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Introduction

The main result of this work is a new proof and generalization of Lazard’s
comparison theorem of locally analytic group cohomology with Lie algebra co-
homology for K-Lie groups, where K is a finite extension of Qp.

Main Theorem. Let K be a finite extension of Qp and let G be a K-Lie group.
Then there exists an open subgroup U of G such that the Lazard morphism

ΦL : Hn
la(U ,K)→ Hn(Lie(U),K)

induced by differentiating cochains is an isomorphism (c.f. Theorem 4.1.7).

The proof of this theorem is independent of the proof of Lazard’s comparison
result in [Laz65].

Lazard’s comparison theorem was one of the main results in his work on p-adic
groups [Laz65]. It relates locally analytic group cohomology with Lie algebra
cohomology for Qp-Lie groups in two steps. First Lazard worked out an iso-
morphism between locally analytic group cohomology and continuous group
cohomology and secondly between continuous group cohomology and Lie alge-
bra cohomology. The latter is obtained from a difficult isomorphism between
the saturated group ring and the saturated universal enveloping algebra.

Huber and Kings showed in [HK11] that one can directly define a map from
locally analytic group cohomology to Lie algebra cohomology by differenting
cochains and that in the case of smooth algebraic group schemes H over Zp
with formal group H ⊂ H(Zp) the resulting map

Φ : Hn
la(H,Qp)→ Hn(h,Qp)

coincides, after identifying continuous group cohomology with locally analytic
group cohomology, with Lazard’s comparison isomorphism ([HK11, Theorem
4.7.1]). Serre mentioned to the aforementioned authors that this was clear to
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him at the time Lazard’s paper was written, however it was not included in
the published results. In their joint work with N. Naumann in [HKN11] they
extended the comparison isomorphism for K-Lie groups attached to smooth
group schemes with connected generic fibre over the integers of K ([HKN11,
Theorem 4.3.1]). The aim of this thesis is to use this simpler map to obtain an
independent proof of Lazard’s result.

The context in which Huber and Kings worked out the new description of the
Lazard isomorphism is the construction of a p-adic regulator map in complete
analogy to Borel’s regulator for the infinite prime. The van Est isomorphism
between relative Lie algebra cohomology and continuous group cohomology is
replaced by the Lazard isomorphism. Their aim is to use this construction of
a p-adic regulator for attacking the Bloch-Kato conjecture for special values of
Dedekind Zeta functions.

Our strategy to prove the comparison isomorphism between locally analytic
group cohomology and Lie algebra cohomology is to trace it back to the case
of a formal group law G. Hence the first step is to obtain an isomorphism of
formal group cohomology with Lie algebra cohomology (Corollary 3.1.4)

Φ̃ : Hn(G̃, R)→ Hn(g, R),

where R is an integral domain of characteristic zero. The tilde over Φ and
over the formal group law G indicate that one has to modify the formal group
cohomology while working with coefficients in R. This means that if the ring
of functions to G, called O(G), is given by a formal power series ring over R
one has to allow certain denominators. However, we will prove in Lemma 4.2.13
that functions of this modified ring of functions Õ(G) still converge, with the
same region of convergence as the exponential function.
Let g be the Lie algebra associated to the formal group law G and U(g) its
universal enveloping algebra. Then an essential ingredient in to the first step is
a morphism of complete Hopf algebras (Proposition 2.1.2)

β? : O(G)→ U(g)

from the ring of functions to the universal enveloping algebra. We show in
Proposition 2.4.1 that this morphism is an isomorphism if we consider the mod-
ified ring of functions Õ(G). Furthermore, we prove in Theorem 3.1.3 that this
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isomorphism extends to a quasi-isomorphism of the corresponding complexes
and hence to the above isomorphism Φ̃.
The second step in the proof of the Main Theorem is a Comparison Theorem
for standard K-Lie groups. These standard groups are K-Lie groups associated
to a formal group law G, see Definition 4.1.2.

Comparison Theorem for standard groups [Thm.4.1.7]. Let G be a formal
group law over R and let G(h) be the m-standard group of level h to G with Lie
algebra g⊗RK. Then the map

Φs : Hn
la(G(h),K)→ Hn(g,K)

given by the continuous extension of

f1 ⊗ · · · ⊗ fn 7→ df1 ∧ · · · ∧ dfn,

for n ≥ 1 and by the identity for n = 0 is an isomorphism for all h > h0 = 1
p−1 .

The Main Theorem can then be deduced from the Comparison Theorem for
standard K-Lie groups, since every K-Lie group contains an open subgroup,
which is standard, see Lemma 4.1.10. Our approach to the proof of the Com-
parion Theorem for standard K-Lie groups is as follows. In a first step, we will
show using the isomorphism Φ̃ that the limit morphism

Φ∞ : Hn(Ola(G(0)•)e,K)→ Hn(g,K),

associated to the ring of germs of locally analytic functions in e, denoted by
Ola(G(0))e, is an isomorphism. Then injectivity of Φs follows from a spectral
sequence argument. The proof of this injectivity part will be analogous to the
proof of Theorem 4.3.1 in [HKN11], however independent of the work of Lazard
[Laz65]. For surjectivity we will again use the isomorphism statement for formal
group cohomology of Corollary 3.1.4 in addition to the aforementioned fact that
functions of Õ(G) still converge.

The thesis is organized as follows: In Chapter 1 we give a number of defini-
tions and well-known facts concerning formal groups, Lie algebras, Hopf algebra
structures and cohomology complexes. Chapter 2 deals, firstly, with the exis-
tence of a morphism of complete Hopf algebras between the ring of functions of
a formal group law and the dual of the universal enveloping algebra. Secondly
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we consider the cases where this morphism is an isomorphism and thirdly, con-
sidering the modified ring of functions, we can prove that the morphism is
in this modified case actually an isomorphism of complete Hopf algebras. In
Chapter 3 we show that the isomorphism of Chapter 2 can be extended to a
quasi-isomorphism of the corresponding complexes and in Section 3.1 we will
give an explicit description, which will be identical to the description of the
comparison map in [HKN11] and hence to Lazard’s map. The last Chapter 4
gives the proof of the Main Theorem. We will begin by fixing some notation
in Section 4.1, in order to formulate the Comparison Theorem for standard
groups. The proof of this theorem will be given in the remaining two sections.
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Chapter 1

Preliminaries and Notation

The main objects we are dealing with are introduced in this chapter. First
of all we define formal group laws and show how they can be constructed by
completing group schemes at the identity. Afterwards we define their associated
Lie algebras. The second section deals with Hopf algebra structures associated
to these objects, and the last section contains the definitions of the different
complexes which will be needed in the third chapter.

Throughout the first three chapters R will be an integral domain of
characteristic zero.

1.1 Formal group law, Lie algebra and Universal en-
veloping algebra

For details concerning the following definitions, the standard reference is M.
Hazewinkels book about formal groups an their applications, [Haz78, Chap.
I.1, Chap.II.14].

Definition 1.1.1. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be two sets of
m variables. An m-dimensional formal group law over R is an m-tuple of power
series

G(X,Y) = (G(1)(X,Y), . . . , G(m)(X,Y))

with G(j)(X,Y) ∈ R[[X,Y]] such that for all j = 1, . . . ,m

(1) G(j)(X,Y) = Xj + Yj +
∑m
l,k=1 γ

j
lkXlYk +O(d ≥ 3), γjlk ∈ R

(2) G(j)(G(X,Y),Z) = G(j)(X, G(Y,Z)),
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where the notation O(d ≥ n) stands for a formal power series whose homoge-
neous parts vanish in degree strictly less than n. If in addition

G(j)(X,Y) = G(j)(Y,X)

holds for all j = {1, . . . ,m}, then the formal group law is called commutative.
The ring of functions O(G) to a formal group law G is the ring of formal power
series in m variables t(1), . . . , t(m) over R, i.e. O(G) = R[t(1), . . . , t(m)].

Proposition 1.1.2. Let G(X,Y) be an m-dimensional formal group law over
R. Then there exists a power series s(X) such that G(X, s(X)) = 0.

Proof. See [Haz78, Appendix A.4.5].

Remark. 1.1.3. The proof of the existence of the power series s(X) gives an
explicit construction of this power series. The first step of the construction
yields s(X) = −X mod (degree 2), a fact we will need later in Section 2.1.

The following definition of a homomorphism of formal group laws will be needed
in Chapter 4.

Definition 1.1.4. Let G(X,Y) and G′(X,Y) be m-dimensional formal group
laws over R. A homomorphism

G(X,Y)→ G′(X,Y)

over R is an m-tuple of power series α(X) in n indeterminantes such that
α(X) ≡ 0 mod (degree 1) and

α(G(X,Y)) = G′(α(X), α(Y)).

The homomorphism α(X) is an isomorphism if there exists a homomorphism
β(X) : G′(X,Y)→ G(X,Y) such that α(β(X)) = β(α(X)).

Lemma 1.1.5. The ring of functions O(G) to a formal group law G is complete
with respect to the topology induced by the following descending filtration

F iO(G) = {f ∈ O(G) |all monomials of f have total degree ≥ i} . (1.1)
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Notation. 1.1.6. • We denote by the sign ⊗̂ the completed tensor product
with respect to the above topology. Thus we can identify O(G)⊗̂n with
the ring of formal power series in nm indeterminates

R[[t(1)
1 , . . . t

(m)
1 , t

(1)
2 , . . . , t

(m)
2 , . . . , t(1)

n , . . . , t(m)
n ]].

• For the elements t(j)i of the ring of functions O(G) we will use equivalently
the notation 1⊗ . . .⊗ 1⊗ t(j)⊗ 1⊗ . . .⊗ 1 (with t(j) at the i-th entry) for
all j = 1, . . . ,m.

• For simplicity we write

– t1 for t(1)
1 , . . . , t

(m)
1 ,

– t1,...,n for t(1)
1 , . . . , t

(m)
1 , t

(1)
2 , . . . , t

(m)
2 , . . . , t

(1)
n , . . . , t

(m)
n .

• We use the general multi-index notation j for the tuple (j1, . . . , jm).

• If m = 1 or n = 1 we skip the upper, respectively lower index and write
ti for t(1)

i respectively t(j) for t(j)1 .

Example 1.1.7. Examples of formal group laws are:

(i) The additive formal group law: G(j)(X,Y) = Xj + Yj

(ii) The multiplicative formal group law (m = 1): G(X,Y) = X + Y +XY

(iii) The general linear formal group law (m = 4):

G(1)(X,Y) = X1 + Y1 +X1Y1 +X2Y3

G(2)(X,Y) = X2 + Y2 +X1Y2 +X2Y4

G(3)(X,Y) = X3 + Y3 +X3Y1 +X4Y3

G(4)(X,Y) = X4 + Y4 +X3Y2 +X4Y4,

see [Haz78, Chap. II.9.2]. The formulas can be obtained by calculating(
1 +X11 X12

X21 X22

)(
1 + Y11 Y12

Y21 Y22

)
−
(

1 0
0 1

)

and writing X1 for X11, X2 for X12, X3 for X21 and X4 for X22 and simi-
larly for Y .
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Remark. 1.1.8. Formal group laws arising from smooth algebraic affine
group schemes over R
Here we will see one situation in which a formal group law arises, see e.g. [Wat79,
Chap.11]. Suppose G is a smooth algebraic affine group scheme over R. Then
G is represented by a finitely generated Hopf algebra, say A with augmentation
map ε and augmentation ideal I (i.e. I = ker(ε : A → R)). By smoothness we
get that I/I2 is free on the generators t(1), . . . , t(m) where m is the number of
generators of A over R. Also In/In+1 is free and generated by the monomials
t(1)r1 · · · t(m)rm with

∑
ri = n. Thus if we take the completion with respect to

the I-adic topology, we get

Â = lim←−(A/In) = R[[t(1), . . . , t(m)]].

Let µ : A→ A⊗A be the comultiplication. Then µ maps I into I ⊗A+ A⊗ I.
Hence there is an induced map on completions

µ : R[[t(1), . . . , t(m)]]→ R[[t(1)
1 , . . . , t

(m)
1 ]]⊗̂R[[t(1)

2 , . . . , t
(m)
2 ]].

However, any such map is completely described by where each of the t(j) get
sent to. Set µ(t(j)) =: G(j)(t1, t2), then the ε-axiom shows

G(j)(t1, 0) = G(j)(0, t2) = t(j)

and coassociativity yields the identity

G(j)(G(t1, t2), t3) = G(j)(t1, G(t2, t3)).

Hence G(t1, t2) := (G(1)(t1, t2), . . . , G(m)(t1, t2)) is a formal group law of dimen-
sion m.

