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Abstract

In this paper, we describe the sheaves of A
1-homotopy groups of a simply-

connected Chevalley group G. The A1-homotopy group sheaves can be iden-
tified with the sheafification of the unstable Karoubi-Villamayor K-groups.
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1 Introduction

A
1-homotopy theory is an approach towards a homotopy theory of algebraic vari-

eties, which was developed by Morel and Voevodsky, cf. [MV99]. The two char-
acteristic features of this theory are the use of simplicial presheaves, and the fact
that the affine line A

1 takes the role of the unit interval in algebraic topology. The
goal behind the development is to use the methods of algebraic topology which
have already led to a rather deep understanding of differentiable manifolds, and
apply these methods to the study of algebraic varieties.

To pursue such a program, computations of homotopy and homology groups
of algebraic varieties are needed. Some calculations have already been obtained
by Morel: in [Mor07], the homotopy type of GLn over a field is described, and
in [Mor06], the fundamental group of P

1 is computed. In this paper, we supply
further descriptions of A

1-homotopy groups of algebraic varieties. It turns out that
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the homotopy groups that we have been able to compute until now all are in some
way related to K-theory.

We now want to give a slightly more detailed overview of the contents of this pa-
per, in which we describe the A

1-homotopy sheaves of a simply-connected Cheval-
ley group G(Φ), for any reduced and irreducible root system Φ which is not A1

or G2. These sheaves are determined by the following procedure, which was first
applied by Morel in [Mor07]: We consider the simplicial presheaves SingA1

• (G(Φ)),

where SingA
1

• is the singular complex of simplices A
n → G(Φ). Using a collection

of more or less well-known matrix factorization and patching results, it is possi-
ble to show that this presheaf satisfies the affine Brown-Gersten property and has
affine A

1-invariance. These two properties allow to show that the A
1-homotopy

groups over an affine smooth scheme X are already determined by the simplicial set
SingA1

• (G(Φ))(X). The latter complex is known to compute the unstable Karoubi-
Villamayor K-groups. We state the main result of the paper, which are proven in
Corollary 4.10:

Theorem 1 Let Φ be a root system not equal to A1 or G2, let R be an excellent
Dedekind ring and let S = SpecR.

Then the S-group schemes G(Φ) represent the unstable Karoubi-Villamayor K-
groups KVn(Φ,−) in the A

1-local model structure on ∆opPShv(SmS). Therefore,
for any smooth affine S-scheme U , we obtain isomorphisms

πA
1

n (G(Φ), I)(U) ∼= KVn+1(Φ, U).

These results are known by the work of Morel [Mor07] in the case where the
group G is the general linear group GLn over a base field k.

To be a little more concrete, this implies that for all non-symplectic root sys-
tems Φ other than A1 and G2 and an infinite field k, we have an identification

πA
1

1 (G(Φ))(Spec k) = HA
1

1 (G(Φ),Z)(Spec k) = KM
2 (k).

On the other hand, for n ≥ 2, we have

πA1

1 (Sp2n)(Spec k) = HA1

1 (Sp2n,Z)(Spec k) = K2(Cn, k),

which by the results of Matsumoto is different from KM
2 if k is not algebraically

closed. This follows from the thesis of Jardine, cf. [Jar81, Theorems 4.2.4 and
4.2.5].

As a particular application of Theorem 1, we exhibit a couple of A
1-local fi-

bre sequences resulting from the structure theory of algebraic groups over a field.
These allow to extend the description of homotopy group sheaves to split linear
algebraic groups over a field. It turns out that for n ≥ 2, the group sheaves πn(G)
are products of Karoubi-Villamayor K-groups of the semi-simple part of G and
therefore do not depend on anything in the solvable radical.

One final note concerning the topology: The results as stated in Theorem 1
hold for the Zariski topology over a Dedekind ring. Using Morel’s results from
[Mor07] they also hold for the Nisnevich topology over a field.
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Structure of the Paper: In Section 2, we will repeat some of the basic defini-
tions like unstable Karoubi-Villamayor K-groups and an important characteriza-
tion of Nisnevich neighbourhoods over a Dedekind ring. The main technical tool
behind the results is the Brown-Gersten property which will occupy Section 3.
Then we will prove the main results in Section 4. Finally, Section 5 discusses the
promised applications of the main result.

Acknowledgements: The results presented here are taken from my PhD thesis
[Wen07] which was supervised by Annette Huber-Klawitter. I would like to use the
opportunity to thank her for her encouragement and interest in my work. A large
portion of this paper is inspired by the techniques developed in Fabien Morel’s
preprint [Mor07] and applied there to prove the GLn-case of the results presented
here. I would also like to thank Fabien Morel for some interesting conversations
concerning homotopy types of algebraic groups and their classifying spaces, as well
as making me aware of some mistakes in an earlier version of this paper.

2 Preliminaries and Notation

We will mostly work in the category SmS of smooth, finite type schemes over a
finite type base S, which is assumed to be a field or a Dedekind ring.

A
1-Homotopy Theory: We do not want to dive into the depths of homotopical

algebra, therefore we take the definitions of model categories and their properties
for granted, but see e.g. [GJ99, Hir03].

The general definition of A
1-homotopy theory is due to Morel and Voevodsky

[MV99], and we give a brief sketch of the construction. Consider the category
of simplicial presheaves ∆opPShv(SmS) on the category of smooth schemes SmS .
This category has a model structure where the cofibrations are monomorphisms,
the weak equivalences are those morphism which induce weak equivalences of sim-
plicial sets on the stalks, and the fibrations are given by the right lifting property.
The topologies which we will put on SmS are either the Zariski topology, whose cov-
erings are surjective collections of open subsets, or the Nisnevich topology, whose
elementary coverings are pullback squares

U ×X V //

��

V

p

��

U
� �

i
// X

with p an étale morphism and i an open embedding such that p restricts to an
isomorphism over X \ U .

Note that the same constructions still work if the model category in which the
presheaves take their values is not in the category ∆opSet of simplicial sets but
any other proper and simplicial model category. We will need this in Section 3,
where we replace simplicial sets by chain complexes of abelian groups.

The most commonly occuring symbol in the sequel will be the A
1-singular

complex SingA1

• (F ) associated to a presheaf F , which is the simplicial presheaf
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given by
U 7→ F (∆• × U),

for any smooth scheme U . The object ∆• above is the standard cosimplicial object
formed by the affine spaces

∆n
Z = Spec Z[t0, . . . , tn]/

∑

i

ti = 1.

Since we are interested in homotopy groups, all the simplicial presheaves are
actually pointed, although it will never be mentioned. All the presheaves are
presheaves coming from linear groups, and we choose the identity matrix I as the
base point.

Nisnevich Neighbourhoods: In this paragraph we repeat a structure theorem
for Nisnevich neighbourhoods in the category of smooth finite type schemes over a
Dedekind ring, which is needed both for the Brown-Gersten property for Chevalley
groups. Originally, this result for the case of varieties over a field appeared in a
paper of Lindel [Lin81]. It since has been extended to the case of excellent discrete
valuation rings by Dutta in [Dut99, Theorem 1.3]. A similar form of the extension
to discrete valuation rings can be found already in [Pop89, Proposition 2.1].

Theorem 2.1 Let (A,m,K) be a regular local ring with maximal ideal m and
residue field K of dimension d+1, essentially of finite type over an excellent discrete
valuation ring (V, π) such that A/m is separably generated over V/πV . Let a ∈ m2

be such that a 6∈ πA. Then there exists a regular local ring (B, n,K) →֒ (A,m,K)
with maximal ideal n, which has the same residue field as A, and satisfies the
following properties:

(i) B is the localization of a polynomial ring W [x1, . . . , xd] at a maximal ideal of
the form (π, f(x1), x2, . . . , xd) where f is a monic irreducible polynomial in
W [x1] and (W,π) ⊆ A is an excellent discrete valuation ring. Moreover, A
is an étale neighbourhood of B.

