (the point at
infinity) and the zeroes of y. We have the relation

0 = d(y2 − 4x3 + g2x+ g3) = 2ydy − (12x2 − g2)dx⇒ ω =
2dy

12x2 − g2
.

It is regular away from the poles of y (again the point at infinity) and the zeroes
of 12x2− g2. A zero of y would mean vanishing of 4x3− g2x− g3. All zeroes are
simple (non-singularity!), hence the derivative does not vanish in these points.

It remains to check the point at infinity. The function x has a pole of order
2, hence dx has a pole of order 3. This cancels with y−1 (which has a zero of
order 3).

In all we have found a regular form on all of E. The invariant differential is
another such. They have to agree up to a factor because Ω1(E) = g(E) = 1.

The holomorphic story

We review the Weierstraß theory of elliptic functions. Reference: Ahlfors, Com-
plex analysis, Chapter 7.

We work in one complex variable. We fix a lattice Λ ⊂ C generated by ω1, ω
which are R-linear independent. We put Λ′ = Λ− {0}.

Definition 8.6. The Weierstraß σ-function for the lattice Λ is given as

σ(z) = z
∏
ω∈Λ′

(
1− z

ω

)
e

z
ω + 1

2 ( z
ω )

2

The Weierstraß ζ-function and the Weierstraß ℘-function are defined as

ζ(z) =
σ′

σ
, ℘(z) = −ζ ′(z).

There is a general method for producing entire functions with prescribed
divisor. The exponential factors are added to ensure absolute convergence of
the infinite product. In our case, we get simple zeroes precisely in the lattice
points. By passing to the logarithmic derivative, we obtain a function with
simple poles in the lattice points. Its derivative has double poles there.

Exercise 8.3. Verify convergence.

We compute the derivatives. The logarithmic derivate turns the sum into a
product. Moreover,

d log

dz

(
1− z

ω

)
e

z
ω + 1

2 ( z
ω )

2

= − 1

ω

1

1− z
ω

+
1

ω
+

z

ω2
=

1

z − ω
+

1

ω
+

z

ω2

and hence

ζ(z) =
1

z
+
∑
ω∈Λ′

(
1

z − ω
+

1

ω
+

z

ω2

)
.
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Convergence can be checked by hand or follows from the convergence of σ.
Deriving again we get

℘(z) =
1

z2
+
∑
ω∈Λ′

(
1

(z − ω)2
− 1

ω2

)
℘′(z)− 2

∑
ω∈Λ′

1

(z − ω)3

Lemma 8.7. The functions ℘ and ℘′ are elliptic for the lattice Λ, i.e., ω-
periodic for all ω ∈ Λ.

Proof. In the case of ℘′ this is obvious from the series. Hence ℘(z + ω)− ℘(z)
is constant. We determine the constant for ω = ω1, ω2 (the basis vectors) by
evaluating in z = −ωi/2. We have

℘(z + ωi)− ℘(z) = ℘(ωi/2)− ℘(−ωi/2) = 0

because the function is even (and does not have a pole in ωi/2). Periodicity for
ω1, ω2 implies periodicity for all ω ∈ Λ′.

We view elliptic functions as meromorphic functions on the compact Rie-
mann surfact C/Λ. It has genus 1. The Theorem of Riemann-Roch in the
Riemann surfact version applies. Comparing to what we have done in the alge-
braic case we see that x can be chosen as ℘ and y as ℘′. The same arguments
as in the algebraic case imply the existence of a differential equation involving
℘′2, ℘3 and other products.

Lemma 8.8. We have
℘′2 = 4℘3 − g2℘− g3

with

g2 = 60G2 = 60
∑
ω∈Λ′

1

ω4
, g3 = 140G3 = 140

∑
ω∈Λ′

1

ω6
.

Proof. We calculate the Laurent expansion of ζ(z) at the origin. We have

1

z − ω
= −ω−1 1

1− z
ω

= −
∞∑
i=0

zi

ωi+1

1

z − ω
+

1

ω
+

z

ω2
=

∞∑
i=2

zi

ωi+1

ζ(z) =
1

z
−
∞∑
i=2

zi
∑
ω∈Λ′

1

ωi+1

Note that the lattice sum vanishes for even i (odd i+ 1) because the summands
for ω and −ω cancel. We put

Gk =
∑
ω∈Λ′

1

ω2k
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and get

ζ(z) =
1

z
−
∞∑
k=2

Gkz
2k−1.

By differentiating twice, we get the Laurent expansion of ℘ and ℘′. By compar-
ing coefficients we see that

℘′2 − 4℘3 + g2℘+ g3

is holomorphic with constants term 0. As a holomorphic function on a compact
Riemann surface, it vanishes.

Corollary 8.9. The Riemann surface C/Λ is projective. By the map

Φ : [℘ : ℘′ : 1] : C/Λ→ P2
C

it is identified with the algebraic variety with equation

y2 = 4x3 − g2x− g3.

Proof. We have seen that we get a well-defined map. We can use the same
arguments as in the algebraic case to see that it is an isomorphism. Or we
analyse the zeroes of 4x3−g2x−g3 and see that they have multiplicity 1, making
the image an elliptic curve. By the Hurwitz formula, the map is unramified. We
determine its degree by considering the preimage of the point of infinity: only
the point 0.

It is now clear, why chose the normalisation in the algebraic case as we did.
In the context of the proof of the analytic subgroup theorem, we also need

to know:

Corollary 8.10. The map φ lifts to a holomorphic map

Φ : C→ C3 − {0},

i.e., there is a commutative diagram

C
φ //

��

C3 − {0}

��
C/Λ

Φ
// P2

C.

Proof. We choose

φ = (σ3℘, σ3℘′, σ3).

Obviously the diagram commutes. The entire function σ3 has triple zeroes in
the lattice points, canceling the poles of ℘ and ℘′.
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The Riemann surface C/Λ inherits a group structure from C, turning it
into a complex Lie group. The exponential map is simply the projection. The
invariant differential is dz. We now need to relate these notions to the the
algebraic group structure on the image in P2. Unsurpsingly:

Proposition 8.11. The map Φ is a group homomorphism and Φ∗ dxy = dz.

Proof. We begin with the differential on the affine chart. We have x ◦ Φ = ℘,
y ◦ Φ = ℘′. Hence

Φ∗dx = d(x ◦ Φ) = ℘′dz, Φ∗
dx

y
= dz.