Example 1.1.9. We will see here that we named the formal group laws of
Example 1.1.7 (i) and (ii) in a natural way.

(i) The additive formal group law Ga over R is given by completing the group
scheme Ga over R in the following way: start with the representing Hopf
algebra R[t] with comultiplication given by

µ : R[t] → R[t]⊗R[t]

t 7→ t⊗ 1 + 1⊗ t
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and augmentation map ε with ε(t) = 0. Consider the element t which
generates the augmentation ideal I. The completion with respect to the
I-adic topology yields lim←−R[t]/In = R[[t]]. The comultiplication on R[t]
induces a comultiplication on the completion

µ : R[[t]] → R[[t]]⊗R[[t]]

t 7→ t⊗ 1 + 1⊗ t.

(ii) The multiplicative formal group law Gm over R is given by completing the
group schemeGm over R in the following way: start with the representing
Hopf algebra R[x, x−1] with comultiplication given by

µ : R[x, x−1] → R[x, x−1]⊗R[x, x−1]

x 7→ x⊗ x

and consider the element (x− 1) which generates the augmentation ideal
I. Set t := x− 1, then the completion with respect to the I-adic topology
yields lim←−R[x, x−1]/In = R[[t]]. The comultiplication on R[x, x−1] induces
a comultiplication on the completion

µ : R[[t]] → R[[t]]⊗̂R[[t]]

t 7→ t⊗ 1 + 1⊗ t+ t⊗ t.

(µ(t) = µ(t+ 1)− µ(1) = µ(x)− µ(1) = x⊗ x− 1⊗ 1

= (t+ 1)⊗ (t+ 1)− 1⊗ 1 = t⊗ 1 + 1⊗ t+ t⊗ t.)

Lie algebra
Let R[t1] be the polynomial ring over R in m variables and let ∂

∂t
(j)
1

for all
j ∈ {1, . . . ,m} be the j-th partial derivative. Let DerR(O(G),O(G)) denote the
set of R-derivations of O(G). Then DerR(O(G),O(G)) is a free O(G)-module on
the basis ∂

∂t
(1)
1
, . . . , ∂

∂t
(m)
1

. If d, d1, d2 ∈ DerR(O(G),O(G)) and r ∈ R, then the
mappings rd, d1+d2 and [d1, d2] := d1d2−d2d1 are also derivations, see [Bou98a,
Chap.III §10.4]. Thus, the set DerR(O(G),O(G)) is an R-module which is also
a Lie algebra.
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Let ej denote the j-th partial derivative ∂

∂t
(j)
1

evaluated at 0. We denote by g

the free R-module on the basis e1, . . . , em. If L =
∑m
j=1 riej ∈ g and f ∈ O(G),

then we can apply L to f by

L(f) =
m∑
j=1

rj
∂f

∂t
(j)
1

(0). (1.2)

Hence we can identify g with the set of R-derivations of O(G) into R, where R
is considered as a O(G)-module via evaluation at zero. We denote this set by
Der0(O(G), R).

The elements γjlk of Definition 1.1.1 of a formal group law G define a Lie algebra
structure on g, as follows (see [Haz78, Chap.II, p.79]):

[el, ek] =
m∑
j=1

(γjlk − γ
j
kl)ej . (1.3)

However, g inherits also a Lie algebra structure by the canonical bijection of
DerR(O(G),O(G)) and Der0(O(G), R). We will see in Section 1.2 that both
definitions of the Lie-bracket coincide.

Universal enveloping algebra
Let g be an m-dimensional Lie algebra over R which is free as an R-module
with basis e1, . . . , em, let T (g) be the tensor algebra and S(g) be the symmetric
algebra of g. A reference for the following definition and properties is [Kna88,
Chap.II.6].

Definition 1.1.10. The algebra U(g) of g is given by the quotient

T (g)/
(

two sided ideal generated by all
X ⊗ Y − Y ⊗X − [X,Y ], X, Y ∈ T (1)(g)

)

and called the universal enveloping algebra of g. It is an associative algebra with
identity.

Proposition 1.1.11. Let A be a unitary associative algebra over R. Then the
bracket [a1, a2] = a1a2 − a2a1 defines a Lie algebra structure on the underlying
R-module of A. The universal enveloping algebra U(g) and the canonical map
ι : g → U(g), given by the embedding of g into T (1)(g) and then passing to
U(g), have the following universal property: whenever A is a unitary associative
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algebra and π : g→ A is a Lie algebra homomorphism, then there exists a unique
algebra homomorphism π̃ : U(g)→ A such that π̃(1) = 1 and

g
π //

ι   

A

U(g)
π̃

==

commutes.

Proof. See [Bou98b, Chap.I.2.1, Prop. 1.].

Example 1.1.12. Let Ga be the additivem-dimensional formal group law with
G(j)(X,Y) = Xj+Yj . Then a basis of g is given by e1, . . . , em, the partial deriva-
tives evaluated at zero, and the universal enveloping algebra can be identified
with the symmetric algebra on m generators, since the Lie bracket is zero. If
m = 1, then U(g) ∼= R[e1].

Since the Lie algebra g associated to a formal group law is a free R-module, the
following theorem will give us more information about the structure of U(g).

Theorem 1.1.13. (Poincaré-Birkhoff-Witt)
Let g be an m-dimensional Lie algebra over R which is free as an R-module
with basis e1, . . . , em. Then the monomials

e1
j1 · · · emjm

with all jk ∈ N ∪ {0}, form a basis of U(g). In particular, the canonical map
ι : g→ U(g) is injective.

Proof. See [Bou98b, Chap.I.2.7, Thm. 1., Cor. 3.].

The theorem of Poincaré-Birkhoff-Witt says that the underlying set of U(g) is
the polynomial ring R[e1, . . . , em]. Therefore we denote an arbitrary element of
U(g) by

∑
cje

j with cj ∈ R.
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1.2 Hopf algebra structures

The algebras O(G) and U(g) carry a (complete) Hopf algebra structure. We will
describe the maps defining these structures after recalling the basic set-up and
fixing notation for the structure of (complete) Hopf algebras. As a reference one
can take the book of M.E. Sweedler about Hopf algebras, [Swe69, Chap.I-VI.],
or the book of Ch. Kassel about Quantum groups, [Kas95, Chap.III].

Definition 1.2.1. An algebra over R is an R-module A together with two
R-module homomorphisms

5 : A⊗A→ A (multiplication), η : R→ A (unit)

such that 5◦ (1⊗5) = 5◦ (5⊗ 1), 5◦ (1⊗ η) = id = 5◦ (η⊗ 1) (where we
have identified R⊗A ' A ' A⊗R).

Definition 1.2.2. A coalgebra over R is an R-module C together with two
R-module homomorphisms

µ : C → C ⊗ C (comultiplication), ε : C → R (counit)

such that (1⊗µ) ◦µ = (µ⊗ 1) ◦µ, (ε⊗ 1) ◦µ = id = (1⊗ ε) ◦µ (where we have
again identified R⊗ C ' C ' C ⊗R).

Definition 1.2.3. A bialgebra over R is an R-module B together with four
R-module homomorphisms

5 : B ⊗B → B, η : R→ B

µ : B → B ⊗B, ε : B → R

such that the following conditions hold:

(i) (B,5, η) is an algebra over R

(ii) (B,µ, ε) is a coalgebra over R

(iii) µ and ε are R-algebra morphisms, i.e.

µ ◦ 5 = (5⊗5) ◦ (id⊗τ ⊗ id) ◦ (µ⊗ µ)

ε ◦ 5 = ε⊗ ε

µ ◦ η = (η ⊗ η)

ε ◦ η = id,
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where τ : B ⊗B → B ⊗B is the switching morphism which interchanges
the two factors.

Note that condition (iii) is equivalent to the condition that 5 and η are R-
coalgebra morphisms.

Definition 1.2.4. Let B and B′ be two bialgebras over R. Then an R-module
homomorphism φ : B → B′ is a morphism of bialgebras if φ is a morphism of
coalgebras and a morphism of algebras, i.e. if

(φ⊗ φ) ◦ µ = µ′ ◦ φ, ε′ ◦ φ = ε, φ ◦ η = η′, φ ◦ 5 = 5′ ◦ (φ⊗ φ).

Definition 1.2.5. LetB be a bialgebra overR. An antipode forB is a morphism
of R-modules s : B → B such that

5 ◦ (s⊗ 1) ◦ µ = η ◦ ε = 5 ◦ (1⊗ s) ◦ µ.

Definition 1.2.6. A Hopf algebra over R is a pair consisting of a bialgebra B
with an antipode s.

Definition 1.2.7. Let H and H ′ be two Hopf algebras over R. Let sH , sH′ ,
be the antipodes of H, H ′, respectively. A morphism of bialgebras φ : H → H ′

which satisfies the condition

sH′ ◦ φ = φ ◦ sH ,

φ is called morphism of Hopf algebras.

Lemma 1.2.8. Let H and H ′ be two Hopf algebras over R. Let sH , sH′, be the
antipodes of H, H ′, respectively. If φ : H → H ′ is a morphism of bialgebras,
then it is a morphism of Hopf algebras.

Proof. See [Swe69, Chap.IV, Lemma 4.0.4].

For the definition of a complete Hopf algebra we have to consider complete
R-modules, i.e. topologized R-modules which are complete with respect to a
given topology. In our cases this topology will come from a descending filtration
{FnM} on the R-module M .
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Definition 1.2.9. By replacing R-modules by complete R-modules, and also
tensor products by complete tensor products, we define in the same way as
above a complete algebra, a complete coalgebra, a complete bialgebra, and a
complete Hopf algebra over R (and the corresponding morphisms).

Definition 1.2.10. Let M be a topologized R-module, where the topology is
induced by a descending filtrationM = F 0M ⊃ F 1M ⊃ · · · of submodules and
let R carry the discrete topology. We denote by M◦ the set of continuous linear
maps from M to R, i.e

M◦ = Homcont(M,R) = lim−→HomR(M/FnM,R).

We call M◦ the continuous dual of M .

We will now describe the (complete) Hopf algebra structures on O(G), U(g)
and their duals. This is taken from [Haz78, Chap. VII.36] for the complete
Hopf algebra structure on O(G) and from [Haz78, Chap.II.14.3] for the Hopf
algebra structure on U(g).

Proposition 1.2.11. Let G be a formal group law. Then the ring of functions
on G carries a complete Hopf algebra structure (O(G),5, η, µ, ε, s). The maps
are given by

5: O(G) ⊗̂O(G) → O(G) η : R → O(G)
f ⊗ g 7→ f · g 1 7→ 1

µ: O(G) → O(G) ⊗̂O(G) ε : O(G) → R

t(i) 7→ G(i)(t(1)
1 , . . . , t

(m)
1 , t

(1)
2 , . . . , t

(m)
2 ) f 7→ f(0)

s: O(G) → O(G)
t(i) 7→ s(t(i)),

where the antipode map s is given by Proposition 1.1.3 by the condition that

G(i)(t(1), . . . , t(m), s(t(1)), . . . , s(t(m))) = 0.
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Proof. See [Haz78, Chap.VII.36]. Note that the map 5 is continuous so that it
is enough to define this map on f ⊗ g ∈ O(G)⊗O(G).

Example 1.2.12. (a) Let Ga be the one-dimensional additive formal group
law with Ga(X,Y ) = X + Y . Then comultiplication is given by

µ(t1) = G(t1, t2) = t1 + t2

and the j-th power of t1 maps to

µ(tj1) = (t1 + t2)j =
j∑

k=0

(
j

k

)
tk1t

j−k
2 .

The antipode s maps in this case t1 to −t1.

(b) Let Gm be the one-dimensional multiplicative formal group law with
Gm(X,Y ) = X + Y +XY . Then comultiplication is given by

µ(t1) = G(t1, t2) = t1 + t2 + t1t2

and the j-th power of t1 maps to

µ(tj1) = (t1 + t2 + t1t2)j =
j∑

k1=0

(
j

k1

) j−k1∑
k2=0

(
j − k1
k2

)
tj−k1
1 tk1+k2

2 .

The antipode s maps in this case t1 to −t1 + t21 − t31 + t41 − t51 + . . ..

The complete Hopf algebra structure on O(G) enables us to verify that the
definition of the Lie bracket on g given by Equation (1.3) is equal to the ordinary
Lie bracket definition for derivations.

Lemma 1.2.13. The Lie bracket definition on g given by Equation (1.3) is
equal to the ordinary Lie bracket definition for derivations if one identifies g

with Der0(O(G), R).