(ii) There exists an element h ∈ B ∩ aA such that B/hB → A/aA is an isomor-
phism, and furthermore hA = aA.

Chevalley Groups: The original construction of split simple simply-connected
group schemes from Lie algebras over C is due to Chevalley, cf. [Che55], an
overview of the construction of Chevalley groups over fields is given in Jardine
[Jar81]. We shortly recall the definition over a general commutative ring, following
[PV96].

Let G be a connected simple Lie group over C, with Lie algebra g = L(G)
and corresponding root system Φ, which is reduced and irreducible. Furthermore,
let V be a finite-dimensional complex vector space, and π : G × V → V be a
representation of V with differential π : g → gl(V ). Denoting by Λ(π) the set of
weights of the representation π, there always exists an admissible base {vλ}λ∈Λ(π)

such that a Z-form of L(G) acts on the lattice spanned by the admissible base. A
choice of such an admissible base allows to identify V ∼= C

n and GL(V ) ∼= GLn(C).
Moreover, restricting to the Z-forms, we obtain a sub-Hopf-algebra Z[G] in the
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algebra C[G] of complex-valued regular functions on G. This algebra defines an
affine group scheme G(Φ) by setting

A 7→ G(Φ, A) = HomZ(Z[G], A)

for any commutative ring A. Note that there is a choice of admissible lattice on
which the group G(Φ, A) depends.

However, we always choose the lattice of all weights of the representa-
tion, which yields a simply-connected group. This group is also called
universal Chevalley group of type Φ.

For any t ∈ A and α ∈ Φ, we can define the elementary matrices xα(t) =
exp(tπ(eα)) ∈ GL(VA), where eα is the element of L(G)A corresponding to the root
α. This yields a group homomorphism Xα : A → G(Φ, A) : t ∈ A 7→ xα(t). The
subgroup of G(Φ, A) generated by elements of this form is called the elementary
group E(Φ, A) for the root system Φ.

Note that another way to define the groups above is to first define elementary
matrices as exponentials of nilpotent elements in the Chevalley algebra over Z,
and then to define the Chevalley group G(Φ) via the algebra of functions on the
elementary group E(Φ,Z).

Karoubi-Villamayor K-Theory: Karoubi and Villamayor [KV69] used the
definition of K1 as the quotient of GLn modulo the elementary matrices En to-
gether with a definition of loop rings to define higher algebraic K-groups. We recall
the definition from [Ger73].

Definition 2.2 (Karoubi-Villamayor K-theory) Let A be any commutative
ring, and let Φ be an irreducible and reduced root system. Then we can define
K1(Φ, A) = G(Φ, A)/E(Φ, A).

The path ring of A is defined to be EA = ker(A[t] → A : t 7→ 0). It comes
with an augmentation ǫ : EA → A :

∑
ait

i 7→
∑
ai. Then the loop ring of A

is defined to be ΩA = ker ǫ. The functor E admits the structure of a cotriple on
the category of rings, yielding a simplicial ring E•A. We then apply the Chevalley
group functor G(Φ,−) to obtain a simplicial group G(Φ, E•A).

The Karoubi-Villamayor K-groups of R and Φ are then given by

KVn+2(Φ, A) = π̂n(G(Φ, E•A)), n ≥ −1

where the π̂ is the usual homotopy groups for n ≥ 1, and some slight modification of
the usual homotopy groups for n = −1, 0. For more details, cf. [Ger73, Definition
3.1] or [Jar83, p. 194].

Then a result of Rector, cf. [Ger73, Theorem 3.13] resp. [Jar83, Theorem 3.8],
shows that there are isomorphisms of groups

KVn+1(Φ, A) ∼= πn SingA
1

• (G(Φ))(SpecA).

The latter presentation is the one we will use in the sequel.
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3 Recollections on the Affine Brown-Gersten Property

In this section, we recall the basics of the Brown-Gersten formalism. This formal-
ism first appeared in [BG73] and was designed to show Zariski hypercover descent
for K-theory. In [MV99], this formalism was extended to the Nisnevich topology.
The final step, and the most important for this work was achieved by Morel in
[Mor07], where the affine Brown-Gersten property was introduced, together with
the affine replacement of a simplicial presheaf. This allows to determine the A

1-
homotopy groups of a simplicial sheaf, at least over smooth affine schemes, under
rather weak conditions. The purpose of this section is to explain the basics of this
theory, which will be used later to determine the A

1-homotopy of Chevalley group
schemes.

The situation we will consider in this section is the following: Let C be any
model category, and let T be a site with enough points. We consider the Jardine
model structure on the category of presheaves T op → C, where a cofibration is a
monomorphism, a weak equivalence of C-presheaves is a morphism which induces
C-weak equivalences on the stalks, and fibrations are determined by the right lifting
property. Because we are talking about homotopy pullbacks and homotopy limits,
we assume that C is a proper and simplicial model category.

The examples we will use in the sequel are simplicial presheaves and presheaves
of complexes of abelian groups, both considered on the site SmS of smooth schemes
over a base scheme S with either the Zariski or Nisnevich topology.

Definition 3.1 Let T be a category with a cd-structure P . A C-presheaf F satis-
fies the Brown-Gersten property for P if for any distinguished square

U ×X V //

��

V

i
��

U
j

// X,

the induced square

F (X) //

��

F (V )

��

F (U) // F (U ×X V )

is a homotopy cartesian square in the respective model category C.

Remark 3.2 Recall that for sheaves of complexes, the above condition reduces to
the requirement that the sequence F (X) → F (U) ⊕ F (V ) → F (U ×X V ) is a
distinguished triangle in the derived category of complexes.

The following proposition was proven for the cases of simplicial presheaves and
presheaves of spectra in [CHSW08, Theorem 3.4] as a generalization of [MV99,
Proposition 3.1.16].
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Proposition 3.3 Let T be a category with a bounded, complete and regular cd-
structure P . A C-presheaf X has the Brown-Gersten property for P if and only if
it is quasi-fibrant, i.e. for any fibrant replacement X → X̃ and any U ∈ T , there
are induced weak equivalences X(U)→ X̃(U).

The idea for proving the result for a general proper and simplicial model cat-
egory C is to use the homotopy cartesian squares provided by Definition 3.1 and
show that one can obtain B.G.-functors, cf. [MV99, Lemma 3.1.17 and 3.1.18].
The fact that there is a model category of C-presheaves which behaves almost ex-
actly as the model structure on simplicial presheaves implies that the argument of
[BG73] and [MV99] goes through.

The affine Brown-Gersten Property: The result in Proposition 3.3 can be
modified using the notion of B.G.-classes [MV99, Definition 3.1.12]: If the Brown-
Gersten property holds for the simplicial presheaf F and for a B.G.-class A of
objects of the site SmS , then a fibrant replacement F̃ of F induces weak equiva-
lences F (U) → F̃ (U) for any object U in the B.G.-class. This applies e.g. to the
B.G.-classes of smooth quasi-projective schemes or smooth quasi-affine schemes.
Unfortunately, it does not apply to the class of affine schemes, because affine
schemes do not form a B.G.-class.

The right way around this difficulty was presented in [Mor07], where Morel
introduced the affine Brown-Gersten property and the affine replacement for a
simplicial sheaf. These constructions allow to replace a simplicial presheaf F which
satisfies the affine Brown-Gersten property by another simplicial presheaf F af

which satisfies the Brown-Gersten property for all smooth schemes. Moreover, the
induced morphism F (U) → F af (U) is a weak equivalence for every affine smooth
scheme U .