For the group structure, we use the characterisation of the group law via Cl(E).
Given P,Q ∈ C/Λ, the same Riemann-Roch argument as in the algebraic case
gives the existence of a unique R ∈ C/Λ and an elliptic function g with divisor

[P ] + [Q]− [0]− [R].

It is a general fact about elliptic functions that we then have

P +Q− 0−R = 0.

This gives R = P +Q and the group laws are compatible.

Exercise 8.4. Let f be elliptic with lattice Λ. Let a1, . . . , an be the zeroes of
f in a fundamental domain of f and b1, . . . , bn the poles. (Multiple zeroes are
listed multiple times.) Consider the integral∫

∂P

zf ′

f

along the boundary of a fundamental parallelogram in order to deduce∑
ai −

∑
bi ∈ Λ.

Remark 8.12. As a byproduct, we have found a description of exponential
function of the elliptic curve defined by y2 = 4x3 − g2x − g3: it is given by Φ,
so in terms of ℘ and ℘′.

From algebraic to holomorphic

It remains to understand the exponential function for an elliptic curve E in the
sense of algebraic geometry, but viewed as compact Riemann surface. We need
to determine the period numbers ω1 and ω2 such that C/Λ ∼= E with 0 7→ P0.
As the group law is determined by the identifcation with the divisor class group
in both cases, the map is automatically a group homomorphism. We do this
by defining the inverse of C → E, the elliptic version of the logarithm. As the
classical logarithm it is multivalued.
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Recall the construction of log : C∗ → C:

log(t) =

∫ t

1

dz

z
.

The value depends on the choice of path in C∗. Two choices differ by a closed
path, so they differ by the period integral∫

γ

dz

z
= 2πinγ

where nγ is the winding number. Note that dz/z is nothing but the invariant
differential on C∗.

The same construction works for E, but with the fundamental group π1(E,P0) ∼=
Z2 instead of π1(C∗, 1) ∼= Z. So roughly:

logE(t) =

∫ t

0

ω

where ω is the invariant differential form. The value depends on the choice of
path. Any two choices differ by ∫

γ

ω

for a closed path γ. Let γ1, γ2 be a basis of π1(E) and put

ωi =

∫
γi

ω.

Then two values of logE(t) differ by an element

ω ∈ Zω1 + Zω2 =: Λ.

We get a well-defined map

logE : Ean → C/Λ.

Lemma 8.13. The map d logE : Lie(E)an → C maps the dual basis vector of ω
to 1.

Proof. Let u be a local coordinate near 0. We have ω = gdu for a non-vanishing
holomorphic function g. We have

d

du

∫ u

P0

g(t)dt = g(u).

We may replace the coordinate u by v = log(u). In this coordinate

dv = d(log(u)) = gdu = ω

and the dual basis vector of LieEan is simply d/dv and logE is the map v 7→
z.
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Let expE : C→ E be the inverse of logE . It factors via C/Λ.
More precisely, let π : Ẽan → Ean be the universal cover in the sense of

Riemann surfaces. The map logE is a holomorphic map Ẽan → C. It induces
Ean ∼= Ẽan/π1(E, 0)→ C/Λ. This is a map of Riemann surfaces of genus 1, so
surjective and unramified. Actually, it is an isomorphism. This is not obvious
at all.

Theorem 8.14 (Abel-Jacobi). Let C be a compact Riemann surface of genus
g > 0. Fix P0 ∈ C. Then the map

C → Ω1(C)∗/H1(C,Z)

defined by

P 7→

(
ω 7→

∫ P

P0

ω

)
is well-defined, holomorphic and injective.

Proof. Two choices of path from P0 to P differ by a closed path. The integral
over a closed path γ only depends on the homotopy class of γ ∈ π1(C,P0).
Integration is commutative in paths, so the value only depends on the class in
π(C,P0)ab = H1(C,Z).

It is easy to see that the map is holomorphic by varying P and the chosen
paths in a small open disc.

Injectivity is hard, see Forster, Lectures on Riemann Surfaces, Thm 20.7.
(Loc. cit. gives that [P ]− [P0] is principal. That’s impossible because the sum
of the residues vanishes.)

Exercise 8.5. (Talk) Explain how Abel’s theorem is deduced from the Hodge
decomposition and other properties of (co)homology.

The identification Ean ∼= C/Λ defines C → Ean. Everything we did so far,
depended on the choice of ω. Let ∂ ∈ Lie(E)an be the dual basis of ω. We
identify Lie(E)an ∼= C by mapping ∂ to 1.

Proposition 8.15. The composition

Lie(E)an → C→ C/Λ ∼= Ean

is the exponential map of E.

Proof. We first check that the map is additive. The only non-obvious ingredient
is logE . Let γ1, γ2 be paths from P0 to P1 and P2, respectively. Let P1 + γ2 be
the shifted path. The from ω is invariant, hence∫

γ2+P1

ω =

∫
γ2

ω = logE(P2).

The concatenation of γ1 and γ2 + P1 is a path from P0 to P1 + P2, hence

logE(P1 + P2) =

∫ P1+P2

P0

=

∫
γ1

ω +

∫
γ2+P1

ω = logE(P1) + logE(P2).
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The sequence of maps applied to ∂ gives on tangent spaces

∂ 7→ ∂

∂z
7→ ∂

∂z
7→ ∂.

Transcendence

We now apply the analytic subgroup theorem to elliptic curves or product of
linear commutative algebraic groups and elliptic curves.

Theorem 8.16 (Siegel, Schneider (?)). Let E be an elliptic curve over Q with
invariant differential form ω 6= 0, γ be a closed path on Ean which is not null-
homotopic. Then ∫

γ

ω

is transcendental.

The argument is very similar to our proof of transcendence of 2πi.

Proof. Assume that α =
∫
γ
ω is algebraic. Without loss of generality, γ starts

and end in 0 ∈ E. It lifts to a canonical element l(γ) ∈ Lie(Ean) because we can
identify Lie(Ean) with the universal cover. In fact, l(γ) = logE(0) with choice
of γ for the path. Note that l(γ) 6= 0 because γ is not null-homotopic.

We want to apply the analytic subgroup theorem to the commutative al-
gebraic group G = Ga × E. Let b = (−α, l(γ)) ∈ Lie(G). By assumption
exp(b) = (−α, 0) ∈ G(Q). We have ω̃ = (dz, ω) ∈ Lie(G)∨. Let b ⊂ Lie(G) be
its annihilator. Note that b ∈ bC because

ω̃(b) =

∫ −α
0

dz +

∫
γ

ω = 0.