Proof. Let el, ek ∈ Der0(O(G), R). ThenDl := (id⊗el)◦µ andDk := (id⊗ek)◦µ
with µ and ε given by the complete Hopf algebra structure on O(G) are elements
of DerR(O(G),O(G)) and the canonical bijection of DerR(O(G),O(G)) and
Der0(O(G), R) defines a Lie bracket on g by

[el, ek] = ε ◦ [Dl, Dk],
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see [Wat79, Chap.12]. After the Lie bracket definition on DerR(O(G),O(G))
the right hand side is equal to ε ◦ (Dl ◦Dk −Dk ◦Dl). Thus

[el, ek](t(j)) = ε ◦ (Dl ◦Dk −Dk ◦Dl)(t(j)).

Look at the term (Dl ◦Dk)(t(j)):

(Dl◦Dk)(t(j)) = Dl ◦ (id⊗ek)(µ(t(j)))

= Dl ◦ (id⊗ek)(G(j)(t(1) ⊗ 1, . . . , t(m) ⊗ 1, 1⊗ t(1), . . . , 1⊗ t(m)))

= Dl ◦ (id⊗ek)(t(j) ⊗ 1 + 1⊗ t(j) +
m∑

i,r=1
γjirt

(i) ⊗ t(r) +O(d ≥ 3)).

According to the definition of ek, given by

ek(t(i)
s) =

0, if i 6= k or i = k, s 6= 1

1, if i = k, s = 1,
(1.4)

the right hand side reduces to Dl ◦ (
∑m
i=1 γ

j
ikt

(i)). Hence

(Dl ◦Dk)(t(j)) = Dl ◦ (
m∑
i=1

γjikt
(i)) =

m∑
i=1

γjik(id⊗el)(µ(t(i)))

=
m∑
i=1

γjik(id⊗el)(G
(i)(t(1) ⊗ 1, . . . , t(m) ⊗ 1, 1⊗ t(1), . . . , 1⊗ t(m)))

=
m∑
i=1

γjik(id⊗el)(t
(i) ⊗ 1 + 1⊗ t(i) +

m∑
s,t=1

γistt
(s) ⊗ t(t) +O(d ≥ 3))

=
m∑
i=1
i 6=l

γjik(id⊗el)(t
(i) ⊗ 1 + 1⊗ t(i) +

m∑
s,t=1

γistt
(s) ⊗ t(t) +O(d ≥ 3))

+ γjlk(id⊗el)(t
(l) ⊗ 1 + 1⊗ t(l) +

m∑
s,t=1

γlstt
(s) ⊗ t(t) +O(d ≥ 3))

(1.4)=
m∑
i=1
i 6=l

γjik(
m∑
s=1

γislt
(s)) + γjlk + γjlk(

m∑
s=1

γlslt
(s))

and

ε ◦ (
m∑
i=1
i 6=l

γjik(
m∑
s=1

γislt
(s)) + γjlk + γjlk(

m∑
s=1

γlslt
(s))) = γjlk
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such that

[el, ek](t(j)) = ε ◦ (Dl ◦Dk −Dk ◦Dl)(t(j)) = γjlk − γ
j
kl,

which proves the lemma.

Definition and Proposition 1.2.14. Let D be the continuous dual of O(G),
i.e. D = O(G)◦ = lim−→HomR(O(G) /FnO(G), R), where the filtration was given
in Lemma 1.1.5. Then the complete Hopf algebra structure on O(G) yields a
Hopf algebra structure on its continuous dual (D,5, η, µ, ε, s) given by dualizing
the structure morphsims of (O(G),5, η, µ, ε, s).

Proof. See [Haz78, Chap.VII.36] and note that D is in our case actually a Hopf
algebra, since we didn’t require that the antipode s is a D-module homomor-
phism.

Note that we have associated to a formal group law G the complete Hopf algebra
O(G) and the Hopf algebra D. These objects are dual to each other, where one
gets from O(G) to D by taking continuous linear duals and from D to O(G)
by taking linear duals. This duality extends to the categories formed by these
objects and is known as Cartier duality, see for example [Die73, Chap.I.2].

Proposition 1.2.15. Let g be a Lie algebra and U(g) the universal enveloping
algebra of g. Then U(g) carries a Hopf algebra structure (U(g),5, η, µ, ε, s). The
maps are given by:

5: U(g)⊗ U(g) → U(g) η : R → U(g)
x⊗ y 7→ x · y 1 7→ 1

µ: g → U(g)⊗ U(g) ε : g → R

L 7→ L⊗ 1 + 1⊗ L L 7→ 0

s: g → U(g)
L 7→ −L.

Proof. See [Haz78, Chap.II.14.3].
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Remark. 1.2.16. Note that it is sufficient to define the maps µ, ε and s on g,
because of the universal property of U(g), mentioned in Proposition 1.1.11.

Let g be anm-dimensional Lie algebra over R which is free as an R-module with
basis e1, . . . , em and let U(g) be the universal enveloping algebra of g. Then we
denote by U?(g, R) := HomR(U(g), R) or by U? - if g and R are clear from the
context - the R-linear dual of U(g).

Let dj1t(1) · · · djmt(m) be the dual basis of ej1i · · · ejmm with ji ∈ {1, . . . n} for all
i ∈ {1, . . .m}. Then U? has a ring structure with underlying set

R{{dt}} :=
∏
j

Rdj1t(1) · · · djmt(m) (1.5)

and the two binary operations + as usual addition and multiplication • given
by the comultiplication of U(g):

• : U?⊗U? → U?

ψ ⊗ ϕ 7→ [x 7→ ρ(ψ ⊗ ϕ)(µ(x))] ,

where ρ : U?⊗U? → (U(g)⊗U(g))? is the linear injection given by

ρ(ψ ⊗ ϕ)(x⊗ y) = ψ(x) · ϕ(y).

Analogous to O(G) we can define a filtration on U? by

F i U? =
{
ϕ ∈ U? |for all monomials djt is |j| ≥ i

}
, (1.6)

for all i ∈ N, such that U? is a completed ring with respect to the topology
induced by this filtration. And we can identify U? ⊗̂ U? with (U(g)⊗U(g))?.
The underlying set of (U?)⊗̂n is given by R{{dt1, . . . , dtn}}, where we use the
multi-index notation drti - or equivalently 1 ⊗ . . . ⊗ 1 ⊗ drt ⊗ 1 ⊗ . . . ⊗ 1 with
drt at the i-th entry - for dr1t

(1)
i · · · drmt

(m)
i .

Proposition 1.2.17. Let g be a free Lie algebra, U(g) the universal enveloping
algebra of g and U? the linear dual of U(g). Then U? carries a complete Hopf
algebra structure (U?, •, η, µ, ε, s). The maps are given by:

•: U? ⊗̂ U? → U? η : R → U?

ψ ⊗ ϕ 7→ [x 7→ ρ(ψ ⊗ ϕ)(µ(x))] 1 7→ [x 7→ ε(x)]
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µ: U? → U? ⊗̂ U? ε : U? → R

ϕ 7→ [x⊗ y 7→ ϕ(5(x⊗ y))] ϕ 7→ ϕ(1)

s: U? → U?

ϕ 7→ [x 7→ ϕ(s(x))].

Proof. Note first that again since • is a continuous map it is enough to define
this map on ϕ ⊗ ψ ∈ U?⊗U?. After Definition 1.2.6 we have to check that
(U?, •, η, µ, ε) is a complete bialgebra. For this see [Swe69, Chap.I-IV] and note
that the finiteness condition in Sweedlers book can in our case be replaced by
the identification

(U(g)⊗U(g))? ∼= U? ⊗̂ U? .

Secondly we have to show that s is actually an antipode, i.e. that

• ◦(s⊗ 1) ◦ µ = η ◦ ε = • ◦(1⊗ s) ◦ µ

but this can be easily verified from the antipode condition of U(g).

In the following lemma, we will provide explicit formulas for the multiplication
and comultiplication in U?. Especially the explicit formula for the multiplication
will play an essential role in the next chapter.

Lemma 1.2.18. Let g be an m-dimensional Lie algebra over R which is free as
an R-module with basis e1, . . . , em and let U? be the linear dual of the universal
enveloping algebra of g. Let dj1t(1) · · · djmt(m) be the dual basis of ej1i · · · ejmm
with ji ∈ {1, . . . n} for all i ∈ {1, . . .m}, so that an element of U? is of the form∑
j cjd

j1t(1) · · · djmt(m) with cj ∈ R. Then multiplication and comultiplication
in U? are given by the continuous R-linear extension of

•: U?⊗U? → U? and µ: U? → U? ⊗̂ U?

drt⊗ dst 7→
(r+s
r

)
dr+st drt 7→

∑
l+k=r d

lt⊗ dkt.

Proof. We prove the formula for the multiplication by evaluating drt ⊗ dst at
an arbitrary element of U(g), see also [Ser06, Chap.V.6].

•
(
drt⊗ dst

)(∑
cle

l
)

=
(
drt⊗ dst

)(
µ(
∑

cle
l)
)
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Looking at the right hand side, µ(
∑
cle

l) can be rewritten as follows:

µ

(∑
cle

l
)

=
∑

clµ(el)

=
∑

clµ(e1)l · · ·µ(em)lm

=
∑

cl

((
l1∑

k1=0

(
l1
k1

)
ek1

1 ⊗ e
l1−k1
1

)
· · ·
(

lm∑
km=0

(
lm
km

)
ekmm ⊗ elm−kmm

))

=
∑

cl

(
l1∑

k1=0
· · ·

lm∑
km=0

(
l1
k1

)
· · ·
(
lm
km

)(
ek1

1 · · · e
km
m ⊗ e

l1−k1
1 · · · elm−kmm

))
.

Thus we get that

•
(
drt⊗ dst

)(∑
cle

l
)

=
∑

cl

(
l1∑

k1=0
· · ·

lm∑
km=0

(
l1
k1

)
· · ·
(
lm
km

)
drt(ek1

1 · · · e
km
m ) · dst(el1−k1

1 · · · elm−kmm )
)
.

We will now analyse the product drt(ek1
1 · · · ekmm ) ·dst(el1−k1

1 · · · elm−kmm ). For the
first factor we get

drt(ek1
1 · · · e

km
m ) = (dr1t(1) · · · drmt(m))(ek1

1 · · · e
km
m )

=

1, if r1 = k1, . . . , rm = km

0, otherwise

and the second factor reduces to

dst(el1−k1
1 · · · elm−kmm ) = (ds1t(1) · · · dsmt(m))(el1−k1

1 · · · elm−kmm )

=

1, if s1 = l1 − k1, . . . , sm = lm − km
0, otherwise.

Thus the product in total can be simplified to

drt(ek1
1 · · · e

km
m ) · dst(el1−k1

1 · · · elm−kmm ) =

1, if l1 = r1 + s1, . . . , lm = rm + sm

0, otherwise,

which implies that

•
(
drt⊗ dst

)(∑
cle

l
)

=
∑

cr+s

(
r1 + s1
r1

)
· · ·
(
rm + sm
rm

)
.
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We will check the second claim in a similar fashion:

µ

(
drt

)(∑
cie

i ⊗
∑

dje
j
)

=
(
drt

)(
5
(∑

cie
i ⊗

∑
dje

j
))

=
(
drt

)(∑∑
cidje

i+j
)

=
∑∑

cidj(dr1t(1) · · · drmt(m))(ei1+j1
1 · · · eim+jm

m ).

Since

dr1t(1) · · · drmt(m)(ei1+j1
1 · · · eim+jm

m ) =

1, if r1 = i1 + j1, . . . rm = im + jm

0, otherwise,

we get the explicit formula for the comultiplication.

Example 1.2.19. Let m = 1. Then the explicit formulas for multiplication and
comultiplication amount to

dt • · · · • dt︸ ︷︷ ︸
n−times

= dt • · · · • dt︸ ︷︷ ︸
(n−2)−times

• 2d2t = n!dnt

µ(dt) = 1⊗ dt+ dt⊗ 1.

1.3 Cohomology complexes

This section introduces all complexes we are dealing with and certain relations
between them. Chapter 2 can be read without knowledge of all these complexes.
We will need them in Chapter 3 where we will describe a morphism between
the complex of inhomogeneous n-cochains of G and the complex of n-cochains
of g.

Definition and Proposition 1.3.1. Let (H,5, η, µ, ε, s) be a complete Hopf
algebra over R (Definition 1.2.9). Set Tn(H) = H⊗̂n if n > 0 and T 0(H) = R.
We define linear maps ∂0

n, . . . , ∂
n+1
n from Tn(H) to Tn+1(H) by the continuous

extension of

∂0
n(x1 ⊗ · · · ⊗ xn) = 1⊗ x1 ⊗ · · · ⊗ xn,

∂n+1
n (x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xn ⊗ 1,

∂in(x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xi−1 ⊗ µ(xi)⊗ xi+1 ⊗ · · · ⊗ xn,
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if 1 ≤ i ≤ n. If n = 0, we set ∂0
0(1) = ∂1

0(1) = 1. We have ∂jn+1∂
i
n = ∂in+1∂

j−1
n

for all integers i, j such that 0 ≤ i < j ≤ n + 2. We define the differential
∂ : Tn(H)→ Tn+1(H) by

∂ =
n+1∑
i=0

(−1)i∂in. (1.7)

Then ∂◦∂ = 0 and we obtain a cochain complex (T •(H), ∂) called cobar complex
of the complete Hopf algebra H.

