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Chapter 1

Presheaves and Sheaves

A general reference (besides Hartshorne II.1) is the book by Godement ”Théorie
des faisceaux”

X a topological space.

Definition 1.1. A presheaf F (of abelian groups) consists of

(a) for every U ⊂ X open an abelian group F(U);

(b) for every V ⊂ U open in X a homomorphism called restriction

%UV : F(U)→ F(V ) s 7→ s|V

such that

(0) F(∅) = 0;

(1) %UU = id;

(2) For W ⊂ V ⊂ U open %VW %UV = %UW .

Example. Let A be an abelian group. The constant presheaf is given by

U 7→ A for all U 6= ∅ .

Example. M a set
U 7→ Maps(U,M)

Remark. Equivalently, a presheaf is a contravaraint functor

F : X → ab

where X is the category with objects U ⊂ X open and morphisms

MorX(V,U) =

{
incl V ⊂ U
∅ else.

This point of view is actually very helpful and also generalises well.
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2 CHAPTER 1. PRESHEAVES AND SHEAVES

Definition 1.2. A morphism of presheaves is a transformation of functors. We
denote PSh = PShX the category of presheaves on X.

We are actually interested in special presheaves.

Definition 1.3. A presheaf F is called sheaf if:

(3) For every open cover U =
⋃

i∈I Ui: if s ∈ F(U) such that s|Ui
= 0 for all

i, then s = 0.

(4) For every open cover U =
⋃

i∈I Ui: given si ∈ F(Ui) for all i ∈ I such
that for all i, j ∈ I

si|Ui∩Uj
= sj |Ui∩Uj

then there is s ∈ F(U) such that

s|Ui = si .

A morphism of sheaves is a morphism of presheaves. The category of sheaves
on X is denoted Sh = ShX .

Remark. This is equivalent to exactness of

0→ F(U)→
∏
i∈I
F(Ui)→

∏
(i,j)∈I2

F(Ui ∩ Uj)

where the last map is given by

(si)i∈I 7→
(
sj |Ui∩Uj

− si|Ui∩Uj

)
(i,j

Example. • U 7→ Maps(U,M) for any set M

• U 7→ C(U,R) continuous maps because “continuity is local”

• if X is a complex manifold: U 7→ O(X) holomorphic maps

• the constant presheaf A is not a sheaf in general, because for X = U ∪ V
with U ∩ V = ∅

0→ F(X)→ F(U)×F(V )→ F(U)× 0× 0×F(V )

with the last map the zero map.

Proposition 1.4. Let F be a presheaf. Then there is a sheaf F+ and a mor-
phism F → F+ (unique up to unique isomorphism) with the universal property
that any morphism F → G into a sheaf G factors uniquely via F+. We call F+

the sheafification of F .

This is an explict way of saying that there is a functor ·+ left adjoint to the
inclusion Sh→ PSh. More generally:
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Definition 1.5. Let C and D be categories. Consider two functors F : C → D
and G : D → C. We call F left adjoint to G and G right adjoint to F if

MorC(A,G(B)) = MorD(F (A), B)

for all objects A of C and B of C.

In this case F is uniquely determined by G and vice versa. Hence the issue is
existence. By general principles it follows from the existence of direct limits.

Definition 1.6. Let I be a directed set, i.e, a partially ordered set such that
for any two elements i, j there is an element k with i ≤ k and j ≤ k.

A direct system indexed by I is a collection Ai for i ∈ I of abelian groups
together with homomorphisms φij : Ai → Aj for i ≤ j satisfying

φii = id for all i ∈ I
φjkφij = φik for all i ≤ j ≤ k

The direct or injective limit A = lim−→Ai of (Ai, φij) is an abelian group A
together with homomorphisms φi : Ai → A compatible with the φij in the obvious
way which is universal with this property. Given another abelian group B and
homomorphisms fi : Ai → B compatible with φij then they factor uniquely via
f : A→ B.

For more details see for example Atiyah-Macdonald.

Idea of Proof of the Proposition. Let F be a presheaf. We consider the directed
set of all covers U =

⋃
i∈I Ui with morphisms the refinement maps of covers.

We define F ′ by

F ′(U) = lim−→
U=

⋃
i∈I Ui

Ker

∏
i∈I
F(Ui)→

∏
i,j

F(Ui ∩ Uj)


(This goes also under the name of 0-the Chech cohomology. Actually, the index
set is not directed, but it becomes direct on these kernels.) We have

F+ = (F ′)′ .

For more details see e.g. Tamme, Introduction to etale cohomology. The ar-
gument in Hartshorne is different. It is less conceptual but uses only partially
ordered sets.

Proposition 1.7. The categories of presheaves and sheaves are abelian. Sheafi-
fication is exact. Let f : F → G be a morphism of presheaves. Then for all
U ⊂ X open

Ker(f)(U) = Ker(f(U) Coker(f)(U) = Coker(f(U))

If, in addition, F and G are sheaves, then the presheaf Ker(f) is a sheaf and is
the kernel of f in Sh. Moreover, the sheafification of CokerPSh(f) is the cokernel
in the category of sheaves.
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Proof. The case of presheaves is very easy. Let now f : F → G in Sh. We want
to verify the sheaf axiom for Ker(f). Let U =

⋃
i∈I Ui be an open cover. We

consider the commutative diagram

0 −−−−→ G(U) −−−−→
∏
G(Ui) −−−−→

∏
G(Ui ∩ Uj)x x x

0 −−−−→ F(U) −−−−→
∏
F(Ui) −−−−→

∏
F(Ui ∩ Uj)x x x

0 −−−−→ Ker f(U) −−−−→
∏

Ker f(Ui) −−−−→
∏

Ker f(Ui ∩ Uj)x x x
0 0 0

The first two lines are exact by the sheaf axioms for F and G. The vertical
sequences are exact by definition and because

∏
is exact. We see by a diagram

chase that the last line is exact.

For the statement on the cokernel, we have to verify the universal property of
the cokernel. Let

F f−→ G g−→ H
be morphisms of sheaves such that gf = 0. By the universal property of
CokerPSh, the morphism g factors uniquely via

G → CokerPSh(f)→ H .

By the universal property of sheafification the second map factors uniquely via
CokerPSh(f)+.

Remark. Warning: the functor
⊕

is exact on sheaves. However,
∏

is not!

There is a very useful tool to study sheaves.

Definition 1.8. Let F be a presheaf and P ∈ X a point. The stalk of F in P
is given by

FP = lim−→
P∈U
F(U) .

Elements in FP are called germs. A germ is represented by an open neighbour-
hood U of P and a section s ∈ F(U).

Lemma 1.9. Sheafification preserves stalks. As sequence of sheaves is exact if
and only if the induced sequences of stalks are exact for all P ∈ X.

Note that the section functors

Γ(U,F) = F(U)

are exact on presheaves but only left exact on sheaves.

Finally, we want to relate sheaves for a change of topological space.
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Definition 1.10. Let f : X → Y be continuous. Let F be a sheaf on X. We
define the direct image f∗F ∈ ShY by

U 7→ F(f−1(U))

Let the inverse image f−1 : ShY → ShX be left adjoint to f∗.

Remark. Depending on the reference, the left adjoint is often called f∗. Hartshorne
reserves this for the case of OX -modules, see later.

As with any adjoint, one needs to check existence.

Lemma 1.11.
f−1G(U) = lim−→

f(U)⊂V
G(V )

where the limit is over all open neighbourhoods V of f(U). For P ∈ X

(f−1G)P = Gf(P ) .

The functor f−1 is exact and f∗ is left exact.

Exercises

(Needs basic complex analysis) OnX = C consider the sheavesO of holomorphic
functions and O∗ of non-vanishing holomorphic functions and the map

exp : O → O∗ f 7→ exp ◦f

Check that it is not surjective as morphism of presheaves but surjective as
morphism of sheaves.

Hartshorne II 1.3, 1.8, 1.17, 1.19
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Chapter 2

Schemes

We follow Hartshorne Kapitel II.2.

Definition 2.1. A scheme is a locally ringed space i(X,OX) such that for every
point there is a an open neighbourhood U and a ring A such that

(U,OX |U ) ∼= (SpecA,O) .

We need to explain:

Definition 2.2. A locally ringed space is a pair (X,OX) where X is a topo-
logical space and OX is a sheaf of rings, i.e., all OX(U) are rings, all %UV are
ring homomorphisms. OX is called structure sheaf. A locally ringed space is a
ringed space such that all stalks OX,P are local rings.

All rings are commutative with 1. We allow the ring 0 with 0 = 1.

Example. (i) Let X be a topological space, Z the constant sheaf Z on X
(i.e, the sheafification of the constant presheaf Z). Then (X,Z) is a ringed
space, but not locally ringed.

(ii) Let X be a smooth manifold, C the sheaf of differentiable functions. Then
(X, C) is a locally ringed space because a germ of a differentiable function
is invertible if and only if its value is non-zero. (Analysis 2).

(iii) Let X be a Riemann surface, O the sheaf of holomorphic functions. Then
(X,O) is locally ringed for the same reason (Funktionentheorie).

(iv) Let V be an affine variety, OV the sheaf of algebraic/regular functions on
V . Then (V,OV ) is a locally ringed space.

The spectrum of a ring

Definition 2.3. Let A be ring. Let

SpecA = {p ⊂ A|p prime ideal }

7
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For every ideal I let
V (I) = {p ∈ SpecA|I ⊂ p}

For f ∈ A let
V (f) = V (〈f〉)

and
Uf = SpecA \ V (f)

The Zariski topology on SpecA has the sets of the form V (I) as closed sets.

Lemma 2.4. This is a topology.

Proof.

V (0) = SpecA

V (1) = ∅⋂
j∈J

V (Ij) = V (
∑

Ij)

V (I1) ∪ V (I2) = V (I1I2)

• A point of SpecA is closed if and only if p is maximal.

• If A is without zero divisors, then 0 ∈ SpecA and this point is dense.

• The open sets of the form Uf are a basis of the topology because

V (I) =
⋂
f∈I

V (f) .

We have
Uf ∩ Ug = Ufg .

• SpecA is quasi-compact, ie., every open cover has a finite subcover.

Proof. Without loss of generality we consider a cover by Ufi für i ∈ I. By
assumption ⋂

i∈I
V (fi) = V (〈fi|i ∈ I〉) = ∅

If I = 〈fi|i ∈ I〉 was a proper ideal, it would be contained in a maxi-
mal ideal, making V (I) non-empty. Hence I is not a proper ideal, i.e, it
contains 1. Then

1 =
∑
i∈I

aifi

where only finitely many ai 6= 0. Hence only finitely many of Ufi suffice.
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Proposition 2.5. There is a unique sheaf of rings O on SpecA such that

O(Uf ) = Af

For p ∈ SpecA we have
Op = Ap

Proof. Uniqueness follows from the sheaf condition because every U can be
coverd by Uf ’s. The computation of the stalk follows because

Op = lim
p∈Uf

Af = Op

The essential step in the proof of existence is the verification of the sheaf con-
dition in the special case Uf =

⋃
i∈I Ufi , see Hartshorne.