The following definitions and results are due to Morel [Mor07]. We adapt the
proofs to work in a slightly more general situation. The following definition can
be found in [Mor07, Definition A.1.7].

Definition 3.4 A C-presheaf on the site SmS of smooth schemes with either
Zariski or Nisnevich topology satisfies the affine Brown-Gersten property if the
condition of Definition 3.1 is satisfied for all distinguished squares in which all
schemes are additionally affine.

Remark 3.5 Note that a C-presheaf on SmS has the affine Brown-Gersten prop-
erty for the Nisnevich topology iff the condition of Definition 3.1 is satisfied for
each square of the form

A //

��

Af

��

B // Bf

where B is an étale A-algebra such that A/f → B/f is an isomorphism.

Before we can give the definition of affine replacement, we introduce some
notation necessary for the remainder of this section. We will consider homotopy

7



limits in the model category C, the homotopy limit of the diagram I : D → C will
be denoted by holimD I. For a definition of homotopy limits in simplicial model
categories, cf. [Hir03, Definition 18.1.8]. For a functor F : E → D and a diagram
I : D → C, there is an induced diagram F †I : E → C, [Hir03, Definition 11.1.5].
The point in the unusual notation F †I is that the functors along which we want
to change the diagrams will be p∗ and p∗ in agreement with algebraic geometry
notation.

Our index categories will always be categories of smooth affine schemes: In
the following, we denote by Smaf

S /X the category whose objects are morphisms
of S-schemes U → X such that U is an affine S-scheme.

Now we are ready to give the definition of affine replacement as given by Morel,
cf. [Mor07, Section A.2].

Definition 3.6 Let F be a C-presheaf on SmS. The affine replacement of F is
denoted by F af and is defined by the following formula:

F af (X) = holim
Y ∈Smaf

S
/X

Ex∞C F (Y ).

Note that Ex∞C in the above formula is a functorial fibrant replacement in the model
category C.

The presheaf structure of F af can be described as follows: For a morphism
g : U → X, there is an induced functor g∗ : Smaf

S /U → Smaf
S /X by composing

the structure morphism Y → U with g. The diagram

J : (Smaf
S /U)op → C : (Y → U) 7→ Ex∞C F (Y )

is equal to the induced diagram (g∗)
†I which first considers the scheme Y → U as

an X-scheme and then evaluates the diagram

I : (Smaf
S /X)op → C : (Y → X) 7→ Ex∞C F (Y )

Therefore, cf. [Hir03, Proposition 19.1.8], there is an induced natural morphism

F af (g) : F af (X) = holim
Smaf

S
/X
I → holim

Smaf
S

/U
(g∗)

†I = holim
Smaf

S
/U
J = F af (U).

This provides F af with the structure of a simplicial presheaf: It is clear that for
id : X → X, the morphism

holim
Smaf

S
/X

id : holim
Smaf

S
/X
I → holim

Smaf
S

/X
I

is the identity. For the composition of g1 : X → Y and g2 : Y → Z, we note that
the induced diagrams ((g1)∗)

†(((g2)∗)
†I) and ((g2 ◦ g1)∗)

†I are equal, and therefore
the composition F af (g1) ◦ F

af (g2) equals F af (g2 ◦ g1).

The Jouanolou Trick: One of the essential tools which make the affine replace-
ment useful is the Jouanolou trick, which shows that any quasi-projective scheme
“has the A

1-homotopy type” of an affine scheme. We therefore provide the defini-
tion of affine vector bundle torsors, and the statement that vector bundle torsors
exist on quasi-projective schemes. The definition of affine vector bundle torsors is
taken from [Wei89, Definition 4.2].

8



Definition 3.7 Let X be a scheme. Then an affine vector bundle torsor over X
is an affine scheme U and an affine morphism U → X, such that there exists a
vector bundle E → X and U is an E-torsor over X. We will speak of a vector
bundle torsor if the total space U is not required to be affine.

The existence of affine vector bundle torsors over quasi-projective schemes was
proven in [Jou73, Lemme 1.5].

Proposition 3.8 Let S be an affine scheme, and let X be a quasi-projective S-
scheme. Then there exists a vector bundle E → X and an E-torsor U over X,
such that U is affine.

The basic idea of the proof is to show that the Stiefel variety

GLn+1/(Gm ×GLn)

provides an affine vector bundle torsor over P
n, and pulling this torsor back along

an embedding X →֒ P
n.

The Affine Replacement: The main technical step we need for the remainder
of our paper is the following result of Morel [Mor07, Theorem A.2.2] which allows
to compute sections of homotopy group sheaves over smooth affine schemes.

Theorem 3.9 ([Mor07], Theorem A.2.2) Let F be a C-presheaf on the cate-
gory SmS, which satisfies affine A

1-invariance and the affine Brown-Gersten prop-
erty. Then the affine replacement satisfies the Brown-Gersten property for the
Zariski topology on SmS. Moreover, its fibrant replacement F̃ is A

1-local and we
have C-weak equivalences

F (U)→ F̃ (U)

for any smooth affine U .

For the convenience of the reader, we give the details of the proof which was
sketched in [Mor07]. The proof basically proceeds along the lines of the work of
Weibel in [Wei89]. Therefore, we need an intermediate result showing that the
affine replacement has some kind of homotopy invariance, i.e. any vector bundle
torsor induces a weak equivalence on the affine replacement. This will be done in
the following proposition. We assume in the following that the base scheme S is
affine.

Proposition 3.10 Let F be a C-presheaf on the category of smooth schemes,
which satisfies the affine Brown-Gersten property and affine A

1-invariance. Then
an (affine) vector bundle torsor U → X over a smooth scheme X induces a weak
equivalence F af (X)→ F af (U), where F af is the affine replacement of F .

Proof: The proof will actually show that we do not need the total space U
to be affine. We proceed in several steps: In Step (i), we show that the affine
Brown-Gersten property and A

1-invariance imply homotopy invariance for general
vector bundles over affine schemes. In Step (ii), we construct a morphism p∗, and
Steps (iii) and (iv) show that this morphism induces a weak equivalence F af (U)→
F af (X). In Step (v), we give an argument that the composition p∗◦p∗ also induces
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a weak equivalence F af (U)→ F af (U). Steps (vi) and (vii) then use these facts to
show that p∗ induces the required weak equivalence F af (X)→ F af (U).

(i) We prove that for any affine vector bundle torsor E → V over a smooth
affine scheme V , the morphism F (V ) → F (E) is a weak equivalence. First note,
that an affine vector bundle torsor over an affine scheme V is a vector bundle with
affine total space E, cf. [Wei89, Definition 4.2]. If the vector bundle E → V is
in fact trivial, the assertion follows from affine A

1-invariance. Furthermore, every
vector bundle over V trivializes over a Zariski covering Vi → V , which induces
a covering Ei = Vi ×V E → E. An inductive process allows to assume that the
covering consists of only two elements V1, V2 → V . Consider the following diagram:

F (V ) //

��

$$III
II

III
I

F (V1)

��

≃

((QQQQQQQQQQQQQ

F (E) //

��

F (E1)

��

F (V2) //

≃

$$III
II

III
I

F (V1 ×V V2)

≃

((QQQQQQQQQQQQ

F (E2) // F (E1 ×E E2).

The front and back face of the cube are homotopy cartesian by the affine Brown-
Gersten property. Moreover, the vector bundle trivializes over F (Vi) and F (V1×V

V2), therefore the induced morphisms are weak equivalences. Since C is proper,
the glueing lemma holds [GJ99, Corollary II.8.13], and therefore we conclude that
F (V )→ F (E) is a weak equivalence.

(ii) Consider a vector bundle torsor p : U → X over a general smooth scheme
X. Then there exists a functor

p∗ : Smaf
S /X → Smaf

S /U : (Y → X) 7→ (Y ×X U → U).