Proof. See [Kas95, Chap.XVIII.5].

In the case of the ring of functions O(G) to a formal group law we will use the
following notation.

Definition 1.3.2. Let G be a formal group law. An inhomogeneous n-cochain
of G with coefficients in R is an element of O(G)⊗̂n. We will denote the set of
inhomogeneous n-cochains also byKn(G,R) . The coboundary homomorphisms
∂n : Kn(G,R)→ Kn+1(G,R) of definition 1.3.1 transform into:

∂n(f)(t1,...,n+1) = f(t2,...,n+1)

+
n∑
i=1

(−1)if(t1, . . . , G(1)1(ti, ti+1), . . . , G(m)(ti, ti+1), . . . , tn+1)

+ (−1)n+1f(t1,...,n).

We obtain a cochain complex (K•(G,R), ∂) whose cohomology group Hn(G,R)
is called n-th group cohomology of G with coefficients in R.

In the case of the dual of the universal enveloping algebra of g we will use the
following notation.

Definition and Proposition 1.3.3. Let g be a Lie algebra over R and let
U(g) be its universal enveloping algebra. An inhomogeneous n-cochain of U(g)
with coefficients in R is an element of HomR((U(g))⊗n, R). The coboundary
homomorphisms ∂nu : HomR((U(g))⊗n, R)→ HomR((U(g))⊗n+1, R) given by

∂nu (u1, . . . un+1) = f(u2, . . . , un+1) +
n∑
i=1

(−1)if(u1, . . . , uiui+1, . . . , un+1)

+ (−1)n+1f(u1, . . . un)

define a cochain complex (HomR(U•, R), ∂u).
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Proof. See [NSW00, Chap. I.2].

Remark. 1.3.4. Since the set of inhomogeneous n-cochains can be identified
with U?⊗̂n, the definition of the coboundary homomorphisms of Definition 1.3.3
is equivalent to the definition of the differential defined by (1.7) of Definition
1.3.1 for the complete Hopf algebra U?.

Definition and Proposition 1.3.5. A homogeneous n-cochain of U(g) with
coefficients in R is an element of HomU(g)((U(g))⊗n+1, R), where U(g)⊗n is
considered as an U(g)-module via the following operation:

u.(u0, . . . un−1) = (uu0, . . . un−1).

The map

ιn : HomR(U(g)⊗n, R) → HomU(g)(U(g)⊗n+1, R)

ϕ 7→ [(u0, . . . , un) 7→ ϕ(u1, . . . un)]

[(u1, . . . , un) 7→ ϕ(1, u1, . . . un)] 7→ϕ

is an isomorphism from the set of inhomogeneous to the set of homogeneous
n-cochains. If we consider the following coboundary homomorphisms

∂nuh : HomU(g)((U(g))⊗n+1, R)→ HomU(g)((U(g))⊗n+2, R)

defined by
∂nuh = ιn+1 ◦ ∂nu ◦ (ιn)−1

we obtain a complex (HomU(g)(U•h , R), ∂uh) of homogeneous n-cochains and ιn

yields an isomorphism ι : (HomR(U•, R), ∂u) → (HomU(g)(U•h , R), ∂uh) of com-
plexes.

Proof. It is enough to prove that ι is an isomorphism, since the remaining state-
ment can be easily deduced from this. We check first that ιn(ϕ) is U(g)-invariant:

(u.ιn(ϕ))(u0, . . . un) = ιn(ϕ)(uu0, . . . un) = ϕ(u1, . . . un) = ιn(ϕ)(u0, . . . un).

Secondly we show that ιn and (ιn)−1 are inverse to each other:

(ιn)−1 ◦ ιn(ϕ)(u1, . . . , un) = ιn(ϕ)(1, u1, . . . , un) = ϕ(u1, . . . , un)

ιn ◦ (ιn)−1(ϕ)(u0, . . . , un) = (ιn)−1(ϕ)(u1, . . . , un) = ϕ(1, u1, . . . , un)

(ϕ is homogeneous) = (u0.ϕ)(1, u1, . . . , un) = ϕ(u0, u1, . . . , un).
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For the following definitions let g be anm-dimensional Lie algebra over R which
is free as an R-module with basis e1, . . . , em. Let

∧n g be the n-fold exterior
product of g with basis {ei1 ∧ . . . ∧ ein | i1 < . . . < in}, ij ∈ {1, . . . ,m}. We
endow R with the trivial g-action.

Definition and Proposition 1.3.6. The set HomR(
∧n g, R) is called the set

of n-cochains of g with coefficients in R and denoted by Cn(g, R). Note that
the rank of Cn(g, R) over R is

(m
n

)
. The boundary operators ∂′n : Cn → Cn+1

are given by the formula

∂′n(ω)(ei1 ∧ . . . ∧ ein+1) =
∑

1≤r<s≤n+1
(−1)r+sω([eir , eis ] ∧ ei1 ∧ . . . ∧ ein+1)r,s,

where the notation ([eir , eis ] ∧ ei1 ∧ . . . ∧ ein+1)r,s indicates that the elements
eir and eis are omitted. We thus obtain, after assuring ourself that ∂′2 = 0,
a complex (C•(g, R), ∂′) whose cohomology group Hn(g, R) is called n-the Lie
algebra cohomology of g with coefficients in R.

Proof. See [Kna88, Chap. IV.3].

In particular we have K0(G,R) ∼= R ∼= C0(g, R) and the boundary operators
∂0, ∂0

u and ∂′0 are zero maps.

For details about the following complex see [CE56, Chap. XIII.7] or [Kna88,
Chap. IV.3].

Definition 1.3.7. Let U(g) be the universal enveloping algebra of g. Set

Vi(g) = U(g)⊗
∧i

g

for all i ∈ {0, 1, 2, . . .} with the g-module structure induced by the action on
the first factor. The differential dn−1 : Vn(g)→ Vn−1(g) is given by the formula

dn−1(u⊗ ei1 ∧ . . . ∧ ein) =
∑

1≤k<l≤n
(−1)k+l(u⊗ [eik , eil ] ∧ ei1 ∧ . . . ∧ ein)k,l

+
n∑
j=1

(−1)j+1(ueij ⊗ ei1 ∧ . . . ∧ ein)j ,

where the notation (ei1∧. . .∧ein)k,l, respectively (ei1∧. . .∧ein)j again indicates
that the elements eik and eil , respectively eij are omitted. This leads, after
assuring ourselves that d2 = 0, to a complex, called Koszul complex.
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The following two propositions relate the Koszul complex first to the standard
homogeneous complex of U(g) and secondly to the Lie algebra complex.

Proposition 1.3.8. Let (V(g)•, d) be the Koszul complex defined above. Then
the map ν : HomU(g)(U•h , R) → HomU(g)(V (g)•, R) induced by the anti-sym-
metrisation map

asn :
n∧
g→ U⊗n

given by
asn(ei1 ∧ . . . ∧ ein) =

∑
α∈Sn

sgn(α)eiα(1) ⊗ · · · ⊗ eiα(n) ,

with ij ∈ {1, . . . ,m}, is a quasi-isomorphism of complexes.

Proof. See [CE56, Chap. XIII.7, Theorem 7.1].

Proposition 1.3.9. Let (V(g)•, d) be the Koszul complex defined above. Then
the map κ : HomU(g)(V (g)•, R)→ C•(g, R) given by

κn : HomU(g)(Vn(g), R) → HomR(
n∧
g, R)

f 7→ [(ei1 ∧ · · · ∧ ein) 7→ f(1⊗ ei1 ∧ . . . ∧ ein)]

is an isomorphism of complexes.

Proof. See [CE56, Chap. XIII.8] or for a more detailed version [Kna88, Chap.
IV.3-6].
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Chapter 2

Isomorphism of complete Hopf alge-
bras

Throughout this chapter R will be an integral domain of character-
istic zero.

After the description of the (complete) Hopf algebra structures in Chapter 1,
we will show in Section 2.1 that for an abitrary formal group law G there exists
a homomorphism of complete Hopf algebras between the ring of functions O(G)
and the dual of the universal enveloping algebra U?. In the special cases of the
m-dimensional additive or a one-dimensional formal group law we will prove in
the second section, by giving an explicit description of the morphism, that this
morphism is actually an isomorphism of complete Hopf algebras if Q ⊂ R. This
observation leads us to the introduction of a modified ring Õ(G) in Section 2.3.
In Section 2.4 we will show that we actually obtain an isomorphism from Õ(G)
to U? for all formal group laws G over R.

2.1 Homomorphism between O(G) and U?

Let G be an m-dimensional formal group law and O(G) the ring of functions to
G (see Definition 1.1.1). Let g be the associated free m-dimensional Lie algebra
over R to G which is free as an R-module with basis e1, . . . , em (see description
around (1.3)) and let U? be the linear dual of the universal enveloping algebra
of g. This section describes the desired map from O(G) to U? as a composition
of maps O(G) → D? → U?, where D? is the linear dual of D and the latter
map is defined by dualizing the map U(g) → D. The existence of the map
U(g) → D can also be found in [Haz78, Chap. VII.37.4] or [Ser06, Chap.V.6].
Since however we are more interested in the dual map D? → U?, and since in
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particular we wish to show it is a complete Hopf algebra morphism, we give a
complete proof of Proposition 2.1.2.

Definition 2.1.1. Let H be a (complete) Hopf algebra. An element x ∈ H is
called primitive if its comultiplication is given by

µ(x) = x⊗ 1 + 1⊗ x.

Proposition 2.1.2. Let G be an m-dimensional formal group law, O(G) the
ring of functions to G, g the associated free m-dimensional Lie algebra over
R to G which is free as an R-module with basis e1, . . . , em. Let U(g) be the
universal enveloping algebra of g and U? the linear dual of U(g). There are
natural homomorphisms of (complete) Hopf algebras

β : U(g)→ D and β? : O(G)→ U?

induced by the pairing

g⊗O(G) → R

L⊗ f 7→ L(f),

where L(f) was defined by L(f) =
∑m
j=1 rj

∂f

∂t
(j)
1

(0) if L =
∑m
j=1 riej ∈ g, see

Equation (1.2) in Section 1.1.

Proof. Let D be the linear dual of O(G) and let γ : g → D be defined by the
pairing of the proposition. Let β : U(g) → D be the unique algebra homomor-
phism given by the universal property of U(g) in Proposition 1.1.11. To prove
that the map β is a Hopf algebra homomorphism, it remains to check that the
map β is a coalgebra morphism, i.e. that

1) ε ◦ β = ε

2) (β⊗β) ◦ µ = µ ◦ β .

Then according to Lemma 1.2.8 the map β is already a Hopf algebra homomor-
phism. To check the first condition let x =

∑
j cje

j ∈ U(g). Then

ε ◦ β(x) = β(x)(1) = x(1) = c0 = ε(x).
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Since U(g) is as an algebra generated by elements of the Lie algebra g, the second
condition is equivalent to the condition that the map β maps elements of the
Lie algebra to primitive elements, which we will now check. Let L =

∑
aiei ∈ g.

Then

µ(β(L))(f ⊗ g) = β(L)(fg)

=
∑

aiei(fg)

=
∑

aiei(f) · g(0) +
∑

aiei(g) · f(0)

= β(L)(f) · β(1)(g) + β(L)(g) · β(1)(f)

= (β(L)⊗ 1 + 1⊗ β(L))(f ⊗ g).

The map

β? : O(G) → U?

f 7→ [x 7→ β(x)(f)]

is given by the following composition of maps

O(G) → D? → U?

f 7→ [ϕ 7→ ϕ(f)]
ψ 7→ [x 7→ ψ(β(x))],

where D? is the linear dual of D and inherits therefore by dualizing the structure
morphisms a complete Hopf algebra structure. The latter map is defined as the
dual of the map β. One sees as follows that the map β? is a homomorphism of
completed Hopf algebras:

1) the map O(G) → D? is a homomorphism of complete Hopf algebras,
which can be easily verified from the complete Hopf algebra structures of
O(G) and D?,

3) the dual of a Hopf algebra homomorphism is a homomorphism of complete
Hopf algebras and

3) the composition of homomorphisms of complete Hopf algebras is a homo-
morphisms of complete Hopf algebras.
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Notation. 2.1.3. We will denote the image of ei under the map

g
γ−→ D

L 7→ [f 7→ L(f)]

by φ(i), to that we have φ(i)(f) = ei(f) = ∂f

∂t
(i)
1

(0). The image of eki of U(g) under

the map β is therefore denoted by (φ(i))k, where the multiplication is given by
the Hopf algebra structure on D. For (φ(i))0 one has that (φ(i))0(f) = f(0).

