Übungsblatt 9

Abgabe: 20.12.2021

Aufgabe 9.1. Man berechne den Grad der Körpererweiterung $\mathbb{Q}(\alpha)/\mathbb{Q}(\sqrt{2})$ mit $\alpha \in \mathbb{C}$ so dass $\alpha^4 = 2$ und das Minimalpolynom von α über $\mathbb{Q}(\sqrt{2})$.

(4 Punkte)

Aufgabe 9.2. Sei K ein Körper und L/K eine endliche Körpererweiterung, so dass p = [L:K] eine Primzahl ist. Man zeige: Es existiert ein $\alpha \in L$ mit $L = K(\alpha)$.

(4 Punkte)

Aufgabe 9.3. Man zeige, dass die Körpererweiterung $\overline{\mathbb{Q}}/\mathbb{Q}$ nicht endlich ist. (4 Punkte)

Aufgabe 9.4. Sei L/K eine endliche Körpererweiterung und sei $\alpha \in L$. Sei

$$\varphi_{\alpha} \colon L \to L, x \mapsto \alpha x.$$

Sie dürfen ohne Nachweis benutzen, dass φ_{α} eine K-lineare Abbildung ist. Sei $P_{\alpha} \in K[X]$ das charakteristische Polynom von φ_{α} und $Min(\alpha) \in K[X]$ das Minimalpolynom von α .

(a) Man zeige, dass $P_{\alpha}(\alpha) = 0$.

(4 Punkte)

(b) Man zeige, dass $P_{\alpha} = \pm \operatorname{Min}(\alpha)$, wenn $L = K(\alpha)$. Im allgemeinem gilt: P_{α} ist eine Potenz von $\operatorname{Min}(\alpha)$.

(4 Bonus-Punkte)