The scheme Y ×X U is again affine because p : U → X is a vector bundle torsor,
and therefore Y ×X U → Y is a vector bundle over an affine base. This morphism
induces a morphism φ : F af (U) → holim

Smaf
S

/X
(p∗)†J , where J is the diagram

presenting F af (U) as in Definition 3.6. Therefore we have

(p∗)†J : Smaf
S /X → C : (Y → X) 7→ Ex∞C F (Y ×X U).

(iii) We prove that the morphism φ constructed in Step (ii) is a weak equivalence
by showing that the functor p∗ is homotopy right cofinal. The claim then follows
from [Hir03, Theorem 19.6.7(2)]. Note that we have to interchange left and right
because the diagrams we consider are contravariant functors. Let Z → U be an
object in Smaf

S /U , and consider the category (Z ↓ p∗) whose objects are morphisms

Z → p∗(Y ) = Y ×X U with Y ∈ Smaf
S /X. This category is directed, as can be

seen from the following diagram:
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Z

##

))''

(Y1 ×X Y2)×X U //

��

Y1 ×X U

��

Y2 ×X U // U.

The same argument works for parallel morphisms Y1 ×X U ⇉ Y2 ×X U : these are
induced from morphisms Y1 ⇉ Y2 and Y ×X U is an object in (Z ↓ p∗), where
Y is the equalizer of the parallel morphisms. The category (Z ↓ p∗) is therefore
contractible. This implies that the functor p∗ is homotopy right cofinal, cf. [Hir03,
Definition 19.6.1].

(iv) As in Definition 3.6, we denote by I the diagram presenting F af (X):

I : Smaf
S /X → C : (Y → X) 7→ Ex∞C F (Y ),

Then there is a morphism of diagrams (p∗)†J → I, which associates to an object

Z ∈ Smaf
S /X the morphism Ex∞C F (Z ×X U) → Ex∞C F (Z) which is induced

by the zero-section Z → Z ×X U . From Step (i), we know that the morphism
F (Z)→ F (Z×XU) induced by the vector bundle projection is a weak equivalences

for any Z ∈ Smaf
S /X. Note that we have p ◦ z = id, where z is the zero-section of

the vector bundle Z ×X U → Z. We then have F (id) = F (z) ◦ F (p) and by the
2-out-of-3-property, we conclude that F (z) is a weak equivalence. Therefore, the
morphism

ψ : holim
Smaf

S
/X

(p∗)†J → holim
Smaf

S
/X
I

is a weak equivalence, cf. [Hir03, Theorem 19.4.2]. We therefore obtain a weak
equivalence

ψ ◦ φ : F af (U)→ F af (X).

(v) Now we show that the functor p∗ ◦ p∗ : Smaf
S /U → Smaf

S /U is homotopy
right cofinal as well. Therefore, let Z → U and Y → U be U -schemes, and consider
the category (Z ↓ p∗ ◦ p∗). Note that the scheme U ×X U is always contained in
(Z ↓ p∗◦p∗), by the universal property of the pullback. Moreover, there is a unique
morphism from any given U -morphism Z → (p∗ ◦p∗)Y = Y ×X U to Z → U×X U ,
again by the universal property:

Z //

$$H
H

H
H

H
H

H
H

HH Y ×X U //

��

U ×X U

xxqqqqqqqqqqq

U.

Therefore U ×X U is a terminal object of (Z ↓ p∗ ◦ p∗), hence the category (Z ↓
p∗ ◦ p∗) is contractible. This implies that the morphism

F af (U) = holim
Smaf

S
/U
J → holim

Smaf
S

/U
(p∗ ◦ p∗)

†J

is a weak equivalence.
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(vi) The morphism considered in Step (v) factors as follows:

F af (U) = holim
Smaf

S
/U
J

p∗
−→ holim

Smaf
S

/X
(p∗)†J

p∗
−→ holim

Smaf
S

/U
(p∗ ◦ p∗)

†J.

From Step (v), it follows that the composition is a weak equivalence. From Step
(iii) it follows that the morphism induced by p∗ is a weak equivalence. By the
2-out-of-3-property of the model category C, we find that the morphism induced
by p∗ is also a weak equivalence.

(vii) Now we need to change the diagrams: We have a commutative square

holim
Smaf

S
/X

(p∗)†J
p∗

≃
//

≃

��

holim
Smaf

S
/U

(p∗ ◦ p∗)
†J

≃

��

F af (X) p∗
// F af (U).

The commutativity of the square follows by inspecting the definition of homotopy
limits and the definition of the morphisms we consider, cf. [Hir03, Definition
19.1.5 and Proposition 19.1.8(2)]. The horizontal morphism on the top is the one
from Step (vi). The vertical morphisms are changes of diagrams as in Step (iv),
therefore they are weak equivalences. Therefore, the lower horizontal morphism is
also a weak equivalence. �

Remark 3.11 (i) The obvious idea for proving that a morphism between ho-
motopy limits is a weak equivalence would be to directly appeal to [Hir03,
Theorem 19.6.7(2)]. This however does not work, as the functor p∗ fails to
be homotopy right cofinal, cf. [Hir03, Definition 19.1.6]. This can be seen
from the following argument: The functor p∗ does not induce a weak equiv-
alence on homotopy limits if the diagrams do not arise from functors which
have affine A

1-invariance and the affine Brown-Gersten property. Since the
categories Smaf

S /U and Smaf
S /X both have terminal objects, the projection

morphisms F af (U) → F (U) and F af (X) → F (X) are weak equivalences.
For any presheaf F for which F (U) and F (X) are not weakly equivalent, the
homotopy limits can not be weakly equivalent either. There do indeed exist
functors which do not satisfy affine A

1-invariance.

(ii) We want to note that for an affine vector bundle torsor U → X, the functors
p∗ and p∗ are not adjoint, but still there exist morphisms

Hom
Smaf

S
/U

(p∗Y,Z) ⇄ Hom
Smaf

S
/X

(Y, p∗Z).

for any affine Y in Smaf
S (X) and any affine Z in Smaf

S (U). We also ob-
tain natural transformations: Y → p∗p

∗Y is the zero section, the morphism
p∗p∗Y = Y ×X U → Y is the projection. Therefore the categories Smaf

S /U

and Smaf
S /X are both contractible.

We are now ready to complete the proof of Morel’s result.

Proof of Theorem 3.9: The main idea of the proof can be found in [Wei89,
Proposition 5.3 and Theorem 5.1]. Using Proposition 3.10 above, we are able to
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bootstrap Weibel’s argument. In the following, we will consider a distinguished
square for the Zariski topology:

U ×X V //

��

V � _

��

U
� � // X.

(i) This is a slight modification of the proof of [Wei89, Proposition 5.3]. We
assume that we are in the special situation that X = SpecA is affine and U =
SpecAf for some f ∈ A. By Jouanolou’s trick, we can replace V by an affine
vector bundle torsor SpecB → V . We want to prove that the upper square in the
following diagram is homotopy cartesian:

F af (SpecA) //

��

F af (SpecAf )

��

F af (V ) //

≃

��

F af (V ×Spec A SpecAf )

≃

��

F af (SpecB) // F af (SpecBf ).

Note that SpecBf → U ×X V is also an affine vector bundle torsor, and therefore
Proposition 3.10 implies that the two lower vertical maps in the above diagram are
indeed weak equivalences. Thus the lower square is homotopy cartesian, and by
the homotopy pullback lemma it suffices to show that the outer square is homotopy
cartesian.