2.2 The additive and one-dimensional cases

In this section we will consider the special cases, i.e. the additive formal group
law Ga and arbitrary one-dimensional formal group laws. By giving an explicit
description of the map β? we will prove that β? is in these cases an isomorphism
of complete Hopf algebras, under the assumption that Q ⊂ R.

Theorem 2.2.1. Let β? : O(G)→ U? be the map defined in Proposition 2.1.2
and let G be either the m-dimensional additve or a one-dimensional formal
group law with G(X,Y ) = X + Y +

∑
i,j≥1 cijX

iY j. Assume Q ⊂ R. Then the
map β? is an isomorphism of complete Hopf algebras.

The proof of this theorem will be given in three steps. First we will look at the
one-dimensional additive group Ga as an example, to see exactly what is going
on in this easy case, i.e. what β?(t)(x) is for t ∈ O(G) and x ∈ U(g). In the
second step we prove a lemma, which gives an explicit description of β?(t)(x) for
all one-dimensional formal group laws. Finally we generalize Example 2.2.2 for
all m-dimensional additive formal group laws to gain the statement of Theorem
2.2.1.

Example 2.2.2. In the case of the one-dimensional additive formal group law
Ga, the universal enveloping algebra U(g) is according to Example 1.1.12 of the

32



form U(g) ∼= R[e1]. Let x =
∑
ake

k
1 ∈ U(g), t ∈ O(G). Then

β?(t)(x) = β(
∑

ake
k
1)(t)

=
∑

ak(φ(1))k(t)

=
∑

ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸
k times

(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

(. . . (µ⊗ id(µ(t))) . . .))

=
∑

ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸
k times

(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

(. . . (µ⊗ id(t⊗ 1 + 1⊗ t)) . . .))

=
∑

ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸
k times

(t⊗ 1⊗ . . .⊗ 1 + . . .+ 1⊗ . . .⊗ 1⊗ t)

= a1,

where the last equation holds because φ(1)(t) = 1 and φ(1)(1) = 0. Thus the
map β? is explicitly given by:

β? : O(G) → U?

t 7→ dt.

If we consider the n-th power of t we get as shown in Example 1.2.19 that

β?(tn) = dt • . . . • dt︸ ︷︷ ︸
n times

= n!dnt.

Since the map β? is continuous and R-linear we can conclude in the case of
the one-dimensional additive formal group law that β? is an isomorphism of
complete Hopf algebras under the assumption that Q ⊂ R.

Lemma 2.2.3. Let β? be the map defined in Proposition 2.1.2 and let G be an
arbitrary one-dimensional formal group law with

G(X,Y ) = X + Y +
∑
i,j≥1

cijX
iY j .

Let c := c11. Then

β?(t) =

dt, if G = Ga
1
c exp(cdt)− 1, otherwise.

(2.1)
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Proof. Let x =
∑
ake

k
1 ∈ U(g) and t ∈ O(G). Then, as in Example 2.2.2,

β?(t)(x) is given by the following sum

∑
ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸

k times
(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸

k−2 times
(. . . (µ⊗ id(µ(t))) . . .)), (2.2)

where µ(t) is in this case given by

µ(t) = t⊗ 1 + 1⊗ t+
∑
i,j≥1

cijt
i ⊗ tj .

Consider the expression

µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−3 times

(. . . (µ⊗ id(µ(t)) . . .)))

on the right hand side of (2.2). After applying µ, three types of factors arise,
namely:

?⊗ . . .⊗ ?⊗ 1, 1⊗ . . .⊗ 1⊗ t and ?⊗ . . .⊗ ?⊗ tj ,

where the symbol ? stands for an arbitrary element in the formal power series
ring R[[t]]. The first type comes from the factor t⊗ 1 in µ(t), the second from
1 ⊗ t in µ(t). Since we apply only the identity on tj of the last factor in µ(t),
we get the third type. From the definition of φ(1) in 2.1.3 we know that

φ(1)(tj) =

1, if j = 1

0, otherwise.

This shows that we can assume that cij = 0 for j ≥ 2, since all factors cijti⊗ tj

with cij 6= 0 for j ≥ 2 provide no contribution to the calculation of β?(t)(x).
Since comultiplication is associative (2.2) is equal to

∑
ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸

k times
(id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

⊗µ(. . . (id⊗µ(µ(t))) . . .))

and by the same argument as above, it follows that we can assume that cij = 0
for i ≥ 2. Hence we can restrict ourselves to the case where the formal group
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law is given by G(X,Y ) = X + Y + cXY and we get

β?(t)(x) =
∑

ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸
k times

(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

(. . . (µ⊗ id(µ(t))) . . .)))

=
∑

ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸
k times

(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

(. . .

. . . (µ⊗ id(t⊗ 1 + 1⊗ t+ ct⊗ t)) . . .))

=
∑

ak (φ(1) ⊗ . . .⊗ φ(1))︸ ︷︷ ︸
k times

(µ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
k−2 times

(. . . (t⊗ 1⊗ 1 + 1⊗ t⊗ 1

+ ct⊗ t⊗ 1 + 1⊗ 1⊗ t+ ct⊗ 1⊗ 1 + c⊗ t⊗ 1 + c2t⊗ t⊗ t)) . . .))

=
∑

akc
k−1.

Thus

β?(t) =
∞∑
i=1

ci−1dit
1.2.18=

∞∑
i=1

ci−1 1
i! (dt)

i =

dt, if c = 0
1
c exp(cdt)− 1, if c 6= 0.

Proof of Theorem 2.2.1. At first we will consider the case where G is one-
dimensional. Since the map β? is continuous and R-linear, it is given by the
continuous R-linear extension of (2.1). Hence injectivity of the map β? is obvi-
ous. For surjectivity we have to show that there exists an element f of O(G)
such that β?(f) = djt for all j. This element f is given by

f =


1
j! t

j , if G = Ga
1
cj! log(ct+ c)j , otherwise.

Since we assumed that Q ⊂ R the coefficients of f lie in R.
Consider now the case where G is the m-dimensional additive formal group law
Ga. Then the map β? is via a computation analogous to that of Example 2.2.2
given by the continuous R-linear extension of:

β? : O(G) → U?

t(j) 7→ dt(j) = de(j)t,
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where the multi-index e(j) is (0, . . . , 0, 1, 0, . . . , 0) with 1 in the j-th entry and
therefore

β?(tj) = de(1)t • . . . • de(1)t︸ ︷︷ ︸
j1 times

• . . . • de(m)t • . . . • de(m)t︸ ︷︷ ︸
jm times

1.2.18= j1!d(j1,0...,0)t • . . . • jm!d(0,...,0,jm)t

= j!djt.

Hence injectivity is again obvious and since

β?( 1
j! t

j) = djt

we can conclude that the map β? is surjective if Q ⊂ R.

2.3 The modified ring Õ(G)

In the proof of Theorem 2.2.1 we have seen that the strong assumption Q ⊂ R
is really neccessary. However we can weaken this restriction, since we only need
certain divisibility conditions for the coefficients of the formal power series of
O(G). This leads to the definition of the following modified ring Õ(G).

Definition 2.3.1. Let Q(R) be the quotient field of R. To each m-dimensional
formal group law G we associate an extension of the ring of functions O(G)
called the modified ring of functions Õ(G) which is defined by

Õ(G) :=

∑
j

bjt
j ∈ Q(R)[[t]] | j!bj ∈ R

 .
Remark. 2.3.2. Note that the modified ring Õ(G) is actually a ring and that
O(G) ⊂ Õ(G). If one adds two elements f =

∑
j bjt

j and g =
∑
j cjt

j of Õ(G)
the sum is given by

f + g =
∑
j

(bj + cj)tj

and obviously
j!(bj + cj) ∈ R.
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If one multiplies f and g the product is given by

f · g =
∑
j

∑
r+s=j

brcst
j

and the divisibility condition is fulfilled since

j!brcs = (r + s)!brcs =
(
r + s

r

)
r!brs!cs ∈ R.

Lemma 2.3.3. The modified ring of functions Õ(G) is a complete ring with
respect to the topology induced by the following descending filtration

F i Õ(G) =
{
f ∈ Õ(G) |all monomials of f have a total degree ≥ i

}
, (2.3)

for all i ∈ N.

Proposition 2.3.4. Let G be an m-dimensional formal group law and Õ(G)
the associated modified ring of Definition 2.3.1. Then Õ(G) carries a complete
Hopf algebra structure (Õ(G),5, η, µ, ε, s).

Proof. We claim that the morphisms 5, η, µ, ε and s of the complete Hopf
algebra structure of O(G) of Proposition 1.2.11 can be taken to get a complete
Hopf algebra structure on Õ(G). To see this we have to verify the divisibility
conditions, i.e. we have to check that if f =

∑
j bjt

j is an element of Õ(G), then

(i) ε(f) ∈ R, but this is obvious since ε(f) = f(0) = b0 and 0!b0 = b0 ∈ R

(ii) µ(f) ∈ Õ(G) ⊗̂ Õ(G), but this is true since

µ(f) = µ(
∑
j

bjt
j) =

∑
j

bjG(t1, t2)j

=
∑
j

bjG
(1)(t1, t2)j1 · · ·G(m)(t1, t2)jm

where the coefficients of the formal group law lie in R. Consider the factors
G(i)(t1, t2). These are given by

G(i)(t1, t2) = t
(i)
1 + t

(i)
2 +O(d ≥ 2),
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see Definition 1.1.1. Via the binomial formula G(i)(t1, t2)ji can be written
as

G(i)(t1, t2)ji =
ji∑
li=0

ji−li∑
ki=0

(
ji
li

)(
ji − l1
ki

)
(t(i)1 )

ji−li−ki · (t(i)2 )
li ·O(d ≥ 2)ki .

Hence to check that µ(f) ∈ Õ(G) ⊗̂ Õ(G) we must prove that

bj ·
m∏
i=1

(
ji
li

)(
ji − li
ki

)
(ji − li − ki)!li!ki! (2.4)

lies in R. However this can be seen be rewriting the binomials:

(2.4) = bj ·
m∏
i=1

ji!
li! · (ji − li)!

· (ji − li)!
ki! · (ji − li − ki)!

(ji − li − ki)!li!ki!

= bj ·
m∏
i=1

ji! = bjj! ∈ R

(iii) s(f) ∈ Õ(G), this can be shown by an analogous computation to that in
(ii) since

s(t)j =
m∏
i=1

s(t(i))ji =
m∏
i=1

(−t(i) +O(d ≥ 2))ji ,

see Remark 1.1.3.

Proposition 2.3.5. The map β? of Proposition 2.1.2 extends to a homomor-
phism β̃? : Õ(G)→ U? of complete Hopf algebras.

Proof. Consider the pairing

g⊗O(G) → R

L⊗ f 7→ L(f)

which induced the homomorphism β? : O(G) → U? of complete Hopf algebras
of Proposition 2.1.2. This pairing can be extended to a pairing

g⊗Õ(G) → R

L⊗ f 7→ L(f)

since L(f) ∈ R even if f ∈ Õ(G), because the linear terms of f still lie in R.
With these modifications, the proof of Proposition 2.1.2 still goes through.
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2.4 General case

We have proven in Section 2.2 that under the assumptions that Q ⊂ R and that
G is either the m-dimensional additive or a one-dimensional formal group law,
the map β? : O(G) → U? of Proposition 2.1.2 is an isomorphism of complete
Hopf algebras, see Theorem 2.2.1. Our goal is now to generalize this result in
two directions. Firstly we will drop the assumption Q ⊂ R and secondly we
will consider all m-dimensional formal group laws. Therefore we consider the
modified ring of functions Õ(G) instead of O(G). No analogue of the explicit
description of the map β? as in Lemma 2.2.3 will be provided in the general
case. Note that although the following Theorem is a generalization of Theorem
2.2.1, its proof is independent of but inspired by the one of Theorem 2.2.1.

Proposition 2.4.1. Let G be an m-dimensional formal group law over R.
Let Õ(G) be the modified ring of functions (Definition 2.3.1). Then the map
β̃? : Õ(G)→ U?, defined by Proposition 2.3.5, is an isomorphism of complete
Hopf algebras.

