Übungsblatt 13

Abgabe: 07.02.2022

Aufgabe 13.1. Sei L/K eine algebraische Körpererweiterung. Zwei Elemente $\alpha, \alpha' \in L$ heißen konjugiert, wenn sie dasselbe Minimalpolynom haben. Wir betrachten die Operation

$$Gal(L/K) \times L \longrightarrow L$$

 $(\sigma, \alpha) \longmapsto \sigma(\alpha)$

- (a) Seien $\alpha, \alpha' \in L$ in derselben Bahn bezüglich der Operation der Galoisgruppe. Dann sind sie konjugiert.
- (b) Sei L/K normal. Dann stimmen die Konjugationsklassen mit den Bahen überein.
- (c) Sei L/K galois. Dann gilt sogar

$$|\operatorname{Gal}(L/K)\alpha| = \operatorname{deg}\left(\operatorname{Min}_{L/K}(\alpha)\right)$$

für alle $\alpha \in L$.

(6 Punkte)

Aufgabe 13.2. Sei $\zeta_5 \in \mathbb{C}$ eine primitive 5-te Einheitswurzel.

(a) Bestimmen Sie alle Zwischenkörper der Körpererweiterung $\mathbb{Q}(\zeta_5)/\mathbb{Q}$. Markieren Sie noch die Zwischenkörper F, so dass F/\mathbb{Q} galois ist.

(4 Punkte)

(b) Beweisen Sie, dass ζ_5 mit Zirkel und Lineal konstruierbar ist.

(2 Punkte)

Aufgabe 13.3. Sei K der Zerfällungskörper von $X^3 - 12$ über \mathbb{Q} . Bestimmen Sie alle Zwischenkörper der Körpererweiterung K/\mathbb{Q} . Markieren Sie noch die Zwischenkörper F, so dass F/\mathbb{Q} galois ist. Hinweis: Sie dürfen die Ergebnisse aus der Aufgabe 12.3 benutzen.

(4 Punkte)

Aufgabe 13.4. Sei K der Zerfällungskörper von $X^{16} - X$ über \mathbb{F}_4 .

- (a) Berechnen Sie den Grad der Körpererweiterung K/\mathbb{F}_4 .
- (b) Berechnen Sie die Galois-Gruppe der Körpererweiterung K/\mathbb{F}_4 .
- (c) Zeigen Sie, dass diese Körpererweiterung galois ist.
- (d) Bestimmen Sie alle Zwischenkörper dieser Körpererweiterung K/\mathbb{F}_4 und markieren Sie noch die Zwischenkörper F, so dass F/\mathbb{F}_4 galois ist.

(6 Punkte)

Aufgabe 13.5. Es sei K ein Körper der Charakteristik p > 0. Man zeige, dass der Frobenius-Homomorphismus $\sigma \colon K \to K, a \mapsto a^p$, genau dann surjektiv ist, wenn K vollkommen ist.

(4 Bonus-Punkte)