Hence there is an algebraic subgroup H ⊂ G such that Lie(H) ⊂ b and exp(b) ∈
H(Q).

The dimension of H is at most 1 because its Lie algebra is contained in b,
which is 1-dimensional as the annihilator of a single non-zero element. If it is
of dimension 0, then l(γ) = 0, a contradiction to γ not null-homotopic. So we
have dimH = 1.

We first concentrate on π : H → E. This is a morphism of smooth algebraic
curves. It extends to π : H → E where H is a smooth compactification of H.
The map π is either constant or finite. If it was constant, then H = Ga × {0}.
This contradicts again l(γ) 6= 0. So it is constant of some degree. Generically,
the map is unramified and the degree is simply the number of points in the
fibre. As π is a group homomorphism, all its fibres have the same number of
elements. So in fact all preimages are already accounted for by H and we have
H = H.

Now consider p : H → Ga. As H is proper and Ga is not, the map is
constant, so H = {0} × E. This contradicts ω 6= 0.
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Our next aim is to determine the dimension of the Q-vector space of numbers
of the form ∫

γ

ω

with γ closed. We need to talk about morphisms of elliptic curves first.

Exercise 8.6. Let n ∈ Z. Show that multiplication by n is a morphism of
elliptic curves. It is denotes [n].

A morphism of elliptic curves is either constant (and the zero map) or sur-
jective and unramified. The latter are called isogenies. The order of the kernel
is equal to the degree of the morphism, so it is always finite. If an isogeny
E1 → E2 exist, we call them isogenous.

Exercise 8.7. Show that this is an equivalence relation. Hint: consider multi-
plication by the degree of the isogeny. (The argument is easy in the category of
Riemann surfaces but requires extra arguments in the algebraic setting.)

Exercise 8.8. Let E1, E2 be non-isogenuous elliptic curves, i.e., there is no
non-constant morphism E1 → E2. Let

αi =

∫
γi

ωEi

be periods for non-contractible paths on E1 and E2. Show that α1 and α2 are
linearly independent over Q.

We also need to understand the endormorphisms of E. We start in the holo-
morphic setting and compute End(C/Λ). For every n ∈ Z, the multiplication
map [n] is a morphism of elliptic curves, so Z ⊂ End(E). Are there any others?
Without loss of generality, Λ = Z+ τZ with Im(τ) > 0. Let f : C/Λ→ C/Λ be
holomorphic with f(0) = 0. It is automatically a group homomorphism. The
induced map F on C = Lie(C/Λ) is linear, so of the form F (z) = αz for some
a ∈ C. In addition, F (1), F (τ) ∈ Λ. This means

F (1) = α = a+ bτ, F (τ) = ατ = aτ + bτ2 = c+ dτ

with a, b, c, d ∈ Z. This is a quadratic equation for τ , making it an algebgraic
number with [Q(τ) : Q] = 2. The same equation implies that bτ is an algebraic
integer, hence also α:

End(C/Λ) ⊂ OQ(τ).

Exercise 8.9. Let Q(τ)/Q be imaginary quadratic.

(i) Show that E = End(C/Z + τZ) is an order of Q(τ), i.e., E is a finitely
generated abelian group and E ⊗Z Q = Q(τ).

(ii) Find an example where E 6= OQ(τ).

If E is an elliptic curve over Q or C, then the endormorphism ring is con-
tained in End(Ean) (actually equal). Note that f ∈ Z if and only α ∈ R.
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Definition 8.17. Let E be an elliptic curve. We say that it has complex
multiplication if End(E) ) Z. In this case End(E) ⊂ Z[τ ] for a imaginary
quadratic irrational number.

Theorem 8.18 (Schneider). Let E be an elliptic curve over Q with period lattice
Λ. Then the Q-subvector space of C spanned by Λ has dimension 1 if E has
complex multiplication and 2 if not.

Proof. We begin with the case of complex multiplication. We need to show that
there is a Q-linear relation between the periods. Let f : E → E be a morphism
not in Z. It operates by multiplicaton with α /∈ R Let γ be a generator of
π1(Ean, 0). Then f∗γ is linearly indepdent from γ in π1(Ean, 0), so rationally
the space of periods is spanned by∫

γ

ω,

∫
f∗γ

ω =

∫
γ

f∗ω.

The pull-back of ω is again an invariant differential form, so a Q-multiple of ω.
(In fact, it is αω.) This give the Q relation between the two periods.

Now assume that E does not have complex multiplication. Let γ1, γ2 be a
basis of π1(Ean, 0). We have to show that

ω1 =

∫
γ1

ω, ω2 =

∫
γ2

ω

are Q-linearly independent. Assume that they are not. Then there are non-zero
algebraic numbers a1, a2 such that

0 = a1ω1 + a2ω2.

We apply the analytic subgroup theorem to E × E and the point

b = (l(γ1), l(γ2)) ∈ Lie(E × E)an.

Its image in E × E is (0, 0) ∈ E2(Q). Let b ⊂ Lie(E2) be the annihilator of
0 6= ω̃ = (a1ω, a2ω). It contains the element b 6= 0, hence dim b = 1. Hence
there is an algebraic subgroup H ⊂ E × E with Lie algebra b. The restriction
of ω̃ to Lie(H) vanishes. On the other hand, b ∈ Lie(H)an with expH(b) = 0
Moreover, H is itself of dimension 1 and a closed subgroup of E × E, hence
complete. The two projection maps are either constant or finite. They cannot be
constant because both l(γi) 6= 0. The covering maps are unramified because all
fibres have the same number of elements. This makes H itself an elliptic curve.
The element b ∈ Lie(H)an satisfies expH(b) = 0 because Han → (E × E)an is
injective. Hence it is of the form

b = l(γ)

for a closed loop in Han.
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Consider the first projection p1 : H ⊂ E × E → E. Let n1 be the order of
the kernel of p1. Then the multiplication map [n1] : H → H annihilates the
kernel, hence it factors via E.

[n1] : H
p1−→ E

q−→ H.