Remark. 2.4.2. M. Hazewinkel shows in an analogous way in [Haz78, Chap.
VII.37.4] that the map β : U(g) → D is an algebra isomorphism if O(G) and
U? are Q-algebras and that β respects the comultiplication and counits.

Proof of Proposition 2.4.1. Consider the filtrations on Õ(G) and U? given in
(2.3) and (1.6) by

F i Õ(G) =
{
f ∈ Õ(G) |all monomials of f have a total degree ≥ i

}
and

F i U? =
{
ϕ ∈ U? |for all monomials djt is |j| ≥ i

}
for all i ∈ N. Let tj be a basis element of F i Õ(G), i.e. |j| ≥ i. We claim that

β̃?(tj) ≡ j!djt mod F i+1 U? .
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To prove this we will first consider β̃?(t(l))(x) with x =
∑
ake

k ∈ U(g).

β̃?(t(l))(x) = β(
∑

ake
k)(t(l))

=
∑

ak β(ek)(t(l))

=
∑
|k|≥1

ak β(ek)(t(l)) (since (φ(k))0(t(l)) = 0)

= ae(1)φ
(1)(t(l)) + . . .+ ae(m)φ

(m)(t(l)) +
∑
|k|≥2

ak β(ek)(t(l))

= ae(l) +
∑
|k|≥2

ak β(ek)(t(l)) (since φ(k)(t(l)) = 0, if k 6= l).

This shows that β̃?(t(l)) ≡ dt(l) mod (F2 U?). If we look at the monomial
tj ∈ F i Õ(G) we get that β̃?(tj) is of the form

(dt(1) + F2 U?)j1 • · · · •(dt(m) + F2 U?)jm ,

and due to the explicit formula for • in Lemma 1.2.18 this means that

β̃?(tj) ≡ j1!dj1t(1) · · · jm!djmt(m) mod (F i+1 U?)

≡ j!djt mod (F i+1 U?).

Since β̃? is R-linear and continuous it follows that β̃? induces isomorphisms

F i Õ(G) /F i+1 Õ(G)→ F i U? /F i+1 U?

for all i ∈ N and hence, since Õ(G) and U? are both complete with respect
to these filtrations, that β̃? : Õ(G) → U? is an isomorphism of complete Hopf
algebras.
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Chapter 3

Quasi-isomorphism of complexes

Throughout this chapter R will be an integral domain of character-
istic zero.

The main purpose of this chapter is to show that the isomorphism

β̃? : Õ(G)→ U?

defined in Proposition 2.3.5 extends to a quasi-isomorphism φ̃ of the corre-
sponding complexes. The underlying morphism β? : O(G) → U? was already
established in a paper of Huber and Kings concerning a p-adic analogue of the
Borel regulator and the Bloch-Kato exponential map, see [HK11]. They showed
that one can directly define a map from locally analytic group cohomology to
Lie algebra cohomology by differenting cochains, and that the resulting map is
Lazard’s comparison isomorphism ([HK11, Proposition 4.2.4]). In Section 3.2 we
will give an explicit description of this quasi-isomorphism and we will see that
this description coincides with the one of Huber and Kings, [HK11, Definition
1.4.1], and hence with Lazard’s map.

3.1 General construction

We have proven in Proposition 2.3.4 that the modified ring of functions Õ(G)
to an m-dimensional formal group law G, see Definition 2.3.1, has a complete
Hopf algebra structure. This structure leads, according to Proposition 1.3.1, to
a cobar complex. We will use in the case of the modified ring of functions Õ(G)
the following notation.

Definition 3.1.1. Let G be a formal group law. Let Õ(G) be the associated
modified ring of functions which inherits by Proposition 2.3.4 a complete Hopf
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algebra structure. We denote by K̃n(G,R) the n-fold complete tensor product
of Õ(G), i.e.

K̃n(G,R) = Õ(G)⊗̂n

and hence by (K̃•(G,R), ∂) the cobar complex given by Proposition 1.3.1. The
corresponding cohomology group, denoted by Hn(G̃, R), is called n-th modified
group cohomology of G with coefficients in R.

Remark. 3.1.2. Note that we can identify O(G)⊗̂n with O(Gn) as well as
Õ(G)⊗̂n with Õ(Gn).

Theorem 3.1.3. Let R be an integral domain of characteristic zero and let G be
a formal group law over R. Let (K•(G,R), ∂), (K̃•(G,R), ∂) and (C•(G,R), ∂′)
be the complexes defined in 1.3.2, 3.1.1 and 1.3.6. Then β̃? : Õ(G)→ U?, de-
fined in Proposition 2.3.5, extends to a quasi-isomorphism

φ̃ : (K̃•(G,R), ∂)→ (C•(g, R), ∂′)

given by the following composition of maps

(K̃•(G,R), ∂) β̃?−→ (HomR(U•, R), ∂u) ι−−−→
1.3.5

(HomU(g)(U•h , R), ∂uh)
ν−−−→

1.3.8
(HomU(g)(V (g)•, R), d) κ−−−→

1.3.9
(C•(g, R), ∂′).

In particular, the morphism β? : O(G)→ U? extends to a morphism

φ : (K•(G,R), ∂)→ (C•(g, R), ∂′).

Proof. The proof is essentially the conjunction of all our previous results. In
particular, we will use the statements of Proposition 2.4.1 and 1.3.5 and of
Proposition 1.3.8 and 1.3.9 concerning the Koszul complex.

Consider the following composition of maps of the theorem

(K̃•(G,R), ∂) β̃?−→ (HomR(U•, R), ∂u) ι−−−→
1.3.5

(HomU(g)(U•h , R), ∂uh) (3.1)
ν−−−→

1.3.8
(HomU(g)(V (g)•, R), d) κ−−−→

1.3.9
(C•(g, R), ∂′).

We will recall from Propositions 1.3.5, 1.3.8 and 1.3.9 that the maps ι, ν and κ of
(3.1) are (quasi-)isomorphisms, and we will show that the first map is induced
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by the map β̃? of Proposition 2.3.5 and therefore is even an isomorphism of
complexes.

As a first step, recall from Proposition 2.4.1 that there exists an isomorphism

β̃? : Õ(G)→ U?

of complete Hopf algebras. This isomorphism β̃? extends naturally to a mor-
phism of the complexes

(K̃•(G,R), ∂) β̃?−→ (HomR(U•, R), ∂u).

To see this, note first that we can identify (U?)⊗̂n with HomR(U(g)⊗n, R),
compare Remark 1.3.4, and secondly that the differentials of the complexes
(K̃•(G,R), ∂) and (HomR(U•, R), ∂u) are given by the comultiplication of Õ(G)
and U?. The latter means that β̃? commutes with these differentials, since β?

is in particular a coalgebra morphism.

Secondly recall Proposition 1.3.5, which stated that there exists an isomorphism
between the inhomogeneous and homogeneous complex of U(g), hence we get
an isomorphism of complexes:

(HomR(U•, R), ∂u) ι−→ (HomU(g)(U•h , R), ∂uh).

Finally we can conclude the proof of the theorem by recalling both Propositions
1.3.8 and 1.3.9 concerning the Koszul complex, whose combined statement is
that the map

(HomU(g)(U•h , R), ∂uh)→ (C•(g, R), ∂′)

is a quasi-isomorphism.

Corollary 3.1.4. Let R be an integral domain of characteristic zero and let G
be a formal group law over R. Let g be the associated Lie algebra to G. Then
there exists an isomorphism

Φ̃ : Hn(G̃, R)→ Hn(g, R)

between the modified group cohomolgy of G with coefficients in R and Lie algebra
cohomology of g with coefficients in R given by f 7→ φ̃(f), with φ̃(f) defined in
Theorem 3.1.3.

Proof. This is a direct consequence of Theorem 3.1.3.
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3.2 Explicit description

This section will provide an explicit description of the map

φn : Kn(G,R)→ Cn(g, R)

of Theorem 3.1.3. We will see that the explicit description coincides with the
one of Huber and Kings in [HK11, Definition 1.4.1] and hence with that of
Lazard.

Proposition 3.2.1. Let R be an integral domain of characteristic zero and let
G be a formal group law over R. Let f ∈ Kn(G,R) be given by f = f1⊗· · ·⊗fn
with fi =

∑
j b
i
jt
j

i . Then the map φn : Kn(G,R) → Cn(g, R) of Theorem 3.1.3
can be described by the continuous extension of

f1 ⊗ · · · ⊗ fn 7→ df1 ∧ · · · ∧ dfn

for n ≥ 1 and by the identity for n = 0.

Proof. The map φn is by Theorem 3.1.3 given by the following composition of
maps

Kn(G,R) β?n−−→ HomR(U(g)⊗n, R) ιn−→ HomU(g)(U(g)⊗n+1, R) (3.2)

νn−→ HomU(g)(Vn(g), R) κn−→ HomR(
n∧
g, R).

We will provide explicit descriptions of these maps. Consider first the last map
of the above sequence

HomU(g)(Vn(g), R) κn−→ HomR(
∧n

g, R),

which is (see Proposition 1.3.9) given by

f 7→ [(ei1 ∧ · · · ∧ ein) 7→ f(1⊗ ei1 ∧ . . . ∧ ein)].

The penultimate map

HomU(g)(U(g)⊗n+1, R) νn−→ HomU(g)(Vn(g), R)
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is according to Proposition 1.3.8 induced by the anti-symmetrisation map, and
therefore given by

f 7→ [(u⊗ ei1 ∧ . . . ∧ ein) 7→
∑
α∈Sn

sgn(α)f(u⊗ e′iα(1)
⊗ · · · ⊗ e′iα(n)

)].

Note that the substitution of the elements eij by the elements e′ij defined by
the partial derivative ∂

∂t
(iα(j))
j

evaluated at zero is just a formal consequence of

the fact that we introduced the coordinates t1, . . . , tn on O(G)⊗̂n. The explicit
description of the map Hom(U(g)⊗n, R) ιn−→ HomU(g)(U(g)⊗n+1, R) was given
in Section 1.3 of Chapter 1 by

ιn : Hom(U(g)⊗n, R) → HomU(g)(U(g)⊗n+1, R)

f 7→ [(u0, . . . , un) 7→ f(u1, . . . un)]

[(u1, . . . , un) 7→ f(1, u1, . . . un)] 7→f.

We will now combine these maps to get:

φn(f)(ei1 ∧ . . . ∧ ein) = κn(νn(ιn(β?n(f))))(ei1 ∧ . . . ∧ ein)

= νn(ιn(β?n(f)))(1⊗ ei1 ∧ . . . ∧ ein)

=
∑
α∈Sn

sgn(α)ιn(β?n(f))(1⊗ e′iα(1)
⊗ · · · ⊗ e′iα(n)

)

=
∑
α∈Sn

sgn(α)β?n(f)(e′iα(1)
⊗ · · · ⊗ e′iα(n)

)

=
∑
α∈Sn

sgn(α)β?(f1)(e′iα(1)
) · · ·β?(fn)(e′iα(n)

)

2.1.2=
∑
α∈Sn

sgn(α)(e′iα(1)
)(f1) · · · (e′iα(n)

)(fn)

= df1 ∧ · · · ∧ dfn(ei1 ∧ . . . ∧ ein). (3.3)

Since the map φn : Kn(G,R)→ HomR(
∧n g, R) is continuous and R-linear the

explicit description of φn can be obtained by the continuous R-linear extension
of the above description (3.3).

In the case of n = 0 the sequence (3.2) reduces to

R
β?0
−−→ R

ι0−→ HomU(g)(U(g), R) ν0
−→ HomU(g)(U(g), R) κ0

−→ R
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and the maps are defined as

1 7→ 1 7→ (u 7→ 1) 7→ (u 7→ 1) 7→ 1

with the usual identification of HomR(R,R) and R.
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Chapter 4

Locally analytic group cohomology

This chapter will provide a comparison isomorphism of locally analytic group
cohomology with Lie algebra cohomology for K-Lie groups, where K is a finite
extension of Qp. The main idea of the proof is its reduction to standard groups
associated to formal group laws. Before stating the Comparison Theorem for
standard groups 4.1.7 we will give some definitions and fix notation in Sec-
tion 4.1. Section 4.2 covers the so called limit morphism, a preliminary step
in the proof of the Comparison Theorem. The final steps to the proof of the
Comparison Theorem 4.1.7 will be given in Section 4.3.

Throughout this chapter let K be a finite extension of Qp.

4.1 K-Lie groups and standard groups

Before stating the Comparison Theorem for standard groups, we give some
definitions, especially the one of a standard group, see Definition 4.1.2, and we
state some elementary facts about these groups. We refer to [Ser06], [Bou98b]
or [DdSMS99] for the background on K-Lie groups.