This finishes the definition of schemes!

Morphisms

Definition 2.6. Let (X,OX) and (Y,OY ) be ringed spaces. A morphism

(f, f#) : (X,OX)→ (Y,OY )

is a continuous map
f : X → Y

together with a morphism of sheaves of rings on Y

f# : OY → f∗OX

A morphism of locally ringed spaces is a morphism of ringed spaces such that
in addition for all P ∈ X the induced morphism

f#P : OY,f(P ) → OX,P

is local, i.e., the preimage of the maximal ideal is the maximal ideal.

A morphism of schemes is a morphism of locally ringed spaces.

It is easy to see that
A 7→ (SpecA,O)

is a contravariant functor from the category of rings into the category of locally
ringed spaces. Conversely,

(X,OX)→ OX(X)

is a functor form the category of locally ringed spaces into the category of rings.
The composition

A 7→ (SpecA,O)→ O(SpecA)

is the identity. This is not obvious for the converse composition!



10 CHAPTER 2. SCHEMES

Proposition 2.7. Let A,B be rings. Every morphism of locally ringed spaces

(f, f#) : (SpecA,O)→ (SpecB,O)

is induced by a ring homomorphism φ : B → A.

In other words, the category of rings is equivalent to a full subcategory of the
category of schemes.

Remark. Only when actually going through this proof, it becomes clear why
the strange locality condition in the definition of morphisms is there.

Excercises

(i) Let (X,OX) be a locally ringes space such that every point has a neigh-
bourhood U such that (U,OX |U ) is isomorphic to (U ′, C) where U ⊂ Rn

is open and C the sheaf of differentiable functions on U . Show that X has
a unique structure of a differentiable manifold such that OX is the sheaf
of differentiable functions on U .

(ii) Work out SpecA and its topology in the following cases: Z, k field, k[X]
and k[X,Y ] for k algebraically closed field, Zp (p-adic numbers), Z/pn for
p prime, k[[X]] for k a field.

(iii) Spec(A⊕B) = SpecA ∪ SpecB.

Hartshorne II.2.1, 2.3, 2.5, 2.7, 2.19



Chapter 3

Examples and first
properties

Hartshorne II.2 2. half and II.3 first half

Varieties

Let k be an algebraically closed field, V ⊂ An affine variety over k. We have
the functors

V 7→ k[V ] 7→ V = Spec(k[V ])

We want to understand V better. By Hilbert’s Nullstellensatz the points of V
correspond to the maximal ideals of k[V ]. Hence:

Definition 3.1. Let X a topological space. Let |X| be the set of closed point of
X with the induced topology.

Proposition 3.2. V = |V| as topological space.

Proof. The closed set in V have the form

{P ∈ V |f(P ) = 0 for all f ∈ I}

for an ideal I ⊂ k[V ]. The closed sets in V have the form

{p ∈ Spec(k[V ]|f ∈ p for alle f ∈ I}

By the Nullstellensatz we have

V (I) = |V (I)|

11
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Corollary 3.3. The map i : V → Spec(k[V ]) is continuous and induces a
bijections between the topologies. In particular, sheaves on V are equivalent to
sheaves on Spec(k[V ]).

Corollary 3.4. V → Spec(k[V ]) is a morphism of locally ringed spaces.

Proof. Let U ⊂ Spec(k[V ]) be open. Then

OV(U) = OV (|U |)

It suffices to check this on sets of the form Uf for f ∈ k[V ]. In this case both
sides are equal to k[V ]f .

How do we get V from V ? The additional points are prime ideals. They corre-
spond to the irreducible closed subsets of V .

Definition 3.5. Let X be a topological space. We define

X̃ = {Z ⊂ X|Z irreducible, closed }

with the topology where the sets of the form Z̃ with Z ⊂ X are closed.

Corollary 3.6. V = Ṽ

The objects V and V carry the same information. It is standard to identifiy
them implicitly. What about morphisms?

MorVark(V,W ) = Mork−Alg(k[W ], k[V ])

MorSch(V,W ) = MorRing(k[W ], k[V ])

The category of k-varieties is not a full subcategory of the category of schemes!
This is because the scheme V does not know about the ground field k.

Grothendieck: Everything is relative!

Definition 3.7. Let S be a scheme. The category of S-schemes has as objects
morphisms X → S and as morphisms those scheme morphisms for which the
obvious diagram commutes. We write X/S or simply X instead of X → S.

Example. Let S = SpecA. A morphism X → S is equivalent to having OX

a sheaf of A-algebras (i.e., we are choosing such a structure!) For a morphism
(f, f#) : (X,OX)→ (Y,OY ) of S-schemes the map f# is A-linear.

Proposition 3.8. The category of k-varieties is a full subcategory of the cate-
gory of k-schemes.

We generalise:

Definition 3.9. Let A be a ring. Then

An
A = SpecA[X1, . . . , Xn]

is called n-dimensional affine space over A.
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Projective varieties

Let V/k be a projective variety. Then V = Ṽ with the structure sheaf

OV(U) = O(|U |)

is a scheme, because locally a projective variety is affine. We can also define V
directly in the language of schemes.

Definition 3.10. Let S =
⊕

d≥0 Sd be a graded ring and S+ =
⊕

d>0 Sd. We
put

Proj(S) = {p ⊂ S| homogenous prime ideal with S ( p}

with the Zariski topology with respect to homogenous ideals.

As in the affine case there is a basis of the topology consisting of open sets Uf

for f ∈ S homogenous. The structure sheaf is uniquely determined by

OProjS(Uf ) = S(f) =

{
a

fd
∈ Sf |a ∈ Sd

}
i.e., S(f) consists of the homogenous elements of degree 0 in the Z-graduated
ring Sf .

Lemma 3.11. This is a scheme.

Example. Let A be a ring, S = A[X0, . . . , Xn]. Then

Pn
SpecA = Pn

A = ProjS

is called projective space over SpecA.

3.0.1 First properties

A scheme (X,OX) is called:

• affine, if it is isomorphic to (SpecA,O) (then: A = OX(X))

• connected/irreducible, if the topological space X is connected/irreducible.

• reduced, if all OX(U) are reduced (only 0 is nilpotent). (Equivalently: all
stalks are reduced; there is an affine open cover where the sections are
reduced)

• integral, if all OX(U) are integral domains, i.e., without zero divisors
(Equivalently: reduced and connected)

• locally noetherian, if there is an open affine cover by SpecAi with Ai

noetherian

• noetherian, if it is there is a finite open cover by SpecAi with Ai noetherian
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The dimension of X is its dimension as a topological space, i.e., the maximal
length of a chain of irreducible closed subsets of X

Example. An
A has dimension n+ dimA.

A morphism f : X → Y of schemes is called

• affine, if f−1(U) affine for all affine U ⊂ Y

• locally of finite type, if there is an open affine cover {Ui}i∈I of Y , such
that f−1Ui has an open cover {Vij}j∈Ji , such that the morphism

f# : O(Ui)→ O(Vij

turns O(Vij) into a finitely generated OUi
-algebra. I.e, locally on X and

Y the ring homomorphism is of finite type.

• of finite type, if in addition, the index sets Ji can be chosen to be finite.

• finite, if f is affine and for U = SpecA ⊂ Y open is O(f−1(U)) a finite
A-Algebra, i.e., finitely generated as an A-module.

Excercises

Hartshorne II 2.10, 2.11, 3.5, 3.6, 3.8
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Immersions and points

Ha II.3

4.1 Immersions

Let U ⊂ X be an open subset. Then (U,OX |U ) is a scheme and (U,OX |U ) →
(X,OX) a morphism of schemes.

Definition 4.1. A morphism of this form is called open immersion.

Closed subsets are more difficult. Let V (I) ⊂ SpecA closed. Then V (I) ∼=
SpecA/I as topological spaces. The induced map SpecA/I → SpecA is is a
morphism of schemes.

Definition 4.2. i : Y → X is called closed immersion, if there is an open affine
cover {Ui}i∈I of X such that i : f−1(Ui)→ Ui is of the form SpecA/I → SpecA.
Then Y is called a closed subscheme of X.

Hence closed immersions are affine and even finite!

The scheme structure on V (I) depends on the choice of I, it is not unique.

Example. k field, X = A1
k, x = 0 ∈ k viewed as a point of A1

k. The corre-
sponding maximal ideal is generated by T . Let I = (T ). Then

V (T ) = V (T 2) = {(T )}

is the point zero in A1
k. ABut

Spec(k[T ]/T 2) 6= Spec(k[T ]/T )

as schemes. Both are closed subschemes of the line.

Indeed,
Spec(k[T ]/T )→ Spec(k[T ]/T 2)

15
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is also a closed immersion. In the language of schemes, we do not view these
“thickened” points as a stupid accident, but rather as a nice thing to have. It is
the difference between intersecting two lines or a line with a parabola in a point
of tangency.

4.2 Points

Example. Let k be algebraically closed. Then

x 7→ x2

defines a morphism A1
k → A1

k. It is a morphism, because x2 is a polynomial in
x.

How do we treat this in the scheme situation? Let R be a ring. We often write

f : A1
R → A1

R x 7→ x2 .

What should this mean for prime ideals? One clear way is to look at the
corresonding homomorphism of rings:

R[T ]← R[T ] : f#

It is R-linear and maps T to T 2. This is correct, but unintuitive. It would mean
to work out the effect of a map in terms of generators and relations.

We work with T -valued points instead.

Definition 4.3. Let X/S be an S-scheme. For every T/S we call

X(T ) = MorS(T,X)

the set of T -valued points of X.

Example. Let S = Spec(k), X = Spec(k[X,Y ]/f) and K/k be an extension of
fields. Then

X(SpecK) = Mork(SpecK,X)

= Mork(k[X,Y ]/f,K) = {(x, y) ∈ K2|f(x, y) = 0}

Example. Let S = SpecR, X = A1
R. Then

X(T ) = MorS(T,A1
R) = OT (T )

In order to check this, we first consider affine T = SpecR′. Then we have again

X(T ) = MorR(R[T ], R′) = R′ = O(SpecR′)

The general case follows by gluing morpisms.
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The assignment T 7→ X(T ) is a functor.

Lemma 4.4. Let X,Y/S be two S-schemes. Then a morphism f : X → Y of
S-schemes is the same as a transformation of functors

f(·) : X(·)→ Y (·)

Proof. This is the Yoneda lemma. It is true in any category.

It is often easier and more intuitive to specify a map on T -valued points!

Example. Let X = A1
R. Then x 7→ x2 is the map on T -valued points

X(T ) = O(T )→ O(T ) x 7→ x2

In the situation of varieties, we get back the map we had there.