Note that the compositions q ◦ p1, q ◦ p2 are endomorphisms of E, hence
multiplications by some integers [m1], [m2]. The map E → H is surjective on
rationalised fundamental groups, so aγ = q∗γ

′ for some γ′ ∈ π1(Ean, 0) and
a ∈ Z, a 6= 0. We get

a(l(γ1), l(γ2)) = b = l(γ) = q∗l(γ
′) = (m1l(γ

′),m2l(γ
′)).

This contradicts the linear independence of γ1 and γ2.
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Chapter 9

Commutative algebraic
groups II

We continue to work over an algebraically closed field of characteristic 0. We
have seen affine commutative groups so far: basically Gm and Ga.

Lemma 9.1. All algebraic groups are non-singular.

Proof. In characteristic 0, every variety has an open dense subset U which is
non-singular. (In scheme theoretic language: because it is reduced.) All of G
can be covered by translates of U , hence all of G is non-singular.

Exercise 9.1. Let p be a prime. We define

µp = Ker([p] : Gm → Gm, αp = Ker([p] : Ga → Ga.

Work out what they are as varieties and (if you know the language) as group
schemes. What happens if k has characteristic p? Are they smooth over k?

Definition 9.2. An algebraic group is called abelian variety if it is proper or
complete over k.

Example 9.3. Elliptic curves are examples of abelian varieties.

Theorem 9.4. Let C be a smooth complete curve of genus g. Then the divisor
class group of degree 0 divisors Cl0(C) carries a natural structure of abelian
variety of dimension g, the Jacobian denoted Jac(C). For every P0 ∈ C, the
map

C → Jac(C); P 7→ [P ]− [P0]

is an injective morphism of algebraic varieties.

Proof. See Serre, Algebraic Groups and Class Fields, Chapter V.

73
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Remark 9.5. We have seen the holomorphic version of the statement:

Jac(C)an = Ω1(C)∗/H1(Can,Z)

is a compact complex Lie group because H1(C,Z) is a lattice in Ω1(C)∗ (see
Forster, Riemann surfaces). The map is the one appearing in the Theorem of
Abel-Jacobi, so it is holomorphic and injective. The so-called Riemann relations
can be used to show that Jac(C) is projective. Note an interesting consequence:
The fundamental group of Jac(C) is isomorphic to H1(Can,Z) because vector
spaces are simply connected. This implies that

H1(Jac(C)an,Z) = H1(Can,Z).

Jacobians are commutative. This is a general fact:

Proposition 9.6. Let A,B be abelian varieties. Then the group law is com-
mutative. Every morphism of varities f : A → B with f(0) = 0 is a group
homomorphism.

The traditional reference for abelian varieties is Mumford’s book. We follow
the book of Milne, which is available online.

Proof. It suffices to show that the inversion map ι : A → A is a group homo-
morphism. Hence it suffices to show the second statement. We consider the
diagram

A×A µ−−−−→ A

(f,f)

y yf
B ×B µ−−−−→ B

.

Consider the difference between the two maps

φ(a, a′) = f(a+ a′)− (f(a) + f(a′)).

It satisfies φ(a, 0) = 0 and φ(0, a) = 0. This implies that φ is constant by the
fact below.

Proposition 9.7 (Rigidity). Let φ : V ×W → U be a morphism of varieties
with V complete, V ×W irreducible. Assume that there are points v ∈ V,w ∈
W,u ∈ U such that φ(v,W ) = φ(V,w) = u. Then φ is constant.

Proof. Note that V is connected and the projection map q : V ×W → W is
closed.

Let U0 ⊂ U be an affine neighbourhood of u. Let

Z = q(φ−1(U r U0)) ⊂W.

It is closed. By definition, a point ∈W is in Z if it is the second cooridinate of a
point of V ×W mappint to U0. Conversely, it is in W rZ if φ(V, x) ⊂ U0. As V
is complete and U0 is affine, the map V ×{x} → U0 has to be constant. Actually,
the image is u because φ(v, x) = u. Hence φ is constant on V × (W r Z).

By assumption, w /∈ Z, making W rZ non-empty. As V ×W is irreducible,
the open subset is dense, hence the map is constant on all of V ×W .
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The same argument applies to compact Lie groups in the holomorphic set-
ting, but not for real Lie groups.

Exercise 9.2. Give an example of a compact non-commutative real Lie group.

Exercise 9.3. Let A be an abelian variety over C. Use the exponential map to
show that Aan ∼= Cg/Λ for a lattice (subgroup of maximal rank) in Cg.

Our next aim is to show that all abelian varieties are projective. The full ar-
gument can be found in Milne. We want to explain how the map is constructed.

Definition 9.8. Let X be an irreducible non-singular variety.

(i) A prime divisor is an irreducible subvariety of codimension 1. We denote
the set of prime divisors by X1.

(ii) A divisor is a formal Z-linear combination of prime divisors.

(iii) For f ∈ k(X)∗, we define

div(f) =
∑
Z∈X1

vZ(f)[Z]

where vZ is discrete valuation on k(X) defined by the discrete valuation
ring

OX,Z = lim
U∩Z 6=∅

O(U).

(iv) For every divisor D, we define the linear system

L(D) = {f ∈ k(X)|div(f) ≥ −D}.

In the case of curves, we get back the standard theory that we have used
before.

Given a divisor D and a basis f0, . . . , fn of L(D), we get a rational map

φD : X → Pn, x 7→ [f0(x), . . . , fn(x)].

If x is neither a pole of some fi or a common zero of all fi, then φD is regular
near x. We have to find D such that the map is defined everywhere, injective
and an isomorphism on tangent spaces.

We explain the choice of D for an abelian variety A.

Lemma 9.9. Let P ∈ A. Then there is an open affine subset U ⊂ A containing
0 and P and a prime divisor containing 0 but not P .

Proof. Let U be an affine neighbourhood of 0. The intersection of U and U +P
is non-empty because A is irreducible. Let Q be in the intersection. The affine
subvariety U + P −Q contains 0 because Q ∈ U + P and P because Q ∈ U .

We replace U be U + P − Q. We can view it as a closed subvariety in An.
There is a hyperplane passing through 0 but not through P in U . Let Z be its
closure in A. It is a prime divisor.
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We now construct a sequence Zi of prime divisors such that
⋂
i Zi = {0}.