Let | | : K → R+ be the non-archimedean absolute value on K which extends
the p-adic absolute value onQp and let vp(x) denote the corresponding valuation
on K, normalized by vp(p) = 1, which satisfies |x| = p−vp(x).

We denote by R the valuation ring

R = {x ∈ K : |x| ≤ 1} = {x ∈ K : vp(x) ≥ 0}

and by m the maximal ideal

m = {x ∈ K : |x| < 1} = {x ∈ K : vp(x) > 0}

of R.
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Definition 4.1.1. (i) Let U ⊂ Kn be open and let f : U → K be a function.
Then f is called locally analytic in U if for each x ∈ U there is a ball
Br(x) := {y ∈ U | |y − x| < r} ⊂ U and a formal power series F such
that F converges in Br(x) and for h ∈ Br(x),

f(h) = F (h− x),

compare [Laz65, Chap.III, 1.3.2].

(ii) Let U ⊂ Kn be open and let f = (f1, . . . , fn) : U → Kn. Then f is called
locally analytic in U if fi is locally analytic for 1 ≤ i ≤ n.

(iii) Let M be a topological space. A chart for M is a triple (U,ϕ,Kn) con-
sisting of an open subset U ⊂M and a map ϕ : U → Kn such that ϕ(U)
is open in Kn and ϕ : U '−→ ϕ(U) is a homeomorphism.

(iv) A locally analytic manifold over K is a topological spaceM equipped with
a maximal atlas, where the atlas is a set of charts for M any two of which
are compatible, i.e. has locally analytic transition maps, and which cover
M .

(v) A K-Lie group or a K-analytic group G is a locally analytic manifold over
K which also carries the structure of a group such that

(1) the function (x, y) 7→ xy of G×G into G is locally analytic and

(2) the function x 7→ x−1 of G into G is locally analytic.

Definition and Proposition 4.1.2. Let G be an m-dimensional formal group
law over the valuation ring R of K as in Definition 1.1.1. For h ∈ R we set

G(h) := {z ∈ Rm | |z| < p−h}.

We define a multiplication on G(h) by:

z1 · z2 = G(z1, z2). (4.1)

Then G(h) is a K-Lie group.

Proof. See [Ser06, Chap. IV.8].
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Definition 4.1.3. A K-Lie group constructed as in Proposition 4.1.2 will be
called an m-standard group of level h if h > 0 and just an m-standard group if
h = 0.

Definition 4.1.4. Let G be a K-Lie group. We denote by L(G) = Te(G) the
canonical Lie algebra of G, see [Tu11, Chap. 4, §16.3].

Proposition 4.1.5. Let G be a formal group law over R and let G(h) be the m-
standard group of level h to G. Let L(G(h)), respectively g be the corresponding
Lie algebras. Then

L(G(h)) ∼= g⊗RK.

Proof. (Compare [Sch11, Prop. 17.3].) One can choose the local coordinates
(t(1), . . . , t(m)) in a neighborhood of the identity e (with coordinates (0, . . . , 0)),
such that we get a natural basis ∂

∂t(1)

∣∣
(0)
, . . . , ∂

∂t(m)

∣∣
(0)

of the tangent space
Te(G(h)). Let the formal group law G be given by

G(j)(X,Y) = Xj + Yj +
m∑

l,k=1
γjlkXlYk +O(d ≥ 3)

for all j ∈ {1, . . .m}. Then the structure coefficients, i.e. those elements ckij ∈ R
such that

[ ∂

∂t(i)
∣∣
(0)
,
∂

∂t(j)
∣∣
(0)

] =
∑

ckij
∂

∂t(k)
∣∣
(0)
,

of L(G(h)) are given by
∑m
j=1(γjlk − γ

j
kl) since multiplication on G(h) is defined

by the formal group law, see (4.1). Hence the definition of the Lie bracket in
L(G(h)) coincides with the definition of the Lie bracket in g, see (1.3).

Definition 4.1.6. Let G be a K-Lie group. We denote by Ola(G,K) locally
analytic functions on G, i.e. those that can be locally written as a converg-
ing power series with coefficients in K, see Definition 4.1.1. The cobar com-
plex Ola(Gn,K)n≥0, where we identified Ola(Gn,K) with Ola(G,K)⊗̂n, with
the usual differential as in Definition 1.3.2 leads to locally analytic group coho-
mology whose n-th cohomology group is denoted by Hn

la(G,K).

Let G be a formal group law over R. Then one can consider the same formal
group law over K, denote by GK , with Lie algebra gK . Let G(h) be the m-
standard group of level h associated to G. Then we obtain by assigning to each
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locally analytic function f ∈ Ola(G(h),K) its local power series representation
around e a morphism of complete Hopf algebras

Ola(G(h),K)→ O(GK)

and hence a map
Φe : Hn

la(G(h),K)→ Hn(GK ,K).

Recall that in the case of a formal group law over the field K the modified ring
of functions Õ(GK) coincides with the ring of functions O(GK). According to
Corollary 3.1.4 and since

HomR(
∧n

g, R)⊗R K ∼= HomK(
∧n

gK ,K)

we get an isomorphism

ΦK : Hn(GK ,K)→ Hn(g,K).

This isomorphism is, as we have seen in Proposition 3.2.1, given by the contin-
uous extension of differentiating cochains.

Theorem 4.1.7 (Comparison Theorem for standard groups). Let G be a formal
group law over R and let G(h) be the m-standard group of level h to G with Lie
algebra g⊗RK. Then the map

Φs : Hn
la(G(h),K)→ Hn(g,K)

given by the continuous extension of

f1 ⊗ · · · ⊗ fn 7→ df1 ∧ · · · ∧ dfn,

for n ≥ 1 and by the identity for n = 0 is an isomorphism for all h > h0 = 1
p−1 .

Note that since the elements of the form f1⊗ · · · ⊗ fn form a basis of the dense
subset O(GK)⊗n ⊂ O(GK)⊗̂n and since Φs is given by the composition ΦK ◦Φe,
we use the suggestive notation f1 ⊗ · · · ⊗ fn for an element of Ola(G(h),K).

Remark. 4.1.8. Huber and Kings showed in [HK11] that one can directly
define a map from locally analytic group cohomology to Lie algebra cohomology
by differenting cochains, as in Theorem 4.1.7, and that in the case of smooth
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algebraic group schemes H over Zp with formal group H ⊂ H(Zp) the resulting
map

Φ : Hn
la(H,Qp)→ Hn(h,Qp)

coincides with Lazard’s comparison isomorphism ([HK11, Theorem 4.7.1]). In
their joint work with N. Naumann in [HKN11] they extended the comparison
isomorphism for K-Lie groups attached to smooth group schemes with con-
nected generic fibre over the integers of K ([HKN11, Theorem 4.3.1]).

Remark. 4.1.9. Let us sketch the argument of the proof. In the first step, we
are going to show that if we restrict to Ola(G(0))e, the ring of germs of locally
analytic functions on G(0) in e, we can show that the limit morphism

Φ∞ : Hn(Ola(G(0)•)e,K)→ Hn(g,K)

is an isomorphism, see Lemma 4.2.9. Then injectivity of Φs follows from a
spectral sequence argument, see Corollary 4.3.4 and 4.3.5. The proof of this
part will be analogous to the proof of Theorem 4.3.1 in [HKN11], however
independent of the work of Lazard [Laz65]. For surjectivity we will use the
statement of Theorem 3.1.3.

The Main Theorem of the introduction - which stated that if K is a finite
extension of Qp and if G is a K-Lie group, then there exists an open subgroup
U of G such that the Lazard morphism

ΦL : Hn
la(U ,K)→ Hn(Lie(U),K)

induced by differentiating cochains is an isomorphism - can now be deduced
from the following Lemma 4.1.10.

Lemma 4.1.10. Any K-Lie group contains an open subgroup which is an m-
standard group.

Proof. See [Ser06, Chap. IV.8].
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4.2 Limit morphism

This section contains the first step in the proof of Theorem 4.1.7. We will prove
that the limit morphism Φ∞ : Hn(Ola(G(0)•)e,K) → Hn(g,K), mentioned in
Remark 4.1.9, is an isomorphism. To do this we need some further definitions
and a comparison of germs.

Proposition 4.2.1. Let G be a formal group law over R and let G(h) be the m-
standard group of level h to G. Then there exists an isomorphic m-dimensional
formal group law Gh over R such that the associated m-standard group Gh(0)
is equal to G(h).

Proof. Let the formal group law G be given by

G(j)(X,Y) = Xj + Yj +
m∑

l,k=1
γjlkXlYk +O(d ≥ 3)

for all j ∈ {1, . . . ,m} with X = (X1, . . . , Xm), Y = (Y1, . . . , Ym) and with
O(G) = R[[t]]. Consider the m-dimensional formal group law defined by

G
(j)
h (X,Y) = p−hG(j)(phX, phY) for all j ∈ {1, . . . ,m}

with phX = (phX1, . . . , p
hXm) and phY = (phY1, . . . , p

hYm). Then the ring
of functions to Gh is given by R[[p−ht]] where p−ht is the short notation for
p−ht(1), . . . , p−ht(m). Now the m-standard group

Gh(0) = {z ∈ Rm | |p−hz| < 1}

can be rewritten as following

Gh(0) = {z ∈ Rm | ph|z| < 1} = {z ∈ Rm | |z| < p−h} = G(h).

The homomorphism from G to Gh is given by the m-tuple

α(X) = (α1(X), . . . , αm(X)) with αj(X) = p−hXj

and the homomorphism from Gh to G is given by the m-tuple

β(X) = (β1(X), . . . , βm(X)) with βj(X) = phXj ,

compare Definition 1.1.4. Since they satisfy the condition α(β(X)) = β(α(X))
the formal group laws G and Gh are isomorphic.
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Example 4.2.2. Let Gm(X,Y ) = X + Y + XY be the multiplicative formal
group law. Then the formal group law Gh such that Gh(0) = Gm(h) is given by

Gh(X,Y ) = p−h(phX + phY + p2hXY ) = X + Y + phXY.

Lemma 4.2.3. Let G be an m-dimensional formal group law over R. Then the
associated m-standard groups G(h) of level h, h ∈ N\{0}, are open and normal
subgroups of G(0) of finite index and they form a neighbourhood basis of e in
G(0).

Proof. The m-standard groups G(h) of level h are, by their definition in 4.1.2,
obviously open and closed subgroups of G(0) and form a neighbourhood basis
of e in G(0). Since Rm is compact, see [Gou93, Prop. 5.4.5vi], G(0) is compact
and the open and closed subgroups G(h) of G(0) are of finite index. For the
property that these subgroups are normal we have to show that

G(x, G(y, s(x))) ≡ 0 (mod ph),

for x ∈ G(0) and y ∈ G(h), i.e. y ≡ 0 (mod ph), where s(x) was defined by the
condition that G(x, s(x)) = 0, see Proposition 1.1.3. However since all terms
containing y are reduced to 0 mod ph we have that

G(x, G(y, s(x))) ≡ G(x, s(x)) (mod ph) ≡ 0 (mod ph).

Definition 4.2.4. Let G be a K-Lie group. We denote by Ola(G)e, the ring of
germs of locally analytic functions on G in e.

By Lemma 4.2.3, the ring of germs of locally analytic functions on G(0) in e is
given by

Ola(G(0))e = lim−→
h

Ola(G(h),K).

Definition 4.2.5. The noetherian R-algebra

R{t} := {f(t) =
∑
j

bjt
j | bj ∈ R, |bj | → 0 as |j| → ∞}

is called the algebra of strictly convergent power series over R.
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Remark. 4.2.6. Recall from non-archimedean analysis that every f in R[[t]]
converges on the open polydisc {z ∈ Km | |z| < 1} and every f in m[[t]]
converges on the closed polydisc {z ∈ Km | |z| ≤ 1}. The algebra R{t} is the
sub-algebra of R[[t]] consisting of those power series which converge on Rm,
since an infinite sum converges in a non-archimedean field if and only if its
terms tend to zero.

Definition 4.2.7. The K-algebra

K〈t〉 := {f(t) =
∑
j

bjt
j | bj ∈ K, |bj | → 0 as |j| → ∞}

is the algebra of power series over K which converge on Rm in Km and is called
Tate algebra. The elements of K〈t〉 are called rigid analytic functions.

Note that the convergence condition means that, for any n ∈ N, there exists
j0 ∈ N such that for |j| > j0, the coefficient bj belongs to πnR, where π is the
uniformizing parameter, i.e. (π) = m. We have that K〈t〉 = R{t} ⊗R K, see
[Nic08].