The point of view of T -valued points allows us to check equalities.

Example.
(x 7→ x2) ◦ (x 7→ x2) = (x 7→ x4)

as morphisms von schemes, because the assertion is true for T -valued points for
all T .

The method requires a functorial assigment, but this is something we have
anyway most of the time. This holds in particular if the object X was defined
by its T -valued points in the first place. We call this a moduli space.

This point of view also allows us to understand how to translate a definition
from the category of sets to the category of schemes. Of particular importance
is the case of fibre products.

4.3 Fibre product

Definition 4.5. Let X,Y, S sets and f : X → S and g : Y → S maps. Then

X ×S Y = {(x, y) ∈ X × Y |f(x) = g(y)}

is called fibre product of X and Y over S.

Fibrewise, we have the product: for s ∈ S we have

(X ×S Y )s = Xs × Ys

The fibre product has a universal property, the property of a product in the
category of sets over S. More precisely:

Let φ : T → X and γ : T → Y be maps with gγ = gφ, then there is a unique
map

(φ, γ) : T → X ×S Y

over which φ and γ factor.
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Definition 4.6. Let X,Y be two S-schemes. Then the fibre product X ×S Y
is the uniquely determined scheme with

(X ×S Y )(T ) = X(T )×S(T ) Y (T )

for alle T/S. Equivalently, X ×S Y has the universal property of fibre products
in the category of S-schemes.

Proposition 4.7. The fibre product exists.

Proof. We obtain it by gluing the fibre product in the affine case.

In the first step, we reduce to S affine, then X affine and finally Y affine.

Now let X = SpecA, Y = SpecB,S = SpecC affine. We consider the universal
property for T = SpecR and get precisely the universal property of the tensor
product. A homorphism A⊗C B of C-algebras towards R corresponds 1:1 to a
pair of C-algebra homomorphisms A→ R and B → R.

Let s ∈ S be a point of the topological space. Then we get morphism of schemes

s : Spec(κ(s))→ S

where κ(s) = OS,s/ms is the residue field of s.

Definition 4.8. Let f : X → S be a morphism, s ∈ S a point. Then

Xs = X ×S Spec(κ(s))

is called fibre of f over s.

Remark. In this situation we really have

Xs = f−1(s)

as sets. The scheme structure is described by the definition!

Definition 4.9. Let S′ be an S-scheme. Then the functor

SchS → SchS′ X 7→ X ×S S
′

is called base change.

Example. For every ring R we have

An
SpecR = An

SpecZ ×SpecZ SpecR

hence we define for every scheme S

An
S = An

SpecZ ×SpecZ S

Pn
S = Pn

SpecZ ×SpecZ S

Easy to check: the properties affine, finite, finite type, locally of finite type,
open immersion, closed immersion are stable under base change.
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Excercises

Ha II 3.9, 3.10, 3.13

Let X/S and Y/S be schemes and f : X → Y an S-morphism. We define its
Graph Γf ⊂ X ×S Y as

Γf (T ) = {(x, f(x)) ∈ X(T )×S(T ) Y (T )}

Show that the natural map
Γf → X

is an isomorphismus, in particular Γf is a scheme.

Let g : Y → Z another S-morphism. Show:

Γg◦f = Γf ×Y Γg
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Chapter 5

Separated and proper
morphisms

Ha II.4

We want to discuss the analogues of ”Hausdorff” and ”compact”. We start in
the topological case.

5.1 Separated

Let M be a topological space that is locally homoeorphic to an open subset of
Rn.

Definition 5.1. M is called hausdorff, if any two points x, y have disjoint open
neighbourhoods, i.e., x ∈ Ux, y ∈ Uy such that Ux ∩ Uy = ∅.

Open subsets of Rn are hausdorff. With the same argument open subsets of
metric spaces are hausdorff. However, this is not true for M as above. To be
hausdorff is a global property, not a local one.

Example. Let M = R× {0, 1}/ ∼ with the equivalence relation (x, 0) ∼ (x, 1)
for all x 6= 0. This is a line with the origin doubled. We call a subset of M
open, if its preimage in R×{0, 1} is open. The two origins cannot be separated
by open neighbourhoods.

In differential geometry, we always make the additional assumption that all
spaces are hausdorff. We have the analogous problem in the category of algebraic
varieties. This uses a different characterisation of hausdorff.

Lemma 5.2. Let M be a topological space. M is hausdorff, if and only if the
diagonal {(x, x)|x ∈M} is a closed subset.

Definition 5.3. A scheme X is called separated, if the diagonal

∆ : X → X ×X

21
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is a closed immersion. A morphism f : X → X is called separated, if the
relative diagonal

X → X ×S X

is a closed immersion.

This property is local in S, but not in X.

Example. (i) Affine schemes are always separated over Z, because the diag-
onal

SpecA→ SpecA⊗Z A

corresponds to mulitplication A⊗A→ A, hence it is surjektive.

(ii) Open and closed immersions are separated.

(iii) The doubled line A1×{0, 1} glued along U0 is not separated. The product
with itself has 4 points 0× 0 (all in the closure of ∆(A1 − {0}), but only
two of them are in the image of the diagonal.

Further properties

• stable under composition.

• stable under base change S′ → S.

• stable under products.

• f : X → Y , g : Y → Z, g ◦ f separated. Then f is separated.

The last property allows us to consider the category of separated S-schemes.
All morphisms in this category are separated.

Definition 5.4. Let k be a field. A variety over k is as scheme over k, that is
(irreducible?) reduced, of finite type and separated.

Quasi-projective varieties are always separated, hence the property is never
mentioned in the classical theory.

The easiest method to verify the properties is the valuative criterion. We will
get to this later.

5.2 Proper (eigentlich)

We return to the topological situation. A topological space is called quasi-
compact, if every open cover has a finite subcover. It is called compact, if it is
quasi-compact and hausdorff.

Example. (i) Closed and bounded subset of Rn are compact.

(ii) Projektive spaces (over R or C with the metric topology) are compact.
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Lemma 5.5. (i) Every quasi-compact subset of a topological space is closed.

(ii) Every closed subset of a compact topological space is compact.

(iii) Images of quasi-compact subsets under continuous maps are quasi-compact.

(iv) Every continuous map of compact spaces is closed, i.e., images of closed
subsets are closed.

In fact, we want to treat the relative version, because everything is always
relative for schemes.

Definition 5.6. A continuous map f : M → M ′ of topological manifolds is
called proper (German: eigentlich), if preimages of compact sets are compact.

The inclusion of a closed subset is proper, the inclusion of an open subset usually
not. Proper covers are also called unbounded (”unbegrenzt”).

Lemma 5.7. Proper maps are closed and stable under base change.

Definition 5.8. A morphism f : X → Y of schemes is called proper, if it is
separated, of finite type, and, in addition, universally closed, i.e., every base
change is closed as a map of topological spaces.

Example. (i) Closed immersions are proper. Open immersions usually not.

(ii) Pn
S is proper over S.

Further properties:

• Stable under composition.

• Stable under base change

• Stable under products

• f : X → Y and g : Y → X morphisms, g ◦ f proper, g separated. Then f
is proper.

The last property implies that are morphisms between proper S-schemes are
proper.

These properties are again verified by a valuative criterion.

5.3 Valuation rings

We return to the topological situation.

Lemma 5.9. Let M be locally homeomorphic to open subsets Rn. M is quasi-
comact, if every sequence has a converging subsequence. It is hausdorff, if the
limit of a converging sequence is unique. M is compact if the limit exits and is
unique.
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We cannot work with sequences. We rewrite a bit and consider continuous maps

f : (−ε, 0)→M

If M is quasi compact, the f extends to (ε, 0]. If M is hausdorff, the extension
is unique.

What is the analogue of an interval in algebraic geometry? We are closer to
complex analysis, hence we really want an analogue of disc

∆r = {z ∈ C||z| < r}

We imagine the radius arbitrarily small

lim
r→0
O(∆r),

i.e. germs of holomorphic functions in 0 ∈ C. This the ring of converging power
series (with variable radius of convergence).

Definition 5.10. Let K be a field. A valuation on K is a map

v : K − {0} → G

with values in a totally ordered abelian group such that

(i) v(xy) = v(x) + v(y)

(ii) v(x+ y) ≥ min(v(x), v(y)

We often put v(0) =∞. The valuation ring of v is

R = {x ∈ K|v(x) ≥ 0}

A ring R is called valuation ring, if it is isomorphic to the valuation ring of a
valuation.

Remark. Valuation rings are local rings with maximal ideal

m = {x ∈ K|v(x) > 0}

Example. (i) Let R = k[[t]] be the ring of formal power series, K = k((t))
the field of formal Laurent series. Its elemetns have the form f =

∑
i≥n ait

i

with n ∈ Z. If an 6= 0 then v(f) = n.

(ii) Let k be algebraically closed, C a non-singular curve over k, P ∈ C a point.
Then Op is a valuation ring. We choose a local parameter (a function in
mp rm2

p, e.g., a coordinate function). Then every non-zero element has
the form tnu with a u. Its valuation is n.

(iii) The same works for Riemann surfaces and holomorphic functions. We get
back the above local ring of germs of holomorphic functions.
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(iv) Let K = Q, p a prime number and vp(x) the maximal p-power in x. Then
vp is a valuation with valuation ring Z(p), fractions with denominator
prime to p.

(v) Let K be the algebraic closure of k((t)). The valuation of (i) extends
uniquely to K. The set of values is not longer Z but Q.

Definition 5.11. A valuation ring is called discrete, if it takes values in Z.

In this case we can normalise the valuation such that it becomes surjective.

A valuation ring is discrete if and only if it is noetherian. In this case, it is
a principal ideal domain with a unique maximal ideal. The maximal ideal is
generated by any element with valuation 1.

Excercises

Let A be a one-dimensional local noetherian integral comain with maximal ideal
m and residue field k. The following are equivalent:

(i) A is a discrete valuation ring

(ii) A is integrally closed

(iii) m is a principal ideal

(iv) dimg(m/m2) = 1

(v) Every non-zero ideal is is a power of m

(vi) There is x ∈ A such that every non-zero ideal has the form (xv) with
v ≥ 0.

Ha II 4.1, 4.2, 4.3, 4.8
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Chapter 6

Valuative criteria

Ha II 4, auch Görtz-Wedhorn §15.3

Let X → Y be a morphism of schemes, R a valuation ring with field of fractions
K. Let T = SpecR, η = SpecK. We consider a commutatie diagram of the
form

η −−−−→ X

i

y yf

T −−−−→ Y

We ask about lifts T → X.

Theorem 6.1. Let X locally noetherian.

(i) A morphism f : X → Y is separated if and only if for every valuation ring
R and every diagram as above a lift T → X is unique (if it exists).