Pick a point P1 ∈ A and a prime divisor Z1 containing 0 but not P1. Pick
P2 ∈ Ar Z1 and Z2 containing 0 but not P2. The sequence

A ⊃ Z1 ⊃ Z1 ∩ Z2 ⊃ Z1 ∩ Z2 ∩ Z3 ⊃ . . .

has to end after finitely many steps because A satisfies the descending chain
condition, say at Zn. The divisor

D = Z1 + . . . Zn

“separates 0 from P for all P”. Enlarging the divisor with additional compo-
nents, we achieve that its “separates all 0 6= t ∈ T0A from 0”, i.e.,

⋂
T0Zi = {0}.

The divisor 3D does the job. The verification that 3D “separates points and
tangent vectors” uses facts on abelian varieties like the theorem of the cube that
we do not want to review.

Exercise 9.4. Go through the construction in the case of an elliptic curve and
compare it to what we did before.

The structure theorem

Theorem 9.10 (Structure theory). Let G be a connected commutative algebraic
group. Then there is a canonical short exact sequence

0→ L→ G→ A→ 0

with an abelian variety A and a linear connected commutative algebraic group
L. Moreover, there is a canonical split short exact sequence

0→ V → L→ T → 0

with a torus T and a vector group V .

Proof. The first sequence is the commutative case of a theorem of Barsotti,
also known as Chevalley’s theorem, [Ch60]. By Demazure–Gabriel Ch. IV §3
Théoréme 1.1 or Serre’s book Ch. III Proposition 12 we have L ∼= V × T with
V unipotent and a torus T . By Serre Ch. VII §2.7, all unipotent groups are
powers of Ga in characteristic 0, hence V is a vector group.

Corollary 9.11. A commutative algebraic group is simple if and only if it is
isomorphic to Ga, Gm or a simple abelian variety.

Theorem 9.12. All comutative algebraic groups are quasi-projective.

Proof. (Sketch) We start with a short exact sequence

0→ Gsa ×Grm → G→ A→ 0

given by the structure theorem. Let D =
∑
Zi be a divisor on A defining

an embedding of A into projective space. Let D̃ be its “preimage” on G. We
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compactify L = Gsa×Grm by L = (P1)s+r. It is projective. Expicitly: let Ei ⊂ L
be the subvariety where the i-th component is {∞}. The embedding is defined
by the divisor E =

∑
Ei. It remains to patch the two divisors together.

We view G as fibre bundle over A. Zariski-locally it is of the form L × U
for U ⊂ A open. (There is something to prove here!) The bundle is uniquely
determined by the transition maps in the bundle. They are compatible with the
L-operation. (In differential topology such an object is called an L-principal
bundle). The group L operates on L. We can use the same gluing data on
patches L×U to define a fibre bundle G→ A with fibre L. On G, we have the
divisor

D̃ + E.

It is easy to see that it separates points and tangent vectors on G because D and
E do so on A and L. Hence the linear system L(D̃ + E) defines an embedding
of G into some projective space. The complete variety G is projective and G is
quasi-projective.

Falting and Wuestholz [Einbettungen kommutativer algebraischer Gruppen]
describe these compactifications (in the holomorphic setting) completely explic-
itly in terms of theta functions. As in the elliptic case we get a lift to

Lie(G)an → CN r {0}.

Definition 9.13. Let G be a connected commmutative algebraic group over Q.
The periods of G are the numbers of the form∫

γ

ω

where ω is an invariant algebraic differential form over Q and γ a path in Gan

from 0 to a point γ(1) ∈ G(Q).

All transcendence results that we have mentioned so far (except e) are about
numbers of this form. Our aim is to generalise Baker’s theorem to this setting
and characterise all Q-linear relations between such periods. This needs the
language of 1-motives and a bit of preparation.

Extensions of algebraic groups

The category of commutative algebraic groups is obviously not abelian—kernels
are not connected in general. It does indeed become abelian if we drop the
connectedness assumption. We use a different solution.

Definition 9.14. The category of commutative algebraic groups up to isogeny
has as objects commutative algebraic groups and as morphisms the Q-vector
space generated by Hom(G,G′).

Exercise 9.5. Make the composition law explicit. Show that isogenous elliptic
curves become isomorphic in the category of algebraic groups up to isogeny.
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Exercise 9.6. Compute endormorphisms of Ga and Gm in the category of
commutative algebraic groups up to isogeny.

Theorem 9.15. The category of commutative algebraic groups up to isogeny is
abelian.

Proof. We have to build on the case of non-connected algebraic groups. Let G
be such a group and G0 the connected component of 0. The image of G0 ×G0

under the group multiplication is connected, hence again contained in G0. This
makes G0 a subgroup. The number of connected components is finite. Let n be
its order. We claim that

[n] : G→ G

has image contained in G0. Indeed, G/G0 is a finite abelian group and multi-
plication by n agrees with the zero map on the quotient. The map 1/n[n] is
the inverse of the inclusion G0 → G, making the two groups isomorphic in the
isogeny category.

Definition 9.16. A commutative algebraic group is called semi-abelian variety
if its linear part is a torus.

This means that we have an extension

0→ T → G→ A.

Semi-abelian varieties with abelian part A are classified by the dual abelian
variety. We omit this aspect.

Definition 9.17. Let G be a commutative algebraic group. We say that G′ is
a vector extension if there is a short exact sequence

0→ V → G′ → G→

with a vector group V .

We need to understand vector extensions, in particular of semi-abelian vari-
eties.

Definition 9.18. Let A be an abelian category, for example the category of
connected commutative algebraic groups up to isogeny. For X,Y ∈ A we define
the Yoneda-Ext group

Ext1
A(X,Y )

as the set of isomorphism classes of short exact sequences

0→ Y → E → X → 0
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where two sequences are equivalent if there is a homomorphism of exact se-
quences inducing the identity on X and Y . We define an addition by the Baer-
sum

X

∆

��
0 // Y ⊕ Y //

s

��

E1 ⊕ E2
// X ⊕X // 0

Y

as the pull-back via the diagonal and push-out via the summation map.

Exercise 9.7. Compute Ext1(Z,Z) and Ext1(Z/2Z,Z/2Z) in the category of
abelian groups. Also work out the addition.