(ii) As in Weibel’s proof [Wei89, Proposition 5.3], we consider the ideal J
defining the complement of U →֒ X. There exists a g ∈ J such that fA+ gA = A.
Then we have a diagram as follows:

F (SpecA) //

��

''OOOOOOOOOOOO
F (SpecAf )

��

((PPPPPPPPPPPP

F (SpecB) //

��

F (SpecBf )

��

F (SpecAg) //

≃

''OOOOOOOOOOO
F (SpecAfg)

≃

((PPPPPPPPPPPP

F (SpecBg) // F (SpecBfg).

The front and back face are homotopy cartesian by the affine Brown-Gersten prop-
erty. Moreover, SpecBg → SpecAg is a vector bundle, which implies that the two
lower diagonal morphisms are indeed weak equivalences and thus the bottom face
is homotopy cartesian. From the homotopy pullback lemma in the proper model
category C it follows that the top square is homotopy cartesian as well.

(iii) Assume X is quasi-projective, and let W → X be an affine vector bundle
torsor over X given by the Jouanolou trick. This induces another distinguished
square

13



W ×X U ×X V //

��

W ×X V� _

��

W ×X U � �

i
// W,

where W is affine and all projections away from W are vector bundle torsors, not
necessarily with affine total space. Replacing the original square by the weakly
equivalent square

F af (W = SpecA) //

��

F af (W ×X V )

��

F af (W ×X U) // F af (W ×X U ×X V ),

we can therefore assume that X = SpecA is affine.
(iv) By making U smaller, we can obtain a distinguished square, in which

U = SpecAf for some f ∈ A. We obtain the following diagram:

F af (X = SpecA) //

��

F af (U)

��

// F af (SpecAf )

��

F af (V ) // F af (U ×X V ) // F af (V ×X SpecAf ).

From Step (ii), we know that the outer square is homotopy cartesian. By the
homotopy pullback lemma for the proper model category C, it suffices to show
that Step (ii) applies to the right square as well. By using a vector bundle torsor
Z → U and repeating the argument of Step (iii) above, we obtain a square which
is weakly equivalent to the right square with U replaced by the affine scheme Z.
Step (ii) now applies, and therefore this square is homotopy cartesian.

(v) For the passage from quasi-projective to all smooth schemes, we note that
the arguments of [Wei89, Proposition 6.7] go through to show that F af indeed
satisfies the Brown-Gersten property for all smooth schemes.

(vi) We still have to show that the morphism F af (X) → F af (X × A
1) is a

weak equivalence for any smooth scheme X. For quasi-projective schemes X, this
follows again via Proposition 3.10 by considering an affine vector bundle torsor
U → X together with its pullback U × A

1 → X × A
1, which is again an affine

vector bundle torsor. Now contemplate the following diagram:

F af (U)
≃

//

≃

��

F af (U × A
1)

≃

��

F af (X) // F af (X × A
1)

The proof of [Wei89, Theorem 6.11] then yields the general case.
(vii) An argument as in [Mor07, Remark A.1.6 and Lemma A.2.3] finishes the

proof. �
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Remark 3.12 The above result is stated for a field in [Mor07], but the proof obvi-
ously works for any affine base scheme. An analogous result holds for the Nisnevich
topology, but for the time being needs the restriction that the base is a field and
that the simplicial sheaf is a simplicial sheaf of groups. The description of the
homotopy groups of algebraic groups which we give in this paper will therefore also
hold in the Nisnevich topology over a base field.

The point where the above argument fails to work for the Nisnevich topology
is the beginning of Step (v) above. Making U smaller works only for the Zariski
topology, because if p : V → X is an étale map which is an isomorphism over
X \ U , it is simply not possible to make U smaller...

Corollary 3.13 Let F be a C-presheaf which satisfies the affine Brown-Gersten
property and affine A

1-invariance, and denote by F̃ a fibrant replacement of F .
Furthermore, let X be any smooth scheme, and let U → X be an affine vector
bundle torsor over X. Then we have a zig-zag of weak equivalences

F af (U)← F af (X)→ F̃ (X).

In particular, to compute the values of the homotopy groups of a simplicial
sheaf over projective space P

n, it suffices to compute the homotopy groups over
the Stiefel variety

GLn+1/(Gm ×GLn).

4 The Brown-Gersten Property for Chevalley Groups

In this section, we are going to prove our main results, the representability of
unstable Karoubi-Villamayor K-theories by Chevalley groups. This result depends
essentially on the existence of a matrix factorization

G(Φ, A[t1, . . . , tn]) = G(Φ, A) ·E(Φ, A[t1, . . . , tn])

for any reduced and irreducible root system Φ not equal to A1 or G2. Such matrix
factorizations exist whenever the ring R is smooth and essentially of finite type over
an excellent Dedekind ring. Questions of this type are known as the K1-analogue
of Serre’s conjecture, because the existence of the above matrix factorization is
equivalent to affine A

1-invariance of the unstable K1-functor

K1(Φ, A) = G(Φ, A)/E(Φ, A).

This question was first considered by Suslin [Sus77] for the case of Φ = Al, l ≥
2 and A a field. The more general question of regular algebras over fields has
first been investigated by Vorst [Vor81] for the special case GLn, and in greater
generality by Abe [Abe83]. Results for orthogonal groups have also been obtained
by Kopeiko and Suslin [KS82]. Grunewald, Mennicke and Vaserstein investigated
the case of symplectic groups over a locally principal ideal ring [GMV91]. These
are just a couple of references dealing with K1-analogues of Serre’s conjecture; for
a survey of most important aspects of Serre’s conjecture as well as a comprehensive
bibliography, I highly recommend the book of Lam [Lam06].
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The basic proof structure for all these proofs was probably first conceived by
Lindel [Lin81]. We give a short sketch of how the proofs proceed. The final goal is
to obtain the matrix factorization over a general regular algebra over a field resp.
a Dedekind ring. Using a suitable local-global principle, this question is reduced
to the case of regular local rings. The first place where a local-global principle
appeared was Quillen’s paper [Qui76], and a very general approach to local-global
principles has been developed by Bass, Connell and Wright [BCW76]. The next
step is a description of the behaviour of the A

1-invariance property in Nisnevich
neighbourhoods. By Lindel’s result, cf. Theorem 2.1, every regular local algebra
can be realized as Nisnevich neighbourhood of a localization of a polynomial ring
over the base field resp. Dedekind ring. The question is thus reduced to A

1-
invariance over the base scheme.

We recall the local-global principle in Section 4.1, and the base case of the
matrix factorization in Section 4.2. These results are all well known, but scat-
tered in the literature, therefore we give a short overview of the relevant papers.
The general matrix factorization will then be used in Section 4.3 to prove that
the presheaf SingA1

• (G(Φ)) has the affine Brown-Gersten property, which implies
representability for unstable Karoubi-Villamayor K-theory.

In this chapter, the base scheme S will be the spectrum of a field or of
an excellent Dedekind ring R. When we speak of A

1-weak equivalence,
we are referring to the A

1-local model structure on the category of
simplicial presheaves with the Zariski topology. Using [Mor07], the
results remain valid for the Nisnevich topology if the base scheme is
the spectrum of a field.

4.1 The Local-Global Principle

The following form of the local-global principle is given in [Abe83, Theorem 1.15],
and generalizes the corresponding result of Suslin for the case GLn. See also the
exposition in [Lam06, Chapter VI.1].

Theorem 4.1 (Local-Global Principle) Let Φ be an irreducible and reduced
root system not equal to A1 or G2, and let A be a commutative ring. For any
element σ ∈ G(Φ, A[t], (t)), the following assertions hold:

(i) The Quillen set Q(σ) = {s ∈ A | σs ∈ E(Φ, As[t])} is an ideal in A.

(ii) If σm ∈ E(Φ, Am[t]) for every maximal ideal m in A, then σ ∈ E(Φ, A[t]).