Since germs of locally analytic functions are none other than germs of rigid
analytic functions, we can identify Ola(G(0))e with the limit of Tate algebras

Ola(G(0))e ∼= lim−→
h

K〈p−ht〉.

Definition 4.2.8. The cobar complex (Ola(G(0)•)e, ∂) with

Ola(G(0)n)e := lim−→
h

K〈p−ht1...,n〉

and with the usual differential as in Definition 1.3.2 leads to cohomology groups
Hn(Ola(G(0))e,K).

Lemma 4.2.9. The limit morphism

Φ∞ : Hn(Ola(G(0)•)e,K)→ Hn(g,K)

is an isomorphism.

Remark. 4.2.10. A proof of this lemma can also be found in [HKN11, Lemma
4.3.3], however our proof will be independent of the work of Lazard [Laz65]
which is the utmost concern of this thesis.
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Definition 4.2.11. Let G(h) be an m-standard group of level h. We denote by
Oc(G(h)) the ring of convergent functions on G(h), i.e. those formal power series
in R[[p−ht]] which are convergent on the closed polydisc {z ∈ Km | |z| ≤ p−h}.

Remark. 4.2.12. Since R{t} = {f ∈ R[[t]] | f converges on Rm}, due to
Remark 4.2.6, we get for the ring of convergent functions on the m-standard
group G(h) of level h that Oc(G(h)) = R{p−ht}.

The following Lemma 4.2.13 will not only be of interest for the proof of Lemma
4.2.9 but also for the proof of the Main Theorem. We will see that functions of
this modified ring of functions Õ(G) still converge.

Lemma 4.2.13 (Lemma of Convergence). Let G be a formal group law over
R, let G(h) be the m-standard group of level h to G and let Oc(G(h)) be the
ring of convergent functions on G(h). Let Gh be the associated m-dimensional
formal group law (see Proposition 4.2.1) and let

Õ(Gh) =

∑
j

bj(p−ht)j ∈ K[[p−ht]] | j!bj ∈ R

 ,
see Definition 2.3.1, be its modified ring of functions. Then

Õ(Gh) ⊂ Oc(G(k))

for k > k0 = h+ 1
p−1 .

Proof. Let f ∈ Õ(Gh). Then f can be written as

f =
∑
j

bj(p−ht)j ,

with j!bj ∈ R. We claim that f ∈ Oc(G(k)) for k > k0 = h + 1
p−1 . To see this,

let us rewrite f in the following way:

f =
∑
j

bjp
−h|j|tj =

∑
j

bjp
(k−h)|j|(p−kt)j .

We prove now that bjp(k−h)|j| ∈ m. Since j!bj ∈ R we know that

|bj | < p
|j|
p−1 ,
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where we use that for a prime p we have vp(n!) < n
p−1 , see [Gou93, Lemma

4.3.3]. Thus we can conclude that

|bjp(k−h)|j|| < p
|j|
p−1 p−(k−h)|j|

= p
|j|
p−1 p−k|j|ph|j|

< p
|j|
p−1 p

−(h+ 1
p−1 )|j|

ph|j| = 1.

Using the observation of Remark 4.2.6 we know that f converges on the closed
polydisc {z ∈ Km | |z| ≤ p−k}, i.e. f ∈ Oc(G(k)).

Corollary 4.2.14. The map

o : lim−→
h

Oc(G(h))→ lim−→
h

Õ(Gh)

is an isomorphism.

Proof. The map o is injective since Oc(G(h)) ⊂ Õ(Gh) and since the direct
limit is exact. For surjectivity let f be an element of lim−→h

Õ(Gh). Then there
exists h such that f ∈ Õ(Gh). However, after Lemma 4.2.13 f ∈ Oc(G(k)) for
k > k0 = h+ 1

p−1 .

Proof of Lemma 4.2.9. The proof is essentially the conjunction of Proposition
2.4.1 with all preceding results in this section. We already know that

Ola(G(0))e = lim−→
h

Ola(G(h),K)

= lim−→
h

K〈p−ht〉

4.2.12= lim−→
h

Oc(G(h))⊗R K

4.2.14∼= lim−→
h

Õ(Gh)⊗R K.

Let gh be the associated Lie algebra to Gh. Then we know from Proposition
2.4.1 that

lim−→
h

Õ(Gh)⊗R K ∼= lim−→
h

U?(gh, R)⊗R K.
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However, lim−→h
U?(gh, R) ∼= U?(g, R) ⊗K and by Propositions 1.3.5, 1.3.8 and

1.3.9 of Chapter 1 we obtain

Hn(Ola(G(0)•)e,K) ∼= Hn(g,K).

4.3 Proof of the Comparison Theorem for standard
groups

We mentioned in Remark 4.1.9 that injectivity of the map

Φs : Hn
la(G(h),K)→ Hn(g,K)

follows from a spectral sequence argument as in the proof of Theorem 4.3.1
in [HKN11]. Hence we will first prove the extistence of the required spectral
sequence.

Definition 4.3.1. Let G be a K-Lie group and H a closed subgroup of G. We
define IK := IndlaH→G(K) to be the space of locally analytic maps f : G → K

such that f is H-equivariant.

Lemma 4.3.2 (Shapiro’s Lemma). Let G be a K-Lie group and H a closed
subgroup of G. Then

H•la(G, IK) = H•la(H,K).

Proof. See [CW74, Prop. 3 (Shapiro’s Lemma), Remark (2) and (3)].

The proof of the following theorem about the spectral sequence for locally
analytic group cohomology can now, after we have seen that Shapiro’s Lemma
holds in the case of locally analytic group cohomology, be adopted from the
proof for discrete groups, see e.g. [NSW00, Chap. II.1].

Theorem 4.3.3. Let G be a K-Lie group and H be a closed normal subgroup
of G. Then there is a cohomological spectral sequence

Epq2 = Hp
la(G /H, H

q
la(H,K))⇒ Hp+q

la (G,K).
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Corollary 4.3.4 (Injectivity). Let G be a formal group law over R and let G(0)
be the m-standard group to G with Lie algebra g⊗RK. Then the map

Φs : Hn
la(G(0),K)→ Hn(g,K)

of Theorem 4.1.7 is injective.

Proof. (Compare [HKN11, Cor. 4.3.4]) Since all subgroups G(h) of G(0) are
open, normal and of finite index (see Lemma 4.2.3), the spectral sequence of
Theorem 4.3.3 degenerates to

Hn
la(G(0),K) ∼= Hn

la(G(h),K)G(0)/G(h).

Hence the restriction maps

Hn
la(G(0),K)→ Hn

la(G(h),K)

are injective. As the system of open normal subgroups is filtered, this also
implies that

Hn
la(G(0),K)→ lim−→

h

Hn
la(G(h),K)

is injective. We can therefore conclude injectivity of the map Φs from the in-
jectivity of Φ∞, since the cohomology functor commutes with the direct limit,
i.e. in our case lim−→h

Hn
la(G(h)),K) = Hn(Ola(G(0))e,K).

Note that the proof of injectivity uses that K is locally compact, meaning
that the proof can not be carried over to the case of the completion Cp of the
algebraic closure Qp of Qp.

Corollary 4.3.5. Let G be a formal group law over R and let G(h) be the
m-standard group of level h associated to G with Lie algebra g. Then the map

Φs : Hn
la(G(h),K)→ Hn(g,K)

of Theorem 4.1.7 is injective for all h ≥ 0.

Proof. Proposition 4.2.1 tells us that there exists an isomorphic formal group
law Gh to G such that G(h) = Gh(0). By Corollary 4.3.4 we know that

Hn
la(G(h),K) = Hn

la(Gh(0),K)→ Hn(gh,K)
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is injective, where gh is the Lie algebra associated to Gh. However,

HomR(
∧n

gh, R)⊗R K ∼= HomR(
∧n

g, R)⊗R K

so that we get injectivity of the map Φs.

Proof of the Comparison Theorem for standard groups 4.1.7. Since we already
know from Corollary 4.3.5 that

Φs : Hn
la(G(h),K)→ Hn(g,K)

is injective for h ≥ 0 we now concentrate on surjectivity. Let [c] be a cohomol-
ogy class in Hn(g,K). Then by Theorem 3.1.3 [c] is represented by a cocyle
c̃ ∈ Õ(G)⊗̂n ⊗R K. By Lemma 4.2.13 we know that

Õ(G) ⊂ Oc(G(h)) ⊂ Ola(G(h)), for h > h0 = 1
p− 1 .

Hence Φs is surjective for all h > h0 = 1
p−1 .

59





Bibliography

[Bou98a] Nicolas Bourbaki. Algebra I. Chapters 1–3. Elements of Math-
ematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from
the French, Reprint of the 1989 English translation [ MR0979982
(90d:00002)].

[Bou98b] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 1–3.
Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998.
Translated from the French, Reprint of the 1989 English transla-
tion.

[CE56] Henri Cartan and Samuel Eilenberg. Homological algebra. Prince-
ton University Press, Princeton, N. J., 1956.

[CW74] W. Casselman and D. Wigner. Continuous cohomology and a con-
jecture of Serre’s. Invent. Math., 25:199–211, 1974.

[DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal. Analytic
pro-p groups, volume 61 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, second edition,
1999.

[Die73] J. Dieudonné. Introduction to the theory of formal groups. Marcel
Dekker Inc., New York, 1973. Pure and Applied Mathematics, 20.

[Gou93] Fernando Q. Gouvêa. p-adic numbers. Universitext. Springer-
Verlag, Berlin, 1993. An introduction.

[Haz78] Michiel Hazewinkel. Formal groups and applications, volume 78
of Pure and Applied Mathematics. Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], New York, 1978.

61



[HK11] Annette Huber and Guido Kings. A p-adic analogue of the Borel
regulator and the Bloch-Kato exponential map. J. Inst. Math.
Jussieu, 10(1):149–190, 2011.

[HKN11] Annette Huber, Guido Kings, and Niko Naumann. Some comple-
ments to the Lazard isomorphism. Compos. Math., 147(1):235–262,
2011.

[Kas95] Christian Kassel. Quantum groups, volume 155 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1995.

[Kna88] Anthony W. Knapp. Lie groups, Lie algebras, and cohomology, vol-
ume 34 of Mathematical Notes. Princeton University Press, Prince-
ton, NJ, 1988.

[Laz65] Michel Lazard. Groupes analytiques p-adiques. Inst. Hautes Études
Sci. Publ. Math., (26):389–603, 1965.

[Nic08] Johannes Nicaise. Formal and rigid geometry: an intuitive introduc-
tion and some applications. Enseign. Math. (2), 54(3-4):213–249,
2008.

[NSW00] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Coho-
mology of number fields, volume 323 of Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 2000.

[Sch11] Peter Schneider. p-adic Lie groups, volume 344 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences]. Springer, Heidelberg, 2011.

[Ser06] Jean-Pierre Serre. Lie algebras and Lie groups, volume 1500 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2006. 1964
lectures given at Harvard University, Corrected fifth printing of the
second (1992) edition.

[Swe69] Moss E. Sweedler. Hopf algebras. Mathematics Lecture Note Series.
W. A. Benjamin, Inc., New York, 1969.

62



[Tu11] Loring W. Tu. An introduction to manifolds. Universitext.
Springer, New York, second edition, 2011.

[Wat79] William C. Waterhouse. Introduction to affine group schemes, vol-
ume 66 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1979.

63





List of Symbols

β Bialgebra homomorphism U(g)→ D, p.30
β? Hopf algebra homomorphism O(G)→ U?, p.30
Cn(g, R) Set of n-cochains of g with coeff. in R, p.26
D Continuous dual of O(G), p.19
D? Linear dual of D, p.31
e1, . . . , en Basis of g (n-dim), p.12
e(j) Multi-index (0, . . . , 0, 1, 0, . . . , 0) with 1 in the j-th entry, p.36
g Lie algebra associated to the formal group law G, p.12
G K-Lie group, p.48
Ga Additive formal group, p.10
Gm Multiplicative formal group, p.11
G(h) Standard group of level h to a formal group law G, p.48
G(X,Y) Formal group law over R, p.7
Gh(X,Y) Formal group law such that Gh(0) = G(h), p.52
GK((X,Y) Formal group law over K, p.49
H(G,R) Group cohomology of G with coeff. in R, p.24
H(G̃, R) Modified group cohomology of G with coeff. in R, p.42
H(g, R) Lie algebra cohomology of g with coeff. in R, p.26
Hla(G,K) Locally analytic group cohomology of G with coeff. in K, p.49
K Finite extension of Qp, p.47
K〈t〉 Tate algebra, p.54
(K•(G,R), ∂) Complex of inhomogeneous cochains of G with coeff. in R, p.24
(K̃•(G,R), ∂) Complex associated to Õ(G), p.42
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