Proposition 9.19. This definitions yields abelian groups. Given a short exact
sequence

0→ A→ B → C → 0

and an object X, there are natural exact sequences

0→ Hom(X,A)→ Hom(X,B)→ Hom(X,C)→ Ext1(X,A)→ Ext1(X,B)→ Ext1(X,C)

and

0→ Hom(C,X)→ Hom(B,X)→ Hom(A,X)→ Ext1(C,X)→ Ext1(B,X)→ Ext1(A,X)

Proof. These are standard facts that are typically shown in books on homolog-
ical algebra. Another reference is Serre’s book on algebraic groups mentioned
before. We only explain the connecting morphism for the first sequence: Let
f : X → C. By pull-back of the exact sequence, we get an exact sequence

0tøA→ B ×C X → X → 0.

Exercise 9.8. If you know about derived functors: show that Yoneda-Ext agrees
with Ext1 as defined via injective or projective resolutions.

Given a commutative algebraic group G and a vector group V , there is a
natural bilinear pairing

Hom(V,Ga)× Ext1(G,V )→ Ext1(G,Ga).

It induces the classifying map

Ext1(G,V )→ Hom(V ∨,Ext1(G,Ga)).

It is an isomorphism (decompose V ∼= Gsa on both sides to reduce to the trivial
case V = Ga). This means that we can reconstruct a vector extension from the
classifying map.
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Proposition 9.20. Let G be semi-abelian. Then Ext1(G,Ga) is of dimension
g where g is the dimension of the abelian part of G.

Proof. We consider the decomposition

0→ T → G→ A→ 0

ofG into its torus and abelian part. This induces a long exact Hom-Ext sequence

0→ Hom(A,Ga)→ Hom(G,Ga)→ Hom(T,Ga)

→ Ext1(A,Ga)→ Ext1(G,Ga)→ Ext1(Gm,Ga).

In the chapter on affine commutative groups, we have seen that Hom(T,Ga) =
0. Part of the structure theorem is the assertion that all affine commutative
algebraic groups are direct producs of a torus and a vector group. There are no
non-trivial extension. Hence

Ext1(G,Ga) ∼= Ext1(A,Ga).

Any object in Ext1(A,Ga) defines a fibre bundle over A. It is Zariski-locally
trivial and can be described by a Čech-cocycle. The same cocycle also defines
a class in H1(A,O). From the Hodge decomposition for H1(Aan,C) we get

dimH1(A,O) =
1

2
dimH1(Aan,C) = g.

Definition 9.21. Let G\ be the vector extension of G with V = Ext1(G,Ga)∨

and classifying map id. It is called the universal vector extension.

Exercise 9.9. Verify the universal property of G\: Given a vector extension

0→W → G′ → G→ 0

there is a unique morphism G\ → G′ compatible with the projection to G.
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1-motives

Let again k be an algebraically closed field of characteristic 0.

Definition 10.1 (Deligne 1974). A 1-motive is a complex of length 1

[L
f−→ G]

where G is a semi-abelian varieties, L a free abelian group of finite rank and f
a homomorphism of abstract groups. Morphisms of 1-motives are morphisms of
complexes. The category of iso-1-motives is the isogeny category of the category
of 1-motives. We denote it 1−Motk.

We think of L as a lattice, hence the notation.

Exercise 10.1. Show that the category 1−Motk is abelian.

Exercise 10.2. Show that every object M = [L→ G] has a canonical filtration

[0→ T ] ⊂ [0→ G] ⊂ [L→ G]

where T is the torus part of G. Compute the associate gradeds.

Why? Motives are supposed to capture all information obtained in the
cohomology of algebraic varieties, for example their periods. 1-motives do this
for information in degree 1.

Example 10.2. Let C be a smooth projective curve. We have seen that
H1(Can,Q) agrees with H1(J(C)an,Q). We have to consider the 1-motive

[0→ J(C)].

Actually, this generalises to all curves. Smooth curves need semi-abelian
varieties. Homology of singular curves can be expressed in terms of homology
of the normalisation relative to some points. This relative homology need the
lattice part. Even more generally, the first homology of any varietiy can be
related to homology of a smooth curve relative to a finite number of points.

81
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Deligne came up with the definition because of its relation to Hodge theory.
He introduced the notion of a mixed Hodge structure and showed that the
singular cohomology of an arbitrary algebraic variety over C carries a canonical
Hodge structure.

Theorem 10.3. ]Deligne 1974, Hodge III Constr. 10.1.3] Let k = C. There is
an equivalence of categories between the category of 1-motives and the category
of polarisable mixed Hodge structures with whose only non-zero Hodge numbers
are (−1,−1), (−1, 0), (0,−1), (0, 0).

We are interested in what 1-motives can say about periods. We are going
to define a Q-vector space Vsing(M), a k-vector space VdR(M) and a period
isomorphism

φ : Vsing(M)⊗Q C→ VdR(M)⊗k C.
It induces the period pairing

V ∨dR(M)× Vsing(M)→ C

where V ∨dR(M) is the dual k-vector space of VdR(M).

Definition 10.4. Let M be a 1-motive. We define the set P(M) of periods of
M as the image of the period pairing. We define the space P〈M〉 of periods of
M as the abelian subgroup of C generated by P(M).

Our aim is to describe P〈M〉 in terms of generators and relations.

Exercise 10.3. Given an example that shows that P(M) is not a group in
general. Show that P〈M〉 is a k-vector space.

Exercise 10.4. Let f : M → M ′ be an isomorphism in 1−Motk. Show that
P〈M〉 = P〈M ′〉.

The notation is suggested of singular homology and de Rham cohomolgy.

The singular realisation

Let M = [L
u−→ G] be a 1-motive. The associated exponential sequence is

0→ Hsing
1 (Gan,Z)→ Lie(Gan)

exp−−→ Gan → 0.

Definition 10.5. Let Tsing(M) be fibre product of L and Lie(Gan) over Gan

under the structure map u : L→ Gan and the exponential map exp. The vector
space Vsing(M) = Tsing(M)⊗Q is called the singular realisation of M .

By construction, there is a short exact sequence

0→ H1(Gan,Q)→ Vsing(M)→ L⊗Q→ 0.

In particular this gives, Vsing(M) ∼= H1(Gan,Q) if L = 0 and Vsing(M) = LQ if
G is trivial.

Exercise 10.5. Compute dimQ Vsing(M) in terms of the constitutents of M ,
i.e., the lattice, the torus and the abelian variety.
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The de Rham realisation

Definition 10.6. Let M be a one-motive over k. We define the de Rham
realisation of M as

VdR(M) := Lie(M \)

where M \ is the vector extension of G corresponding to the classifying map

Ext1(M,Ga)→ Ext1(G,Ga)

.