Corollary 4.2 Let σ ∈ G(Φ, A[t]) with rkΦ ≥ 2, and let

σm ∈ G(Φ, Am) · E(Φ, Am[t])

for every maximal ideal m of A, then σ ∈ G(Φ, A) · E(Φ, A[t]).

The next thing we need is control on the behaviour of the structures we are
interested in with respect to Nisnevich neighbourhoods. The prototypical results
from the literature are [Lin81, Proposition 1] for the case of projective modules, and
[Vor81, Lemma 2.4] for the case of general linear groups. The following patching
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theorem for the elementary subgroups in the Nisnevich topology is the generaliza-
tion of [Vor81, Lemma 2.4] to arbitrary Chevalley groups, and can be found in
[Abe83, Lemma 3.7].

Proposition 4.3 Let A →֒ B be a subring, f ∈ B not a nilpotent element.

(i) If Bf + A = B then there exists for every α ∈ E(Φ, Bf ) some β ∈ E(Φ, Af )
and γ ∈ E(Φ, B) such that α = γfβ.

(ii) If moreover Bf∩A = Af and f is not a zero-divisor in B then there exists for
every α ∈ G(Φ, B) with αf ∈ E(Φ, Bf ) some β ∈ G(Φ, A) and γ ∈ E(Φ, B)
such that α = γβ.

Remark 4.4 Let R be an excellent Dedekind ring, let A be a smooth R-algebra,
B be an étale A-algebra and f ∈ A be an element such that A/f → B/f is
an isomorphism. Then SpecAf ,SpecB → SpecA is an elementary Nisnevich
covering, cf. Remark 3.5. In this situation, we have Bf+A = B and Bf∩A = Af .

Note that the same also holds for the corresponding polynomial rings, i.e.
B[t1, . . . , tn]f + A[t1, . . . , tn] = B[t1, . . . , tn] and B[t1, . . . , tn]f ∩ A[t1, . . . , tn] =
A[t1, . . . , tn]f . Therefore, Proposition 4.3 can be applied to Nisnevich neighbour-
hoods.

The following result extends the factorization of matrices from rings to arbitrary
localizations, and is therefore some kind of converse of the local-global principle.
It has been proven in [Vor81, Lemma 2.1] for the case of GLn, and generalized in
[Abe83, Lemma 3.6].

Proposition 4.5 Let A be a commutative ring and S be a multiplicative subset.
If G(Φ, A[t1, . . . , tn]) = G(Φ, A)E(Φ, A[t1, . . . , tn]), then also

G(Φ, AS [t1, . . . , tn]) = G(Φ, AS)E(Φ, AS [t1, . . . , tn]).

4.2 Matrix Factorizations

The base case of the Lindel-Vorst proof scheme is the proof of the matrix factoriza-
tion for polynomial rings over the base scheme S which in our case is assumed to
be the spectrum of an excellent Dedekind ring R. This result is basically known,
but I could not find a suitable reference for the general case.

Proposition 4.6 Let Φ be a reduced and irreducible root system not equal to A1 or
G2, and let R be a Dedekind ring. Then we have the following matrix factorization

G(Φ, R[t1, . . . , tn]) = G(Φ, R) ·E(Φ, R[t1, . . . , tn]).

Proof: By the local-global principle, cf. Theorem 4.1, we can assume that R is
a discrete valuation ring. The result is known for the root systems Al and Cl over
a Dedekind ring, cf. [GMV91, Theorem 1.2]. It was remarked in that paper that
the same type of result could be extended to other groups. For the convenience of
the reader, we shortly explain how to do this.

We first consider the case of one variable. By the assumption that R is a
discrete valuation ring, the maximal ideal spectrum of R[t] has dimension 1, and
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therefore the absolute stable range condition ASR3 holds, cf. [Ste78, Theorem 1.4].
Furthermore, under the condition ASR3, the inclusions of root systems Bl → Bl+1

and Dl → Dl+1 induce surjections K1(Bl, R) → K1(Bl+1, R) resp. K1(Dl, R) →
K1(Dl+1, R). Surjective stability for the inclusion of root systems ∆ → Φ can be
reformulated as the following matrix factorization:

G(Φ, R) = E(Φ, R) ·G(∆, R).

By an inductive procedure and the identifications B2 = C2 and D3 = A3, we can
thus extend the matrix factorization

G(Φ, R[t]) = E(Φ, R[t]) ·G(Φ)

to all classical root systems.
The same argument works for the exceptional groups: By [Plo93, Theorem 1],

the inclusions D5 → E6, E6 → E7 and E7 → E8 induce surjections under the
condition ASR4. Similarly, the inclusions B3, C3 → F4 induce surjections on K1

under the condition ASR3. The matrix factorizations therefore hold for all root
systems and one-dimensional polynomial rings over discrete valuation rings.

Finally, we note that all that is needed for the proof of [GMV91, Theorem 1.2]
to go through is the local-global principle Theorem 4.1, a variation of Horrock’s
theorem, [Abe83, Proposition 3.3] resp. [KS82, Theorem 6.9], and the matrix
factorization for a polynomial ring in one variable, which we explained above. �

4.3 Representability of Unstable K-Groups

The local-global principle is the chief tool to prove the matrix factorization of
Proposition 4.6 for general smooth R-algebras essentially of finite type. The proof
is basically the one of [Vor81, Theorem 3.3], cf. also [Abe83, Theorem 3.8]. The
only modifications concern the passage from GLn to an arbitrary Chevalley group,
as well as a generalization from fields to excellent Dedekind rings.

Proposition 4.7 Let Φ be a reduced and irreducible root system not equal to A1

or G2, let R be an excellent Dedekind ring, and let B be a regular R-algebra, which
is smooth and essentially of finite type. Then we have a factorization

G(Φ, B[t1, . . . , tn]) = G(Φ, B) ·E(Φ, B[t1, . . . , tn]).

As a consequence, the functor K1(Φ,−) has affine A
1-invariance, i.e.

K1(Φ, B[t1, . . . , tn]) = K1(Φ, B).

Proof: We claim that it suffices to prove that for any matrix σ(t1, . . . , tn) ∈
G(Φ, B[t1, . . . , tn]) such that σ(0) = I, we have σ(t1, . . . , tn) ∈ E(Φ, B[t1, . . . , tn]).

The factorization then follows, since for α ∈ G(Φ, B[t1, . . . , tn]) we obtain
(α(0, . . . , 0))−1α ∈ E(Φ, B[t1, . . . , tn]). Finally, since

E(Φ, B[t1, . . . , tn]) ∩G(Φ, B) = E(Φ, B),
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we have

K1(Φ, B[t1, . . . , tn]) = G(Φ, B[t1, . . . , tn])/E(Φ, B[t1, . . . , tn])

= G(Φ, B)/E(Φ, B)

= K1(Φ, B).

We now prove that for any matrix σ(t1, . . . , tn) ∈ G(Φ, B[t1, . . . , tn]) such that
σ(0) = I, we have σ(t1, . . . , tn) ∈ E(Φ, B[t1, . . . , tn]). The proof is by induction
on the Krull dimension of B, where the base case of the induction is given by
Proposition 4.6.