(ii) A morphism f : X → Y is proper if and only if f is of finite type and for
every valuation ring R and every diagram as above, a unique lift exists.

If Y is noetherian and f locally of finite type, it suffices to consider discrete
valuation rings.

There is an even more general version where the condition X ”locally noethe-
rian” is removed. Then f has to be quasi-separated, i.e., for V ⊂ Y affine, open
and U1, U2 ⊂ f−1(V ) affine, open U1 ∩ U2 is quasi-compact.

We first show how to apply the criterion.

Corollary 6.2. Let f : X → Y , g : Y → Z separated/proper. then g ◦ f is
separated/proper.

Proof. Consider the diagram as above. The lift to Y exists (exists and is unique)
because g is separated. The lift to X existits (exists uniquely), because f is
separated (proper).

27
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Definition 6.3. A morphism f : X → Y is called projective, if it factors over
a closed immersion into Pn

Y . It is called quasi-projective, if it factors into an
open immersion followed by a projective morphism.

Corollary 6.4. Projective morphisms are proper. Quasi-projective morphisms
are separated.

Proof. Because of the computation rules, it suffices to show that Pn
Z → SpecZ

is proper. This is done by explicit calculation with the valuative criterion.

In order to understand the valuative criterion better, we first need to understand
morphisms of U and T into some scheme. We restrict to the noetherian case.
As a warm-up:

Lemma 6.5. Let η = Spec(K) for a field K. A morphism η → X into a
scheme X consists of the choice of a point x ∈ X and a ring homomorphismus

κ(x)→ K .

Proof. Spec(K) consists of a single point. The point x is its image. It is con-
tained in some open affine U = SpecA ⊂ X. In order to understand η → X,
it suffices to understand η → U . Now we are in the affine situation, i.e, we are
dealing with a ring homomorphism

A→ K

It factors uniquely via A/P for a prime ideal P (in fact via x ∈ Spec(A)).
The residue field κ(x) = (AP )/APP is the field of fractions of A/P . The ring
homomorphism A/P → K factors uniquely via the field of fractions.

Conversely, the composition A→ κ(x)→ K defines a ring homomorphism.

Now let R be a discrete valuation ring R with field of fractions K and residue
field k. Its spectrum T = Spec(R) has two points η = Spec(K) (generic point)
and ξ = Spec(k) (special point). The map η → T is an opem immersion, ξ → T
a closed immersion.

Consider f : T → X. Let x0 = f(ξ), x1 = f(η). We consider the closure

Z = {x1}−

Then f−1Z is a closed subset of T , containing η. Hence f−1Z = T . In other
words: x0 ∈ Z. We say: x0 is a specialisation of x1.

Consider an open affine neighbourhood of U of x0. By construction Z is irre-
ducible with generic point x1. Every open subset of Z contains x1, in particular
U ∩ Z. From now on, we may replace X by U and are in the affine situation.
Then Z = V (p1) where p1 is the prime ideal for x1.

We equip Z with the reduced scheme structure. The morphism T → X factors
via Z set theoretically. We want to check that this is also true as schemes. On
the level of rings we are dealing with the map

A = O(X)→ R



29

The composition O(X)→ R→ K factors by the previous lemma over O(X)/p1,
where p1 is the prime ideal for x1. Then Z = SpecA/p1.

The map A/p1 → K is not arbitrary, but factors via R such that the preimage
of ξ is x0. Consider the local ring O = OZ,x0

. The morphism of schemes T → Z
induces a local ring homomorphism

O → R

such that the preimage of the zero ideal is the zero ideal. We say: O dominates
R.

Conversely, let x0, x1 ∈ X be given with x0 ∈ {x1}− = Z (with reduced struc-
ture), and a domination of local rings

OZ,x0 → R

Then this defines a morphism of schemes.

The valuative criteria are about checking that certain images of morphisms are
closed. The main assertion is contained in the following property.

Proposition 6.6. Let f : X → Y be a morphism of noetherian schemes.

(i) Suppose f(X) is closed under specialisation of points. Then f(X) is
closed.

(ii) Let y ∈ Y be a point, y0 ∈ {y}− a specialisation. Then there is a chain
of points y0, y1, . . . , yn = y and a sequence of discrete valuation rings Ri

and morphisms
fi : Ti = SpecRi → Y

such that fi(ηi) = yi, fi(ξi) = yi−1.

Proof. We start with the topological part. Without loss of generality Y = f(X).
Let y ∈ Y . We replace Y by an affine neighbourhood of y, i.e, Y is is affine. X
is quasi-compact, hence there is an open affine cover U1, . . . , Un. The point y is
in the closure of f(

⋃
Ui), hence in the closure of some f(Ui). Without loss of

generality X is affine. Both can be assumed reduced.

We consider the corresponding ring homomorphism B → A. Let I be the
kernel. Then f factors via the closed subset V (I). As f(X) is dense, we have
V (I) = SpecB, hence I = 0 (asB is reduced). In other wordsB → A is injective.
The point y ∈ Y belongs to a prime ideal p of B. Let p′ be a minimal prime
ideal of B, contained in p. Geometrically: SpecB is finite union of irreducible
components, p′ is the generic point y′ of an irreducible component containing
y. Hence y is a specialisation of y′. By assumption it suffices to show that y′ is
in the image of f .

We localise with respect ot p′ und obtain a map

Bp′ → Ap′
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As p′ was minimal, Bp′ is a field. Let q′0 be any prime ideal of Ap′ . Its preimage
in Bp′ is a prime ideal of Bp′ , hence equal to the unique prime ideal Bp′′p

′. Let
q′ be the preimage of q′0 in A. This is the preimage of y′ in X.

We turn to the second claim. Let y0 ∈ Y . Without loss of generality we replace
Y by an affine neighbourghood of y0. It necessarily contains y. Put Y = SpecB.
The points correspond to prime ideals p0 und p. As the ring is noetherian, there
is a maximal chain of prime dieals

p0 ( p1 ( . . . pn = p

This is the chain of points yi we were looking for. We construct the descrete val-
uation ring Ri as the integral closure of (B/pi−1)pi

. The latter is a 1-dimensional
noetherian integral domain. Hece Ri is in addition integrally closed, hence a
discrete valuation ring. By construction we have a map B → Ri.

Excercises

Let k = k be algbraically closed, C = V (XY ) ⊂ A2
k, R = k[[t]]. Determine all

morphisms of k-schemes Speck[[t]] → C. What are the images of the special
and the generic point in each case?

Hartshorne II 4.4, 4.6, 3.17
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Sheaves of modules

Ha II 5

Let (X,OX) be a ringed space.

Definition 7.1. A sheaf of OX -modules F is a sheaf of abelian groups together
with a homomorphism of sheaves

OX ×F → F

such that for every open U ⊂ X the abelian group F(U) is given the structure
of an OX(U)-module. A morphismus of sheaves of modules is a morphism of
sheaves, compatible with the OX-operation.

The category is abelian. Kernels and cokernels carry canonical OX -module
structures.

Example. (i) Let X be a topological space, OX the constant sheaf Z. Then
a sheaf of modules is the same as a sheaf of abelian groups.

(ii) Let X be a smooth manifold, E → X a vector bundle, C the sheaf of
smooth functions, E the sheaf of smooth sections of E. Then E is sheaf of
C-modules.

(iii) Let X = SpecA be an affine scheme, M an A-Modul. Then there is a
unique sheaf of OX -modules M̃ with

M̃(Uf ) = Mf

(Same proof as for the structure sheaf; or by tensoring the conditions there
by M). The stalk of M̃ in p is Mp.

Other notions:

• Tensor product: F ⊗OX
G is the sheafification of F(U)⊗OX(U) G(U).

31
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• Internal Hom: HomOX
(F ,G) Sheafication of HomOX(U)(F(U),G(U)).

• F is called free, if it is isomorphic to a direct sum of compies of OX . It is
called locally free if there is an open cover where this is true.

• F is called invertible, if is locally free of rank 1.

• A sheaf of ideals is a submodule sheaf of OX .

• coherent, if locally on X it is of the shape

On
X → Om

X → F → 0

• Let X be scheme. F is called quasi-coherent, if there is an open affine
cover such that F|U is of the form M̃ .

Hartshorne calls a sheaf coherent, if F is quasi-coherent with M finitely gen-
erated. For noetherian schemes, the two notion agree. The above is the good
definition in the general case.

Lemma 7.2. Every quasi-coherent sheaf on SpecA is of the form M̃ . The
functor M 7→ M̃ is an equivalence of categories.

Corollary 7.3. The category of quasi-coherent sheaves is abelian. If X is
noetherian, the same is true for the category of coherent sheaves.

Definition 7.4. Let f : X → Y be a morphismus ringed spaces, F a sheaf of
OX-modules on X. Then f∗F has a natural structure of a sheaf of OY -modules.
It is called direct image of F .

Let G be a sheaf of OY -modules on Y . Then f−1G has a natural structure of a
sheaf of f−1OY -modules on X. We call

f∗G = f−1G ⊗f−1OY
OX

the inverse image von G.

The two functors are adjoint. The functor f∗ is left exact, f∗ is right exact. On
schemes they respect the categories of quasi-coherent sheaves. If the schemes
are noetherian, the inverse image of a oherent sheaf is coherent. This fails for
direct images!

Example. Let A = k[t]. We consider f : SpecA→ Speck and F = OX . Then
f∗F = A. This module is not finitely generated over k.

Consider a closed immersion i : Z → X. By definition, there is a morphism

OX → i∗OZ .

Let IZ be the kernel. We want to understand the situation locally. Let X =
SpecA. By assumption Z = SpecB and the induced map A → B is surjective
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with kernel I. On SpecA, we have IZ = Ĩ. Note that i∗OZ has support on Z,
i.e, (i∗OZ)|X−Z = 0.

Conversely, let I ⊂ OX be a quasi-coherent sheaf of modules. Then OX/I has
support on the closed set and this defines a closed subscheme.

Locally: Spec(A/I) ⊂ SpecA has support in V (I) = {p|I ⊂ p} und Spec(A/I)→
SpecA is the closed immersion.

Projective schemes

Recall: For a graded ring S the set Proj(S) consists of the homogenous prime
ideals of S different from S+ =

⊕
i≥1 Si. The closed sets are the V (I) for

homogenous ideals I. A basis of the topology are the sets of the form Uf =
Proj(S) r V (f) for a homogenous element f ∈ S. We have

Uf
∼= Spec((Af )0)

as schemes.

Definition 7.5. Let S be a graded ring, M a graded S-module. The associated
sheaf M̃ is uniquely characterised by

Uf 7→ (Mf )0

In p it has the stalk (Mp)0.

The sheaf quasi-coherent, because on Uf it is equal to ((Mf )0)∼.

Translation of the graded turns a graded module M into a new graded module
M(n). More precisely

M(n)d = Mn+d

Definition 7.6. For n ∈ Z let

OX(n) = (S(n))∼

For n = 1 it is called OX(1) (Serre) twist sheaf.