In order to understand this definition, we have to look into Ext1(M,Ga).
It is defined as Yoneda-Ext in the category 1−MOTk of objects of the form
[L′ → G′] with a lattice L′ and a connected commutative algebraic group G′.
We identify Ga with the object [0→ Ga]. The short exact sequence

0→ [0→ G]→M → [L→ 0]

gives rise to a long exact sequence

Hom(G,Ga)→ Ext1([L→ 0],Ga)→ Ext1(M,Ga)→ Ext1(G,Ga)

The first group vanishes because G is semi-abelian. Consider an object in the
second group. It is an extension

0→ [L→ 0]→ [L′ → G′]→ [0→ Ga]→ 0.

This means L = L′ and G′ = Ga. The group identfies with Hom(L,Ga) (in the
category of abelian groups). Finally, we claim that the last map is surjective.
Given an extension

0→ Ga → G′ → G→ 0

we want
0→ [0→ Ga]→ [L′ → G′]→ [L→ G]→ 0

We use L′ = L and any lift of L→ G to G′. This is possible because L is free.
In summary:

Lemma 10.7. The sequence

0→ Homab(L,Ga)→ Ext1(M,Ga)→ Ext1(G,Ga)→ 0

is exact.

In particular, these are finite dimensional vector spaces, making M \ well-
defined.

Exercise 10.6. Show that there is a natural exact sequence

0→ G\ →M \ → L⊗Z k → 0

where G\ is the universal vector extension of G of the last chapter.
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Note that we have constructed more than just the group M \. The same
method as in the last chapter gives us a univeral vector extension

[L→M \]

of M .

Exercise 10.7. Make L → M \ explicit in terms of the sequence of the last
excercise. Show that its structural map is injective.

The period isomorphism

In addition, there is a comparison isomorphism Vsing(M)C ∼= VdR(M)C, the
period isomorphism, which is constructed as follows:

L // M \,an // Gan

Lie(M \)C

exp

OO

// Lie(G)C

exp

OO

Hsing
1 (M \,an,Z)

OO

∼= // Hsing
1 (Gan,Z)

OO

The map at the bottom is an isomorphism by homotopy invariance because M \

is a vector bundle over G. Hence the pull-back Tsing(M) of L→ Gan to Lie(G)C
agrees with the pull-back

Tsing(M) = L×Gan Lie(G)C ∼= L×M\,an Lie(M \)C

of L→M \,an to Lie(M \)C.
Let

φM : Vsing(M)C → Lie(M \)C

be the map obtained by this identification of pull-backs.

Lemma 10.8 (Hodge III (10.1.8)). The morphism φM is an isomorphism.

Proof. Both the construction of Vsing() and VdR are natural and exact. Hence
it suffices to treat the three cases M = [L → 0] and M = [0 → Gm] and
M = [0→ A] (abelian variety, separately.

In the first case, M \ = L∨k and and the exponential map is the identity. The
period map is the identity as well.

In the second case, Tsing(M) = 2πZ ⊂ C and Lie(Gm) = Q, so they become
isomorphic after extension of scalars.

In the case of abelian varieties, T := Tsing(M) has rank 2g. This agrees
with the dimension of VdR(M) = Lie(A\) = 2g. However, we also have to be
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careful with the maps. From the complex analytic point of view, T is a discrete
subgroup of Lie(A)an. The map

T ⊗ C/T → Lie(A)an → Lie(A)an/T = Aan

is a vector extension. Note that (A\)an is the universal vector extension in the
holomorphic category because H1(AC,O) = H1(Aan,O). Hence it suffices to
show that T ⊗ C/T is the universal vector extension. Given a vector extension

H → Aan

the map T → Lie(A)an lifts to Lie(H) with the same argument as for A\. This
induces T ⊗C→ Lie(H)→ Lie(H)/T = H and hence T ⊗C/T → H. We have
verified the universal property.

Exercise 10.8. Express the period pairing in terms of intgegration of invariant
differential forms.

The analytic subgroup theorem for 1-motives

We work over k = Q now.

Theorem 10.9. Let M be a 1-motive over Q, ω ∈ V ∨dR(M) and σ ∈ Vsing(M)
such that ω(σ) = 0 under the period pairing. Then there is a short exact sequence
in 1−MotQ

0→M1
ι−→M

p−→M2 → 0

and σ1 ∈ Vsing(M1), ω2 ∈ V ∨dR(M2) with

σ = ι∗σ1, ω = p∗ω2.

The motive M2 can chosen such that p∗V ∨dR(M2) = Ann(σ).

Exercise 10.9. Show the converse: If σ = i∗σ1 and ω = p∗ω2 for a short exact
sequence of motives, then ω(σ) = 0.

Proof. Let M = [L → G]. Without loss of generality, σ ∈ Tsing(M). We apply
the analytic subgroup theorem to the commutative algebraic group M \. This
yields a short exact sequence

0→ H1
i−→M \ p−→ H2 → 0

such that u ∈ i∗Lie(H1)C and ω ∈ p∗coLie(H2). We can even achieve

p∗coLie(H2) = Ann(σ) = {x ∈ coLie(M \)|x(σ) = 0}.

Note that this annihilator contains only elements defined over Q. By ssumption
it is non-empty, but we do not know its dimension.
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Our aim is to define M1 and M2 such that M \
i = Hi. Let Gi and Vi be the

semi-abelian and vector parts of Hi,

L1 = H1 ∩ L ⊂M \

and L2 the free part of L/L1. This defines an exact sequence of 1-motives up
to isogeny

0→ [L1 → G1]→ [L→ G]→ [L2 → G]→ 0

compatible with the exact sequence in 1−MOTk

0→ [L1 → H1]→ [L→M \]→ [L2 → H2]→ 0.

The universal property of the vector extension induces a commutative diagram

0 // M \
1

//

��

M \ //

��

M \
2

��

// 0

0 // H1
// M \ // H2

// 0

The morphism on the left is injective. By definition, Tsing(M1) is the pull-back

of L1 → G to Lie(M \
1)an. On the other hand,

Lie(H1)C ∩ Tsing(M) = exp−1
H1
L1.

The sequence
0→ Ker(expH1

)→ exp−1
H1

(L1)→ L1 → 0

is exact. The first term is H1(Gan
1 ,Z) because H1 is a vector extension of G1.