By the local-global principle Theorem 4.1, we can assume that R and B are
local rings, in particular R is a field or a discrete valuation ring. We concentrate
on the dvr case. By Theorem 2.1, B is an étale neighbourhood of a localization of
a polynomial algebra over a discrete valuation ring, i.e. there is an étale discrete
valuation ring extension R →֒ W , a localization A of W [t1, . . . , tdimB−1] at a
maximal ideal, and an element f ∈ A such that Bf+A = B and Bf∩A = Af . We
are therefore exactly in the situation of Proposition 4.3, as f is not a zero-divisor
in B[t1, . . . , tn] since B is regular and local. Since B is local, we also have dimBf <
dimB, and by induction hypothesis, σf (t1, . . . , tn) ∈ E(Φ, Bf [t1, . . . , tn]). By part
(ii) of Proposition 4.3, there is a factorization

σ(t1, . . . , tn) = γ(t1, . . . , tn)β(t1, . . . , tn)

with γ(t1, . . . , tn) ∈ E(Φ, B[t1, . . . , tn]) and β(t1, . . . , tn) ∈ G(Φ, A[t1, . . . , tn]).
From this we also obtain

σ(t1, . . . , tn) = γ(t1, . . . , tn)γ(0, . . . , 0)−1β(0, . . . , 0)−1β(t1, . . . , tn),

since I = α(0, . . . , 0) = γ(0, . . . , 0)β(0, . . . , 0). From the induction assumption,
the first two factors are in E(Φ, B[t1, . . . , tn]). By the base case, we know that
the result holds for polynomial rings W [t1, . . . , tn], and via Proposition 4.5 it also
holds for localizations of polynomial rings, in particular for A. Therefore,

β(0, . . . , 0)−1β(t1, . . . , tn) ∈ E(Φ, A[t1, . . . , tn]) →֒ E(Φ, B[t1, . . . , tn]).

�

From the matrix factorizations for SingA1

• E(Φ) and the affine A
1-invariance for

the K1-presheaves, we obtain the affine Brown-Gersten property for the Chevalley
groups. The following results were first obtained by Morel [Mor07] for the special
case GLn. The technique of proof is the same as in Morel’s paper.

Theorem 4.8 Let Φ be a root system not equal to A1 or G2. Then the simplicial
presheaf SingA1

• (G(Φ)) on the site SmS has the affine Brown-Gersten property for
the Nisnevich topology.

Proof: The result follows Proposition 4.3 by an argument similar to Morel’s
argument in [Mor07, Theorem 1.3.4]: let the following elementary distinguished
square be given:
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A //

��

B

��

Af // Bf .

Assume furthermore that A and B are integral domains and that A→ B is injec-
tive. For any of the rings A,B and Af , we consider the groups SingA1

• Ẽ(Φ, R) =

SingA
1

• E(Φ, Bf ) ∩ SingA
1

• G(Φ, R). Now consider the morphism

SingA1

• Ẽ(Φ, Af )/SingA1

• Ẽ(Φ, A)→ SingA1

• E(Φ, Bf )/SingA1

• Ẽ(Φ, B).

We claim that it is an isomorphism. It is a monomorphism, because if γ ∈
SingA1

• E(Φ, Af ) becomes the identity in SingA1

• E(Φ, Bf )/SingA1

• E(Φ, B), it has

to be in the image of SingA
1

• E(Φ, B). Since SingA
1

• E(Φ,−) is a sheaf, γ is in the

image of SingA1

• G(Φ, A) ∩ SingA1

• E(Φ, Bf ).
It is surjective by Proposition 4.3, because any α ∈ E(Φ, Bf [t1, . . . , tn]) can

be factored as α = γfβ with β ∈ E(Φ, Af [t1, . . . , tn]) and γ ∈ E(Φ, B[t1, . . . , tn]).

Therefore [α] ∈ SingA1

• E(Φ, Bf )/SingA1

• E(Φ, B) lifts to β.
Applying [Mor07, Lemma 1.3.5], we find that the elementary distinguished

square induces a homotopy cartesian square:

SingA1

• Ẽ(Φ, A) //

��

SingA1

• Ẽ(Φ, B)

��

SingA1

• Ẽ(Φ, Af ) // SingA1

• E(Φ, Bf ).

Now the quotient SingA1

• G(Φ, R)/SingA1

• E(Φ, R) is simplicially constant, by the
matrix factorization Proposition 4.7. By [Mor07, Lemma 1.3.5] again, we find that

SingA
1

• (G(Φ)) has the affine Brown-Gersten property for the Nisnevich topology.
�

Remark 4.9 It is possible to describe a patching of homotopic morphisms. The
proof structure is similar to [Lam06, Theorem VI.1.18]. In fact, the affine Brown-
Gersten property is a generalization of the weak pullback property for the unstable
K1-functors.

Assume given the following morphisms

α ∈ G(Φ, Af [t1, . . . , tn]) and β ∈ G(Φ, B[t1, . . . , tn])

which are homotopic over Bf [t1, . . . , tn], i.e. there is H ∈ G(Φ, Bf [t1, . . . , tn][t])
such that H(t = 0) = α and H(t = 1) = β.

We will show that it is possible to modify α and β up to homotopy such that they
actually are equal over Bf . Consider the element σ = βα−1 ∈ G(Φ, Bf [t1, . . . , tn]).
Since H is a homotopy between α and β, (H · α−1)(t = 0) = I and (H · α−1)(t =
1) = σ. This implies that σ ∈ E(Φ, Bf [t1, . . . , tn]), by Proposition 4.7.

By (i) of Proposition 4.3, we can decompose σ = β−1
0 α0 with

α0 ∈ E(Φ, Af [t1, . . . , tn]) and β0 ∈ E(Φ, B[t1, . . . , tn]).
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Then I = σ−1σ = α−1
0 β0βα

−1, and we therefore have the equation α0α = β0β
in G(Φ, Bf [t1, . . . , tn]). Since G(Φ) is a sheaf in the Nisnevich topology, there
is a global γ ∈ G(Φ, A[t1, . . . , tn]) such that γ = α0α in G(Φ, Af [t1, . . . , tn]) and
γ = β0β in G(Φ, B[t1, . . . , tn]). Because α0 ∈ E(Φ, Af [t1, . . . , tn]), there is an
element Hα ∈ G(Φ, Af [t1, . . . , tn][t]) with Hα(t = 0) = I and Hα(t = 1) = α0.
Then H · α ∈ G(Φ, Af [t1, . . . , tn][t]) provides a homotopy α ∼ α0α. The same
argument works for β ∼ β0β. It has been shown in [Wen07] how to prove the
affine Brown-Gersten property from such a patching result.

Corollary 4.10 Let Φ be a root system not equal to A1 or G2. Then the group
schemes G(Φ) represent the unstable Karoubi-Villamayor K-groups KVn(Φ,−) in
the A

1-local model structure on ∆opPShv(SmS). The corresponding simplicial res-

olutions SingA
1

• (G(Φ)) represent the unstable Karoubi-Villamayor K-groups in the
simplicial model structure on ∆opPShv(SmS).

Therefore, for any smooth affine S-scheme U , we obtain isomorphisms

πA1

n (G(Φ), I)(U) ∼= KVn+1(Φ, U).

Proof: By Theorem 3.9 and the affine Brown-Gersten property, cf. Theorem 4.8
above, we conclude that the affine replacement of SingA1

• (G(Φ)) has the Brown-

Gersten property. Moreover, the fibrant replacement of SingA1

• (G(Φ)) is A
1-local.

Then for any smooth affine scheme U , we have a weak equivalence

SingA
1

• (G(Φ))(U) → Ex∞
A1 SingA

1

• (G(Φ))(U)

where Ex∞
A1 denotes the fibrant replacement in the A

1-local model structure on
SmS with the Zariski-topology. The Karoubi-Villamayor unstable K-groups are
the homotopy groups of the simplicial complex SingA

1

• (G(Φ))(U), and the homo-

topy groups πA
1

n (G(Φ), I)(U) are the homotopy groups of Ex∞
A1 SingA1

• (G(Φ))(U).
This proves the claim for the simplicial model structure. For the A

1-local model
structure, we note that G(Φ)→ SingA

1

• (G(Φ)) is an A
1-weak equivalence. �

Remark 4.11 (i) Over a base field k, we can use Morel’s result [Mor07, The-
orem A.4.2] to conclude that Karoubi-Villamayor K-theory is representable
in the A

1-local model structure also for the Nisnevich topology. It seems rea-
sonable to conjecture that the same result can also be obtained for (excellent)
Dedekind rings.