We are going to see that the definition of OX(1) does not only depend on X,
but also on the choice of S.

Lemma 7.7. Let S be a graded ring, such that S is generated by S1 as an
S0-algebra.

(i) OX(n) is invertible.

(ii) OX(n)⊗OX(m) = OX(n+m)

(iii) OX(n)(X) = Sn.

(iv) For m > 0 the sheaf OX(m) is generated by global sections i.e, the map
OX(m)(X)⊗O(X) OX,x → OX(m)x is surjective for all points x ∈ X.
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(v) For n < 0 we have OX(m)(X) = 0.

(vi) OX(X) = S0.

An example of such a graded ring is

S = k[X0, . . . , Xn]/I

for a homogenous ideal I. We do the argument for I = 0, X = Pn
k . The general

case is done with the same arguments.

Proof. We cover Pn
k by the standard affines

Ui = UXi = SpecAi

with Ai = (k[X0, . . . , Xn]Xi)0 = k[Y0, . . . , Ŷi, . . . , Yn], Yj = Xj/Xi. The sheaf
OX(n) is associated to the module

Mi = (k[X0, . . . , Xn]Xi)n

It is isomorphic to Ai (as Ai-module) via P 7→ Xn
i P . In other words: Xn

i

is a basis vector for Mi. (This is also defined for negetative n because Xi is
invertible.)

More generally for all graded S-modules:

(M ⊗N)∼ ∼= M̃ ⊗ Ñ

Note: S(a)⊗S S(b) = S(a+ b).

We now consider global sections OX(m)(Pn) = Sm. They vanish for m < 0 and
are equal to k for m = 0. For m = 1 we have sections X1, . . . , Xn. The image of
Xi is a basis vector on Ui. Hence the sheaf is generated by global sections.

The elements Xi are not functions on Pn
k , but rather sections of an invertible

sheaf.

Excercises

Ha II 5.1, 5.6, 5.7 (Tipp: Nakayama’s Lemma)
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Projective morphisms

Ha II.5 and II.7

Let A be a noetherian ring, S =
⊕

d≥0 Sd with S0 = A and S finitely generated
by S1, i.e., S is a quotient of A[X0, . . . , Xn]. We consider the scheme Proj(S).
By construction it is projective, i.e., embedded into Pn

A.

Recall that we can reconstruct S from X = Proj(S) and OX(1), because

S =
⊕
n∈Z

Γ(X,OX(n))

Definition 8.1. An invertible sheaf L on an A-scheme X is called very ample,
if X ∼= Proj(S) with S =

⊕
n∈Z Γ(X,L⊗n)

The choice of a very ample sheaf and generators x1, . . . , xn ∈ L(X) of S defines
an embedding into projective space. How do we know if L is very ample?

We want to understand how we can embed schemes into projective spaces. This
requires understanding quasi-coherent sheaves on Pn

A.

Lemma 8.2. Let X = ProjS as above, F quasi-coherent on X. Then F ∼= M̃
with

M = Γ∗(F) =
⊕
n∈Z

Γ(X,F(n))

Here F(n) = F ⊗OX(n).

Proof. We consider Pn. Wir want to construct β : M̃ → F . We restrict both
sheaves to Ui = Spec(A[X0, . . . , Xn]Xi)0. There it is enough to consider global
sections. A section s of M̃ on Ui is of the form m/(Xi)

d with m homogenous of
degree d, i.e., m ∈ Γ(X,F(d)). We view X−di as an element of Γ(Ui,OX(−d)).
Then s is a section of F(d)⊗OX(−d) ∼= F . This procedure is compatible with
the change of charts.

Corollary 8.3. Let Y ⊂ Pn be a closed subscheme. Then Y = Proj(S) with
S = A[X0, . . . , Xn]/I for a homogenous ideal I.

35



36 CHAPTER 8. PROJECTIVE MORPHISMS

Proof. In general Y is defined by a sheaf of ideals I ⊂ OPn
A

. By the lemma

I = Ĩ for a homogenous ideal I.

In order to understand quasi-coherent sheaves on Y , it is now enough to under-
stand quasi-coherent sheaves on Pn

A.

Definition 8.4. Let X be noetherian. An invertible sheaf L auf X is called
ample, if for every coherent sheaf F there is n0 ∈ N such that for all n ≥ n0
the sheaf F ⊗ L⊗n is generated by global sections.

Example. Let X be affine. Then every invertible sheaf is ample, because every
coherent sheaf is generated by global sections.

Let X = Pn
A. Then OX(−1) is not ample, because for F = OX the condition

cannot be satisfied.

Theorem 8.5 (Serre). Let X be projective over A. Then OX(1) is ample.

Proof. It is enough to consider X = Pn
A. Let F be coherent. Then F = M̃ .

Every F|Ui is generated by finitely many global sections. Their denominator is
a power of Xi. We expand the fractions such that all denominators have the
same degree. Then their nominators are in the same Md = Γ(X,F(d)).

A global section f ∈ Γ(X,F(d)) is the same as a morphismus

OX → F(d)

because we only need to specify the image of 1. By twisting this is a morphism

OX(−d)→ F

Corollary 8.6. Let X be projective over A, F coherent. Then F is a quotient
of a locally free sheaf. More precisely, there is a surjective morphism

OX(d)n → F

Theorem 8.7. Let X be projective over A, F coherent. Then is F(X) a finitely
generated A-module.

Proof. There is an elementary proof in Ha 5.19. There is a better, cohomological
proof in Ha III Thm 5.2. It uses the above surjection in order to reduce to the
case F = OX(d). However, we have to compute the whole cohomology ring, not
only the global sections.

Corollary 8.8. Let f : X → Y be a projective morphism of noetherian schemes.
If F is coherent, so is f∗F .

Proof. The assertion is local on Y , hence wlog Y = SpecA. Then f∗F is a
finitely generated A-module by the theorem.
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We continue to study ample sheaves.

Lemma 8.9. Let X be a noetherian scheme, L an invertible sheaf. The follow-
ing are equivalent:

(i) L ample

(ii) L⊗m ample for all m > 0

(iii) L⊗m ample for some m > 0.

Proof. (i) to (ii) is easy, (ii) to (iii) is trivial. We consider (iii) to (i). Let F be
coherent. We apply the definition of ample to the sheaves

F ,F ⊗ L, . . . ,F ⊗ L⊗m−1

By assumption there is n0, such that F ⊗ L⊗i ⊗ L⊗mn is generated by global
sections for all n ≥ n0, i = 0, . . . ,m− 1.

Theorem 8.10. Let X be of finite type over a noetherian ring A, L an invertible
sheaf on X. Then: L is ample if and only if there is n ≥ 0 such that L⊗m is
very ample.

The proof needs some preparation. Let φ : X → Pn
A, L = φ∗O(1). Then there

is a natural map
O(1)(Pn)→ L(X) = lim

f(X)⊂U
L(U)

Let si = φ∗(Xi). These are global generators of L. We now show the converse.

Theorem 8.11. Let L be an invertible sheaf on X, and s0, . . . , sn global gen-
erators. Then there is a unique

φ : X → Pn
A

with L and si as above.

Proof. Roughly:
P 7→ [s0(P ), . . . , sn(P )] ∈ P(L(X))

The values cannot vanish simultanuously because they generate LP
∼= OP .

Let Xi = {P ∈ X|si(P ) 6= 0} (meaning: (si)P /∈ mpLP ). This is an open
subset. We define

Xi → Ui ⊂ Pn
A

by the ring homomorphismus

(A[X0, . . . , Xn]Xi)0 → Γ(Xi,OXi)

by mapping Xj/Xi to sj/si. The latter is a section of von L ⊗ L−1 ∼= O.

This morphismus is a closed immersion, if
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(i) Xi affine

(ii) The above morphism O(Ui)→ O(Xi) is surjective.

We get back to the proof of Theorem 8.10.

Proof. Let L⊗m be very ample, i.e., L⊗m = φ∗O(1) for a closed immersion φ.
Then L⊗m is ample, hence also L.

Conversely, let L be ample. For P ∈ X let U be an affine open neighbourhood,
on which L is free. Then Y = X r U with sheaf of ideals IY . This sheaf is
coherent, hence there is n, such that IY ⊗ L⊗n is generated by global sections.
We consider one such with s(P ) 6= 0. We may understand s as a section of L⊗n.
We consider

Xs = {Q ∈ U |s(Q) 6= 0}

By construction, P ∈ Xs and Xs ⊂ U . The open set U is affine and s corre-
sponds to f ∈ O(U) under the trivialisation of L. Hence Xs = Uf is itself affine.
The section s is a generator of LQ for all Q ∈ Xs.

The Xs for all s, P cover X. By quasi-compactness finitely many of these Xs

suffice; we may choose a single n for all of them because twisting does not
change Xs. Hence we have found our global sections s of L⊗n. What was
called Xi in the last theorem is Xs, so affine. They define an affine morphism.
For surjectivity, we choose finitely many algebra generators bij of O(Xi). After
further twisting, the bijsi extend to all of X.

Excercises

Ha II 5.13, 5.16, 5.18, 7.5



Chapter 9

Differential forms

Ha II 8, Matsumura: Commutative algebra

Recall the basics of calculus. Let U ⊂ R be open and f : U → R a smooth
function. In every point x ∈ U the function f has a derivative f ′(x). This
defines a new function f ′ : U → R. The assignment f 7→ f ′ satisfies some
algebraic conditions.

(i) R-Llinearity

(ii) Leibniz-rule (fg)′ = fg′ + gf ′

In addition, there is the chain rule:

f(y(x))′ = y′(x)f ′(y(x))

This means that the assignment in not invariant under a change of coordinates
y(x) on U . However we would need this invariance in order to generalise to
manifolds!

Better point of view: : f 7→ df = f ′dx assigns to a function on U a differential
form. Then

∂f

∂x
dx =

∂f

∂y
dy

because dy = ∂y
∂xdx.

In higher dimension, i.e., for U ⊂ Rn with coordinates x1, . . . , xn we have

f 7→ df =
∑ ∂f

∂xi
dxi

In order to understand what happens for varieties, we should also consider the
case of embedded manifolds. We consider the simplest case. Let U ⊂ Rn,
F : U → R a smooth map and X the set of zeroes of F . By the implicit
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function theorem, the set X is a manifiold of dimension n − 1, if the vector
(∂1F, . . . , ∂nF ) is non-zero on all points of X. Suppose e.g., that ∂nF (x) 6= 0
on all of X. Then x1, . . . , xn−1 is a system of coordinates and (locally) there is
a smooth function xn = φ(x1, . . . , xn−1) such

F (x1, . . . , xn, φ(x1, . . . , xn)) = 0

The differential forms on X are linear combinations of the dxi and there is a
relation

dxn = dφ(x1, . . . , xn−1) =

n−1∑
i=1

∂φ

∂xi
dxi

We can rewrite the same relation without mentioning φ. We put

G(x1, . . . , xn−1) = F (x1, . . . , xn−1, φ).