For M \
1 , we have the usual sequence

0→ H1(Gan
1 ,Z)→ Tsing(M1)→ L1 → 0.

The two are compatible under M \
1 → H1, so we see that

Tsing(M1) = Lie(H1)C ∩ Tsing(M).

By the choice of H1, the element σ is on the right hand side, hence in Tsing(M1).

The morphism M \
2 → H\

2 is surjective, hence the induced map

coLie(H2)→ coLie(M \
2)

is injective. All elements of p∗coLie(M \
2) annihilate σ, hence

p∗coLie(M \
2) ⊂ Ann(σ) = p∗coLie(H2).

This is the converse inclusion, so we have equality.

Exercise 10.10. Show that M 7→ M \ is exact and faithful, i.e., injective in
morphisms. Is it also full, i.e., surjective on morphisms?
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The period conjecture for
1-motives

There is a famous and deep conjecture of Grothendieck about the transcendence
degree of subfields of C generated by periods of smooth and projective varieties.
It was also generalised to periods of all varieties. The book of André explains
this very well.

Algebraic relations between periods can also be interpreted as Q-linear re-
lations between periods of product varieties. This alternative point of view was
taken by Kontsevich in his formulation of the conjecture. Details and in partic-
ular the comparison of the two version can be found in Huber–Müller-Stach. It
is proved for periods of curves (or for classes in degree 1 of general varieties) in
Huber–Wüstholz.We have mentioned before that such periods appear as periods
of 1-motives, so the result can be stated in these terms.

Definition 11.1. Let P1 the union of the P(M) for all 1-motives M .

Exercise 11.1. Verifiy P(M1) + P(M2) ⊂ P(M1 ⊕M2). Deduce that P1 is a
Q-vector space.

By definition, elements of P1 are of the form ω(φ(σ)) ∈ V ∨dR(M)× Vsing(M)
for varying M . There are two types of obvious relations:

• (bilinearity)

(aω + bη)(φ(σ)) = aω(σ) + bη(σ)

ω(φ(cσ + dτ)) = cω(σ) + dω(τ)

for all a, b ∈ Q, c, d ∈ Q.

• (functoriality) For f : M1 →M2, ω2 ∈ V ∨dR(M2), σ1 ∈ Vsing(M1)

ω2(f∗σ1) = (f∗ω2)(σ1)

87
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The period conjecture claims that all Q-linear relations are induced from these.

Theorem 11.2 (Period conjecture). Let P̃1 be the Q-vector space generated by
symbolds of the form (ω, σ)M for ω ∈ V ∨dR(M), σ ∈ Vsing(M) for varying M
with relations spanned by bilinearity and functoriality as above.

Then the natural map P̃1 → P1 is bijective.

Exercise 11.2. Verify that

P̃1 =
⊕
M

V ∨dR(M)⊗Q Vsing(M)/functoriality relations⊕
M

HomQ(Vsing(M), VdR(M))∨/functoriality relations

Make the functoriality relations explicit in both descriptions.

Proof. Let
∑n
i=1 ai(ωi, σi)Mi

with ai ∈ Q be a linear combination whose image

in C vanishes. We want to show that it vanishes also in P̃1. By replacing ωi by
aiωi we may assume that all ai are equal to 1. Let

M =

n⊕
i=1

Mi.

Let ιi and πj be the natural inclusions and projections. They satisfy an or-
thonormality relation. We put

ω = (ω1, . . . , ωn), σ = (σ1, . . . , σn).

By the bilinearity and functoriality relations

(ω, σ)M =
∑
i,j

(π∗i ωi, ιj∗σj)M =
∑
i,j

(ι∗i πj∗ωi, σj)Mj

in P̃. Moreover, only the summand with i 6= j are non-zero. By assumption

ω(σ) =

n∑
i=1

ωi(σi) = 0.

We may apply the analytic subgroup theorem for motives to M and obtain a
short exact sequence of motives

0→M1
i−→M

p−→M2 → 0

such that σ = i∗σ1, ω = p∗ω2. By the functoriality relation

(ω, σ)M = (p∗ω2, i∗σ1)M = (ω2, p∗i∗σ1)M2
= ω2, 0)M2

= 0.
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Remark 11.3. Looking more carefully that the relations between the periods of
M are induced by bilinearity and functoriality in the subcategory 〈M〉 generated
by M . More precisely: the full abelian subcategory of 1−MotQ closed under
subobjects.

If a period is Q-linearly independent of 1, it is transcendental.

Theorem 11.4 (Transcendence). Let M = [L → G] be a 1-motive, σ ∈
Vsing(M), and ω ∈ V ∨dR(M). Then the integral∫

σ

ω

is in Q if and only if there are φ, ψ ∈ V ∨dR(M) with

ω = φ+ ψ

such that
∫
σ
ψ = 0 and the image of φ in V ∨dR(G) vanishes.

Idea of proof. See Huber-Wüstholz. Consider M ⊕ [Z→ 0] and apply the ana-
lytic subgroup theorem for 1-motives.

By using the connection between co/homology of curves and 1-motives, this
can be translated to differential forms on curves.

Corollary 11.5. Let C be a smooth projective curve, Let C be a smooth pro-
jective curve over Q and ω a meromorphic differential form defined over Q. Let
σ =

∑n
i=1 aiγi where γi : [0, 1] → C for i = 1, . . . , n are differentiable paths

avoiding the poles of ω and ai ∈ Z. We assume that ∂σ has support in C(Q).
In this situation the period

α =

∫
σ

ω.

is algebraic if and only if ω is the sum of an exact form with no extra poles and
a form with vanishing period.

To conclude, we want to give an explicit new example of a transcendental
period. We work on an elliptic curve E over Q. Recall the Weierstraß-functions
attached to E.

Theorem 11.6. Let u ∈ C be such that ℘(u) ∈ Q and expE(u) is non-torsion
in E(Q). Then

uζ(u)− 2 log σ(u)

is transcendental.

Idea of proof. See Huber-Wüstholz. It is possible to write down an explicit
differential form on E with simple poles in P = expE(u) and the point at
infinity

ξP =
y + y(P )

x− x(P )

dx

y
.
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Its pull-back under expE is given very explicity in terms of ℘ and ℘′. We choose
a path from u/2 to −u/2 and integrate. This does not give quite the number
in the theorem, but there is an explicit relation with other periods. We then
write down the 1-motive that gives rise to the same periods and use that we
understand the relations in this period space.