The function G vanishes on X and hence

0 =
∂G

∂xi
=
∂F

∂xi
+
∂F

∂xn

∂φ

∂xi

This gives

∂φ

∂xi
= −

(
∂F

∂xn

)−1
∂F

∂xi
⇒ dxn = −

(
∂F

∂xn

)−1 n−1∑
i=1

∂F

∂xi
dxi

and by adding up

dF =

n∑
i=1

∂F

∂xi
dxi = 0

Conversely, dF = 0 can be used to deduce the formula for dxn.

Definition 9.1. Let k be a field and X = Spec(k[X1, . . . , Xn]/(f1, . . . , fm)).
We define the module of Kähler differentials on X by

ΩX/k = 〈dX1, . . . , dXn〉O(X)/〈df1, . . . dfm〉

where the total differential d : O(X)→ ΩX/k is given by

f 7→
∑ ∂f

∂Xi
dXi

X is called smooth over k, if ΩX/k is locally free of rank dimX.

We will discuss the difference between the notions regular/non-singular/smooth
later.
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Example. (i) Let X = V (x2 − y) ⊂ A2. Then ΩX is generated by dx and
dy. We have

0 = d(x2 − y) = 2xdx+ dy

i.e., ΩX is free of rank 1. The variety is smooth.

(ii) X = V (xy). The relation is

0 = d(xy) = xdy + ydx

On the set where x 6= 0 or y 6= 0, the module is free of rank 1. If it was
locally free everywhere, it would have to be of rank 1. However, there
is no neighbourhood of 0 where one generator would suffice because the
relation vanishes modulo m0.

(iii) X = V (y2 − x(x− 1)(x− 2), char(k) 6= 2. The relation reads

2ydy = [(x− 1)(x− 2) + x(x− 1) + x(x− 2)]dx

On y 6= 0 the generator dx is a basis vector. For y = 0 we have x = 0, 1, 2.
But then the factor in front of dx is non-zero and dy is a basis vector close
to these points.

(iv) X = V (x2) ⊂ A1 has

Ω = (k[x]/x2)dx/〈2xdx〉

The module is not locally free. (In characteristic 2 it is actually free, but
of the wrong dimension: dimX = 0.)

For the well-definedness of ΩX , we compute as in calculus with the chain rule.
Better: use a universal property!

Definition 9.2. Let A be ring, B an A-algebra. An A-derivation on B is an
A-linear map

D : B →M

into a B-module M such that the Leibniz-rule is satisfied. The module of A-
differentials ΩB/A is the universal A-derivation on B, i.e., every A-derivation
factors via a unique B-module homomorphism ΩB/A →M .

As always, uniqueness follows from the universal property. Obviously, ΩB/A

is generated as a B-module by the db with b ∈ B. The module with these
generators and all relations necessary for a derivation satisfies the universal
property. (Note da = 0 for a in the image of A.)

Lemma 9.3. For A = k and B = k[X1, . . . , Xn]/(f1, . . . , fm) we get back the
first definition.

Proof. We get a map from the universal property. The converse map can be
written explicitly in terms of generators and relations.
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Proposition 9.4. ΩB/A exists and has the description I/I2 where I is the
kernel of B ⊗A B → B and the derivation

B → I/I2 b 7→ b⊗ 1− 1⊗ b

Proof. Matsumura p. 182.

There are many computation rules.

(i) (Base change) Let A′ be an A-Algebra, B′ = B ⊗A′. Then

ΩB′/A′ = ΩB/A ⊗B B′

(ii) (Localisation) Let S ⊂ B be a multiplicative system. Then

ΩS−1B/A = S−1ΩB/A

The second rule implies that U 7→ ΩO(U)/A (for affine U ⊂ SpecB) defines a
quasi-coherent sheaf.

Proposition 9.5. Let X → Y be a morphism of schemes. Then there is a
uinqiue quasi-coherent sheaf ΩX/Y on X such that for SpecB ⊂ X mappint to
SpecA ⊂ Y

ΩX/Y (SpecB) = ΩB/A

It is given by I/I2 where I is the sheaf of ideals for the immersion ∆ : X →
X ×Y X.

Example. Let X = P1
k, Y = Speck. Then ΩX/Y = O(−2), because on U0 the

sheaf is generated by dy1 where y1 = X1/X0, on U1 by dy0 where y0 = X0/X1.
The transition map y0 = y−11 induces dy0 = −1/y21dy1. This is the transition
map of O(−2).

Theorem 9.6 (1. fundamental exact sequence). Let f : X → Y and g : Y → Z
be morphisms of schemes. There is a an exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

This is often applied in the case Z = Spec(k) for some ground field. We often
write ΩX instead of ΩX/k. If X/k is smooth, then ΩX/k is locally free of rank
dimX. The sequence allows to compute relative differentials from absolute
differentials.

Theorem 9.7 (2. fundamental exact sequence). Let f : X → Y be a morphism,
Z ⊂ X a closed subscheme with sheaf of ideals I. Then there is an exact
sequence

I/I2 → ΩX/Y ⊗OZ → ΩZ/Y → 0

It it the same sequence as before, but in addition the term ΩZ/X = 0 vanishes.
Instead we can describe the kernel on the left.
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Example. Let Y = Speck, X = An, I = (f1, . . . , fm). The affine version of
the sequence is

I/I2 → 〈dX1, . . . , Xn〉O(Z) → ΩZ → 0

This is quite similar to our previous description. The new insight is the vanishing
of d on I2. The sequence is not left exact in general!

Übungen

(i) Ha II 8.3 (a)

(ii) Compute the rank of ΩE/k for the projective curve E = V (y2 − x(x −
1)(x− 2)), where char(k) 6= 2

(iii) Ha Theorem 8.13

(iv) Read up on the proof of the assertions from commutative algebra.
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Chapter 10

Regularity and smoothness

Ha I 5, II 8, III 9 und III 10, Goertz/Wedhorn 6.8

From now on all schemes and rings are noetherian.

Definition 10.1. Let A be a local noetherian ring with maximal ideal m and
residue field k. Then A is called regular, if

dimk m/m
2 = dimA

A scheme X is called regular, if all local rings are regular.

We always have ≥. Hence the condition is equivalent to asking that m is gener-
ated by dimA many elements. They are called local parameters.

Example. (i) k[[t1, . . . , tn]] is regular with parameter system t1, . . . , tn.

(ii) In dimension 0 a local ring is regular if and only it is a field.

(iii) In dimension 1 a local ring is regular if and only if it is a discrete valuation
ring.

(iv) If A is a Dekekind domain (noetherian, dimension 1, integrally closed),
then A is regular.

(v) If k is a field, then An
k is regular.

(vi) A = k[[x, y]]/xy has m = 〈x, y〉, m2 = 〈x2, xy = 0, y2〉. Hence dimk m/m
2 =

2 (basis x, y). The ring is not regular.

(vii) The variety V (XY ) ⊂ A2 is not regular.

Remark. For x ∈ SpecA we call mx/m
2
x the cotantent space of A. If you try to

develop the germ of a function in x into a Taylor series, then mx/m
2
x captures

the linear part.
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We want to understand, when an affine variety Speck[X1, . . . , Xn]/(f1, . . . , fm)
over a field k is regular. We consider the Taylor series but restrict attention to
the linear term. In other words: we consider derivatives.

Proposition 10.2. Let k be an algebraically closed field
X = Speck[t1, . . . , tn]/(f1, . . . , fm). Then X is regular in P ∈ X, if and only if
the matrix

Jac(X)(P ) =

(
∂fi
∂Xj

(P )

)
has rank n− dimX.

Such varieties are also called non-singular in P .

Proof. As k is algebraically closed, it suffices to consider P = 0. The maximal
ideal is generated by X1, . . . , Xn. As 0 ∈ X, the equations fi vanish in 0. In
m/m2 we have the relations

0 =
∑ ∂fi

∂Xj
(0)Xj mod m2

Hence the assumption on the rank allows us to eliminate generators.

There is an alternative point of view. We consider the 2nd fundamental sequence
for P ∈ X:

mP /m
2
P → ΩX/k ⊗OX

OX,P /mP

is an isomorphism. This is what we spell out in generators and relations.

Proposition 10.3. Let k be algebraically closed. The X/k is smooth, if and
only if X is regular.

Proof. If X smooth, then ΩX is locally free of rank r = dimX. By the above
isomorphism we compute dimmP /m

2
P . If conversely X is regular, then all

ΩX/k ⊗ κ(P ) have dimension r. I.e., the Jacobi-matrix

Jac(X) =

(
∂fi
∂Xj

(P )

)
has rank n − r. Then the same is true in a neighbourhood of P . In this
neighbourhood, we obtain a free OX -module. The basis is a subset of the
Xj .

What happens, if k is not algbraically closed?

Example. Let k be field, K = k[X]/F a field extension. Obviously X = SpecK
is regular. On the other hand,

ΩK/k = 〈dX〉K/F ′dX

This module has K-dimension 0, if F ′ 6= 0. This happens precisely if the
extension is separable.
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The notion regular and smooth do not agree in general. Regularity is absolute,
whereas smoothness is relative. It depends on the choice of base. Smoothness
is stable under base change.

Lemma 10.4. Let X/k of finite type and K/k a field extension. Then X/k is
smooth if and only if XK/K is smooth.

Proof. ΩXK/K = ΩX/k ⊗k K. Torsion can be detected after the extension to
K.

Regularity is not stable under base change.

Example. Let K/k be a purely inseparable extension of charakteristic p, e.g.
K = k[X]/F with F = Xp − a irreducible. Then

K ⊗k K = k[X]/F ⊗k K = K[X]/F

Over K the polynomial F has zero of multiplity p. Hence K[X]/F is not
reduced, hence not regular.

General base schemes

We now want to consider X/Y .

Definition 10.5. Let f : X → Y be a morphism of schemes, r ≥ 1. We say
f is smooth of relative dimension r, if for every point x ∈ X there are affine
neighbourhoods V = SpecR of f(x) and U = SpecR[X1, . . . , Xn]/(f1, . . . , fn−r)
of x such that the Jacobi-matrix(

∂fi
∂Xj

(x)

)
∈Mn,n−r(κ(x)

has rank n− r.
If f is smooth of relative dimension 0, we also call f etale.

The condition is equivalent to the condition that ΩX/Y is local free of rank equal
to the relative dimension. For Y = Speck we get back our earlier definition.
The condition is stable under base change. In particular:

Lemma 10.6. Let f : X → Y be smooth, y ∈ Y . Then Xy/κ(y) is smooth and

Xy/κ(y) non-singular where κ(y) is an algebraic closure of κ(y). We say: The
geometric fibres are non-singular.

Example.

Open immersions are etale.

Closed immersionen are etale only if it the inclusion of a connected component.

If X/k is smooth, then X × Y → Y is smooth.
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If f is an etale morphism of varieties over C, then the condition of the definition
is the Jacobi-criterium: f is locally invertible (in the analytic topology).

Proposition 10.7. f : X → Y is smooth of relative dimension d if and only if
f is flat of finite type and all geometric fibres are non-singular.

Hartshorne uses this as the definition.

In order to understand this characterisation, we need to understand what ”flat”
means. The notion does not have a good analogon on differential geometry. It
guarantees that the different fibres of f ”are related” E.g., they all have the
same dimension.

Definition 10.8. Let φ : A → B be a ring homomorphismus. φ is called flat,
if B is flat as an A-module, i.e., −⊗AB is exact on the category of A-modules.

Let f : X → Y be a morphism of schemes. f is called flat, if all fP : OY,f(P ) →
OX,P are.

Example. All algebras over a field are flat. If A is a discrete valuation ring,
then B is flat if and only if B is without A-torsion.

For a complete understanding of flatness, we would need to get into homological
algebra.

Excercises

Ha I 5.10, II 8.6, III 10.1



Chapter 11

Line bundles and
Chech-cohomology

Ha II §6, III §4
We want to understand invertible sheaves, i.e., locally free OX -modules of rank
1

Definition 11.1. Let (X,OX) be a ringed space. The group Pic(X) of isomor-
phism classes of invertible sheaves is called Picard group of X.

Example. (i) Pic(Pn
k ) = Z for a field k

(ii) If C is a smooth projective curve of genus g over C, then

Pic(C) = Z× Cg/Λ,

where Λ is a lattice (discrete subgroup of rank 2g). In fact Cg/Λ = Jac(X)
is a projektive algebraic variety.

(iii) Pic(SpecA) = Cl(A) (class group) if A is a Dedekind domain A. This is
the number theoretic case.

Let L be an invertible sheaf. By assumption, there is an open cover {Ui}i∈I of
X, such that L|Ui is trivial. We choose isomorphisms

fi : L|Ui
→ OUi

On Uij = Ui ∩ Uj the composition

fij = φj |Uij
◦ φ−ii |Uij

: OUij
→ OUij

is an isomorphism, hence an element of O(Uij)
∗. These fij satisfy the cocycle

condition on Uijk = Ui ∩ Uj ∩ Uk

fjk ◦ fij = fik .

49
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Conversely every cocycle defines an invertible sheaf. When are the sheaves
defined by different cocycles isomorphic? Equivalently: when does a cocycle
define the trival sheaf?

Let g : OX → L be an isomorphism. The commutative diagram on Ui

OUi

=−−−−→ OUi

g

y ygi

L|Ui

fi−−−−→ OUi

means that
fij = fjf

−1
i = gjg

−1
i

Definition 11.2. A cocycle is called coboundary, if there are gi ∈ O(Ui)
∗ for

i ∈ I such that
fij = gjg

−1
i

The group
H1({Ui},O∗) = cocycles/coboundaries

is called 1. Chech cohomologie group of the covering. The group

Ȟ1(X,O∗) = lim−→H1({Ui},O∗)

is called 1. Chech cohomology group of X with coefficients O∗

The direct limit is taken with resept to refining morphism.

Definition 11.3. Let {Ui}i∈I and {Vj}j∈J be open covers of X. We call V a
refinement of U, if for every j ∈ J there is i ∈ I such that Vj ⊂ Ui. The choice
of such map J → I is called a refining morphism.

One checks that the map H1({Ui},O∗) → H1({Vj},O∗) does not depend on
the choice of the refining morphism.

Hence:

Lemma 11.4. Let (X,OX) be a ringed space. Then

Pic(X) = Ȟ1(X,O∗X)

Chech-cohomology

Let X be a topological space, F a preseheaf on X, U = {Ui}i∈I an open covering.
For J ⊂ I we put UJ =

⋂
j∈J Uj .

Definition 11.5. The Chech complex of U with coefficients in F is defined as

0→
∏
i∈I
F(Ui)

d0

−→
∏

i0,i1∈I
F(Ui0i1)

d1

−→
∏

i0,i1,i2

F(Ui0i1i2)→ . . .
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with differential dn =
∑n

j=0(−1)j∂j where ∂j is induced from the inclusion

Ui0...ij ...in → Ui0...̂ij ...in

The i-th Chech-cohomology Hi(U,F) is defined as the ith cohomology of the
Chech complex. We put

Ȟi(X,F) = lim−→Hi(U,F)

the ith Chech cohomology von X.

Alternatively, one chooses an ordering of I and only considers tuples with i0 <
i1 < · · · < in. The two complexes are quasi-isomorphis, i.e., the cohomology
does not change. In the second version it becomes obvious that finite covers
only have finitely many cohomology groups. On the other hand, compatibility
with transition maps becomes hard to work out.

Example. Ȟ0(X,F) was used in our construction of the sheafification. If F is
sheaf, then

F(X) = H0(U,F)

For i = 1 the cocylces are the elements of the kernel, the coboundaries the
elements in the image of the differential.

The nice thing about cohomology is that it is computable with long exact se-
quences.

Lemma 11.6. Let X be a separated scheme, U an open affine cover,

0→ F → G → H → 0

an exact sequence of coherent sheaves. Then there is a natural long exact se-
quence

0→ H0(U,F)→ H0(U,G)→ H0(U,H)→
H1(U,F)→ H1(U,G)→ H1(U,H)

→ H2(U,F)→ . . .

Proof. As X is separated, all UI are affine. The global section functor is exact
in the affine case, i.e.,

0→ F(UI)→ G(UI)→ H(UI)→ 0

is exact. Direct products are exact. Hence we obtain a short exact sequence of
Chech complexes. It induces a long exact sequence in cohomology.

Variants for all topological spaces:

(i) A short exact sequence of presheaves induces long exact sequences for
H∗(U, ·) and Ȟ∗(X, ·).

(ii) A short exact sequence of sheaves induces a long exact sequence for Ȟ∗(X, ·).



52 CHAPTER 11. LINE BUNDLES AND CHECH-COHOMOLOGY

Cartier-Divisors

Let A be a ring, S ⊂ A the set of non-zero divisors. Then K(A) = S−1A is
called total ring of fractions of A.

Let (X,OX) be a scheme, K the sheaf of total rings of fractions, i.e., the unique
sheaf associated to the presheaf U = SpecA 7→ K(A).

Example. Let X be integral. Then X has function field K given by K =
Q(O(U)) for U ⊂ X affine. Then K is the constant sheaf K.

Definition 11.7. Let X be a scheme. A Cartier-Divisor on X is a global section
of K∗/O∗. It is called a principal divisor, if it is in the image of K∗(X). Two
Cartier-Divisors are called linearly equivalent, if their difference (=quotient) is
a principal divisor. The group CaCl(X) of equivalence classes is called Cartier-
class group.

A Cartier-Divisor consist of local sections of K∗, differeing by regular invertible
functions. We write (Ui, fi) with fi ∈ K∗(Ui). The fij = fjf

−i
i ∈ O∗(Uij) then

define a cocycle, hence an invertible sheaf.

Proposition 11.8. For every scheme there is an injective map

CaCl(X)→ Pic(X)

It is surjective, if X is integral.

Proof. Cohomological version: consider the exact sequence of sheaves

0→ O∗ → K∗ → K∗/O∗ → 0

and the associated long exact sequence

O∗(X)→ K∗(X)→ K∗/O∗(X)→ Ȟ1(X,O∗)→ Ȟ1(X,K∗)

We get the inclusion by definition. If X is integral , then K∗ is a constant sheaf.
Hence its higher cohomology vanishes.

Explicitly: We have defined the map on the level of cocycles. If D is a Cartier-
divisor, then L(D) is the sub-OX -module of K, generated by f−1i on Ui. This
is well-defined on Uij . The line bundle is trivial, if there is a global generator,
i.e., the Cartier divisor is a principal divisor.

In the image of this map we have all line bundles which are isomorphic to
submodules of K. Let X be integral, L a line bundle. Then L⊗OX

K is a locally
free K-module of rank 1. As K is constant, it is even free. The choice of an
isomorphism induces the choice of an embedding L → K.

Excercises

(i) Check that the morphism on H1(U , ·) does not depend on the choice of
refining morphism.
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(ii) Deduce the beginning of the long exact sequence (H0 und H1) for a short
exact sequence of sheaves.

(iii) Make Cartier-divisors and line bundles explicit in the case of the spectrum
of a Dedekind domain.

(iv) Ha II 6.10



54 CHAPTER 11. LINE BUNDLES AND CHECH-COHOMOLOGY



Chapter 12

Weil divisors

Ha II 6

All schemes noetherian, separated.

Definition 12.1. Let X be a scheme. A Weil divisor (or simply divisor) is a
formal linear combination

n∑
i=1

aiDi

with n ≥ 0, ai ∈ Z and Di ⊂ X irreducible closed subset of codimension 1
(”prime divisor”). The set of divisors is a free abelian group over the prime
divisors.

Divisors are also called (algebraic) 1-cycles. A different point of view: prime
divisors are points x ∈ X with OX,x of dimension 1. We write X1 for the set of
these points. For the generalisation to higher codimension, see Ha Appendix A.

The next step is to introduce principal divisors, i.e., the zero and pole divisor
of a meromorphic function f . This does not work for all X.

From now on:

Assumption: X noetherian, separated, integral and all local ring of codimen-
sion 1 are regular (i.e, discrete valuation rings).

The assumption is satisfied if X is normal (affne: integrally closed), e.g., smooth
over a field.

If X is a variety of dimension 1, this means that X is smooth and connected.
Then a divisor is a formal linear combination of closed points.

Definition 12.2. Let X be as above with function field K, f ∈ K∗. The divisor
of f is defined as

(f) =
∑
x∈X1

vx(f)x

where vx : K∗ → Z is the discrete valuation of the point x. Divisors of the form
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(f) are called principal divisors. The group Cl(X) of divisors modulo principal
divisors is called divisor class group.

Example. Let X = A1
k, x the origin, f = P/Q with P,Q ∈ k[X] r 0. Then

vx(f) = vx(P ) − vx(Q) where vx(P ) is the exact power of X in P . If v =
vx(f) > 0, then f has a zero of order v. If v < 0, then f has a pole of order −v.
Alternatively: The function f has a Laurent series in the point 0

∞∑
i=v

aiX
i

with av 6= 0.

Example. Let A a Dedekind ring, e.g., the ring of integers of a number field.
Then a divisor defines a fractional ideal. The class group is the class group of
number theory. Cl(A) = 0 is equivalent to A being a principal ideal domain.

Example. X = Pn
k for k a field. We compute Cl(Pn

k ). The irreducible closed
subvarieties of codimension 1 are defined by g ∈ S = k[X0, . . . , Xn] irreducible
and homogenous of d. (Krull’s principal ideal theorem). We write vg for the
corresponding valuation. For f ∈ S homogenous the number vg(f) is the exact
power of g dividing f . Let f in the function field. Wir decompose it into factors
gn1
1 . . . gnr

r . Hence

(f) =
∑

niV (gi)

The degree of the divisor
∑
aiDi is defined as

∑
ai degDi. For principal divisor

we obtain
deg(f) =

∑
ni deg V (gi) =

∑
ni deg(gi) = 0.

Two divisors can only be equivalent, if they have the same degree. Conversely,
let D =

∑
niV (gi) a divisor of degree d. Then

D ∼ dV (X0)

because the difference is the principal divisor for gn1
1 . . . gnr

r X−r0 . The degree
defines an isomorphism

Cl(Pn
k )→ Z

.

We need some computation rules.

Lemma 12.3. Let Z ⊂ X closed, U = X r Z. Then

Cl(X)→ Cl(U)

is surjective. If codimZ ≥ 2, then the map is an somorphism. If Z is irreducible
of codimension 1, we have an exact sequence

Z→ Cl(X)→ Cl(U)→ 0
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Proof. The map is defined by D 7→ D ∩ U . A divisor is mapped to zero, if
D ∩U = ∅, i.e., D ⊂ Z. The function fields are the same, hence the assignment
respects principal divisors.

Example. Let Y ⊂ P2 be an irreducible curve of degree d, U the open com-
plement. Then Cl(U) = Z/dZ, because Cl(P2) = Z and the class of Y ist d. In
particular Cl(A1) = 0.

Proposition 12.4. Cl(X) = Cl(X × A1).

Proof. Ha II 6.6

Connection with Cartier-divisors

We continue with the restricted situation fixed above. K is the constant sheaf
K and CaCl(X) = Pic(X).

Let D be a Cartier-divisor. Then there is covering {Ui} of X on which D is
given by fi ∈ K∗. On Ui the function fi defines a Weil divisor. On Ui∩Uj they
differ by the divisor of fif

−1
j ∈ O∗(Ui ∩Uj), hence not at all. By gluing we get

a Weil divisor on X. The assignment respects principal divisors, hence we get
a map

CaCl(X)→ Cl(X)

The image are the Weil divisors that can be written locally as principal divisors.
Hence ”Cartier” can be viewed as property of a Weil-divisor.

We now consider the converse. When is an irreducible subvariety of codimension
1 locally given by a principal divisor?

Proposition 12.5. Let X be a scheme as above such that in addition every
local ring has unique prime factorisation. Then the group of Weil-divisors is
equal to the group Cartier-divisors.

Proof. We consider the prime divisor D in a neighbourhood of x, more precisely,
we restrict to SpecOX,x. Then D = V (f) for a prime element f . Then the same
is true in some open neighbourhood U of x, where we view f in O(U) ⊂ K.
On the intersection of two such neighbourhoods, we have two functions defining
the same subscheme. Hence their quotient is a unit. We have defined a Cartier-
divisor

Corollary 12.6. Pic(Pn
k ) = Z with generator O(1).

Proof. Z = Cl(Pn
k ) = CaCl(Pn

k ) = Pic(Pn
k ). We identify the generators. It is

V (X0) as a Weil-divisor. Locally on Ui = PnrV (Xi) it is defined by the rational
function fi = X0/Xi. The corresponding cocylce is fij = f−1i fj = Xj/Xi.

On the other hand, the line bundle O(1) is generated by Xi on Ui. The cocycle
is the same. Alternatively: L(V (X0)) is defined as the subsheaf of K generated
by Xi/X0 onUi.
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Corollary 12.7. Let A be Dedekind ring. Then

Cl(A) = Pic(A)

Excercises

Ha II 6.1. 6.6, this needs Ex.. 6.10.2, Ex. 6.5.2 and 6.11.3



Chapter 13

The Weil Conjectures

Ha App. C

Let Fp be a finite field of characteristic p. We work with varieties over Fp, i.e.,
separated reduced schemes of finite type over Fp.

Definition 13.1. Let X/Fp be a variety. Put

Nr(X) = |X(Fpr )| = |MorFp(SpecFpr , X)|

Example. X = A1. Then

A1(Fpr ) = MorFp
(SpecFpr ,SpecFp[t]) = Mor(Fp[t],Fpr ) = Fpr

and hence
Nr(A1) = pr

Example. Consider p 6= 2, 3, X = V (X2 − 3). Then

X(Fqr ) = {x ∈ Fqr |x2 = 3}

We have Nr(X) = 2, if the equation is a solution in Fpr and Nr(X) = 0, if not.
There are two cases: 3 is a square in Fp (by quadratic reciprocity this holds if

(−1)
(p−1)

2

(
p
3

)
= 1, e.g. p = 13)), then then Nr = 2 for all r. If 3 is not a square

in Fp (e.g. p = 5), we get Nr = 0 for odd r, Nr = 2 for even r.

Example. For X = Spec(Fpn), we have Nr(X) = 0 if r is not a multiple of n
and Nr(X) = n if it is.

We encode these numbers in a series.

Definition 13.2.

Z(X, t) = exp

∑
r≥1

Nr(X)
tr

r

 ∈ Q[[t]]

is called Zeta-function of X.
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Example. (i) X = A1.

Z(A1, t) = exp

∑
r≥1

pr
tr

r

 = exp(− log(1− pt)) =
1

1− pt

(ii) X = P1, Nr = pr + 1

Z(P1, t) = exp(

∑
r≥1

(pt)r

r
+
∑
r≥1

tr

r


= exp(− log(1− pt)− log(1− t)) =

1

(1− pt)(1− t)

(iii) X = V (X2 − 3) for p = 13.

Z(X, t) = exp

∑
2r≥1

2
t2r

2r

 = exp(− log(1− t2)) =
1

1− t2

(iv) X = Spec(Fpn):

Z(X, t) =
1

1− tn

The formula looks arbitrary, but this is not the case. Let X be of finite type
over Z, |X| the set of closed points. For x ∈ |X| the residue field is κ(x) is of
finite type over Z, hence finite. We call N(x) = |κ(x)| the norm.

Definition 13.3. Let X of finite type over Z. Put

ζ(X, s) =
∏

x∈|X|

1

1−N(x)−s

Example. (i) For X = SpecZ we get the Riemann Zeta-function ζ(s). More
generally, for the ring of integers of a number field, we get its Dedekind
Zeta-function.

(ii) For X = Spec(Fpn), we have

ζ(X, s)) =
1

1− p−ns
= Z(X, p−s).

(iii) For X/Fp we have N(x) = pr. By taking logarithms, a bit of computation
yields

ζ(X, s) = Z(X, p−s)

This computation also shows that Z(X, t) ∈ Z[[t]].
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From examples as abvoe, Weil came to his conjectures. They are now theorems.

Theorem 13.4. Let X/Fq be a smooth projective variety of dimension d, then
Z(X, t) is rational

Z(X, t) =
P1(X, t)P3(X, t) · · ·P2d−1(X, t)

P0(X, t) · · ·P2d(X, t)

with Pi(X, t) ∈ Q[t]. In addition:

(i) (functional equation ) Let E be the self intersection number of the diagonal
in X ×X. Then we have the functional equation

Z(X, 1/pdt) = ±pdE/2tEZ(X, t)

(ii) (Riemmann hypothesis) P0 = 1− t, P2d = 1− pnt and for every i

Pi(X, t) =
∏

(1− αijt) ∈ Z[t]

where the algebraic numbers αij have absolute value pi/2.

(iii) (Betti numbers) If X is of the form X ⊗Z(p)
Fp X smooth projective, then

degPi = dimHi(X (C),Q)

The curve case was established by Weil himself. Rationality was shown in-
dependently by Dwork and Grothendieck. The Riemann hypothesis is due to
Deligne. Already Weil suggested a strategy using a suitable cohomology. This
cohomology was developled by Grothendieck.

We consider a special case first.

Example. Let E be an elliptic curve. The Betti numbers are 0, 2, 1, hence we
expect

Z(X, t) =
P1

(1− t)(1− pt)
with quadratic P1

P1(t) = (1− αt)(1− βt) = 1− (α+ β)t+ αβt2

where |α| = |β| = √p. Then α = β and hence αβ = |α|2 = p and |α+β| ≤ 2
√
p.

Inserting into the formula this gives

(1− αt)(1− βt) = (1− t)(1− pt) exp

∑
r≥1

Nr
tr

r


For the linear term this yields

−α− β = −1− p+N1

and hence
|Nr − p− 1| ≤ 2

√
p

This estimate is called Hasse bound!
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The proof of the Weil conjectures in the special case is done in Silverman’s book.
We have

P1(t) = det(1− Frpt|Vl(E))

where Vl(E) = Tl(E)⊗Ql, Tl(E) = lim←−E[li] is the l-adic Tate-module, l a prime
number different from p. The same proof works for curves via the Tate module
of the Jacobian Jac(C) = Pic0(C).

The general proof uses etale cohomology:

Pi(t) = det(1− Frpt|Hi(X,Ql))

Rationality follows from the Lefschetz trace formula, the functional equation
from Poincaré duality and the Betti-numbers appear because of a comparison
theorem with singular cohomology. We discuss the connection to fixed points
now.

Let X be a variety over Fp. Then Frobenius Frp operates on X(Fp) by operating
on the coordinates. A point is in X(Fr

p) if and only if it is a fixed point of Fr
p.

logZ(X, t) =

∞∑
r=1

|X(Fp)Fr
r
p | t

r

r

Proposition 13.5 (Fixed point formula). Let X be smooth projective over
k = Fp, f : X → X a morphism with isolated simple fixed points. Then

|Xf | =
∑

(−1)iTr(f∗|Hi(X,Ql)

We insert this into our formula.

logZ(X, t) =
∑
r

∑
i

(−1)iTr(Frrp|Hi(X,Ql)
tr

r

Lemma 13.6. Let V be a finite dimensional vector space, f : V → V an
endomorphism. Then∑

r

Tr(fr|V )
tr

r
= − log det(1− ft|V )

Proof. Without loss of generality, the ground field is algebraically closed, f given
by an upper triangular matrix. This reduces the question to the 1-dimensional
case, i.e., f = a ∈ k. Then the formula is the series for log.

Hence:
logZ(X, t) =

∑
i

(−1)i+1 log((1− Frpt|Hi(X,Ql))

and
Z(X, t) =

∏
i

Pi(t)
(−1)i+1

.
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Remark. The integrality of the Pi(t) follows from the Riemann hypothesis -
there is not cancellation and the product is integral. This also implies that the
Pi(t) are independent of the choice of l used in their construction.

This part of the conjectures is still open for singular or non-complete varieties!
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