(ii) From [MV99, Proposition 3.2.9], it follows that for any scheme X which
is smooth and essentially of finite type over a Dedekind ring R, the pull-
back of a fibrant replacement of SingA1

• (G(Φ)) along the structure morphism
X → SpecR is again A

1-local. Therefore, Chevalley groups represent the
corresponding unstable Karoubi-Villamayor K-theory in any of the model cat-
egories ∆opPShv(SmS) for S smooth over a Dedekind ring.

Corollary 4.12 Let Φ be a root system not equal to A1 or G2. The schemes
G(Φ) are A

1-connected. In particular, the inclusion E(Φ) →֒ G(Φ) is an A
1-weak

equivalence.
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Proof: By Theorem 4.8, we know that the simplicial sheaves SingA
1

• (G(Φ)) satisfy

the affine Brown-Gersten property. For a local ring A, we have SingA1

• (G(Φ)) =

SingA
1

• (E(Φ)), [Abe69]. Therefore, the simplicial presheaf SingA
1

• (G(Φ)) is A
1-

connected, because the presheaf π0 SingA
1

• (G(Φ)) sheafifies to the point. Therefore,
the inclusion E(Φ) →֒ G(Φ) induces isomorphisms

πn SingA
1

• (E(Φ, A))
∼=
→ πn SingA

1

• (G(Φ, A))

for any n ≥ 1 and is hence an A
1-weak equivalence. �

5 Applications

5.1 Fundamental Groups of Split Simply-Connected Groups

In this section, we explain how the result above can be used to compute the
fundamental group of a split simply-connected group.

Proposition 5.1 Let Φ be a root system not equal to A1 or G2, and let k be a
field. Then we have an isomorphism

πA
1

1 (G(Φ))(Spec k) =

{
KM

2 (k) Φ non-symplectic
H2(Sp∞(k),Z) Φ symplectic

By the Hurewicz theorem over fields [Mor06], this also describes the A
1-homology

groups HA
1

1 (G(Φ),Z)(Spec k).

Proof: By Corollary 4.10, it suffices to compute KV2(Φ, k) for any field k. The
stabilization results we used in Proposition 4.6 shows that the inclusions of root
systems induce isomorphisms on K1 for rings of Krull-dimension 1. By definition
of Karoubi-Villamayor K-theory,

KV2(Φ, k) = KV1(Φ,Ωk) = G(Φ,Ωk)/E(Φ,Ωk),

where Ωk is the loop ring of k, as explained in Definition 2.2. For a field k, Ωk
is a noetherian ring of dimension 1, and we obtain isomorphisms of KV2 for the
inclusions of root systems in Proposition 4.6. By a similar argument, we find
that for all non-symplectic root systems, KV2(Φ, k) ∼= KV2(A∞, k), and for all
symplectic root systems, we have KV2(Φ, k) ∼= KV2(C∞, k). By the results of
Matsumoto [Mat69] and the identification of stable Karoubi-Villamayor K-theory
with the plus-construction, we obtain the conclusion. �

The reader should compare the above statements with Gille’s computation of
the first Suslin homology groups of semisimple groups, cf. [Gil08].

5.2 Homotopy Types of Algebraic Groups

In this section, we provide an applications of the above results: We describe fibre
sequences which allow to determine the homotopy types of split algebraic groups
over a field.

Let us therefore take a closer look at the homotopy types of algebraic groups.
Assuming we are working over a perfect field k, there are quite a lot of results which
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allow to decompose a linear algebraic group into simpler parts. We will show how
these decomposition results yield fibre sequences in the A

1-homotopy theory, and
that these fibre sequences allow to reduce the computation of the homotopy group
sheaves of linear algebraic groups to the case of Chevalley groups which was settled
in Corollary 4.10. In particular, it turns out that for any linear algebraic group G,
all the homotopy group sheaves πA1

n (G) for n ≥ 2 are always sheaves of unstable
Karoubi-Villamayor K-groups for the root system of the semisimple part of G.
There is a couple of restriction we have to make, however:

All algebraic groups in the following section will be smooth and k-split,
i.e. their maximal torus T is isomorphic to some G

n
m over k. Moreover,

we assume that the base field k is perfect.

This assumption is necessary to avoid some subtleties in the non-split case which
we are not ready to deal with yet.

Reduction to Linear Connected Groups: We start with an algebraic group
G over the perfect base field k, i.e. G is a group object in the category of k-schemes.
The theorem of Chevalley then allows to decompose G into a linear algebraic part,
and an abelian variety. For a statement of the theorem, and a readable proof we
refer to [Con02].

Proposition 5.2 (Chevalley’s Theorem) Let k be a perfect field, and let G be
a smooth and connected algebraic group over k. Then there exists a unique normal
linear algebraic closed subgroup H in G for which G/H is an abelian variety.
Therefore, there is an exact sequence of algebraic groups

H −→ G −→ A

with H a linear algebraic group and A an abelian variety.

Corollary 5.3 Let k be a perfect field, and let G be an algebraic group over k.
Then there is an A

1-local fibre sequence

H
i
−→ G

p
−−→ A,

with H a linear algebraic group and A an abelian variety.
The induced morphism on π0 is a short left exact sequence of sheaves of groups

0 −→ πA
1

0 (H)
i∗−−−→ πA

1

0 (G)
p∗

−−−→ A = πA
1

0 (A),

and the inclusion of the fibre induces isomorphisms i∗ : πA
1

n (H,x) → πA
1

n (G, i(x))
for any n ≥ 1 and any choice of base point x ∈ H.

Proof: First, we note that the sequence H → G→ A induces a fibre sequence in
the simplicial model structure: The morphism G→ A is a principal H-bundle with
H linear algebraic, and therefore G → A is locally trivial in the étale topology.
Therefore, [Wen07, Example 3.3.10] implies that this sequence is a fibre sequence
in the simplicial model structure with the Nisnevich topology.

The base is an abelian variety, therefore it is A
1-rigid and hence local. By

[Wen07, Theorem 4.3.10], this fibre sequence is preserved by A
1-localization.
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Since the abelian variety A is A
1-local, we have πA

1

n (A, ∗) = 0 for any n ≥ 1
and any choice of base point. From the long exact sequence for the fibre sequence,
we get the isomorphisms claimed. �

Note that, contrary to what was stated in [Wen07, Corollary 4.4.12], the mor-

phism πA1

0 (G)
p∗

−−−→ A = πA1

0 (A) of sheaves in the Nisnevich topology need not
be surjective. Only the sheafification in the étale topology is surjective, by local
isotriviality. For special groups however, for which H1

Nis = H1
ét, the morphism

πA
1

0 (G)
p∗

−−−→ A = πA
1

0 (A) is indeed surjective.
A similar proof yields the following statement which reduces the homotopy

type of a linear algebraic group to that of a connected group.

Proposition 5.4 Let G be a linear algebraic group over k. Then there exists an
A

1-local fibre sequence

G0 i
−→ G

p
−−→ H.

where H is a finite étale group over k. Therefore there exists a short left exact
sequence of sheaves of groups

0 −→ πA1

0 (G0)
i∗−−−→ πA1

0 (G)
p∗

−−−→ H = πA1

0 (H),

and the inclusion of the fibre induces isomorphisms i∗ : πA1

n (G0, x)→ πA1

n (G, i(x))
for any n ≥ 1 and any choice of base point x ∈ G0.

Proof: It is a standard fact that the group of connected components of a linear
algebraic group is a finite étale group scheme, cf. [Bor91, Proposition 1.2(b)]. The
A

1-rigidity for a finite étale group scheme follows from [MV99, Proposition 4.3.5].
�

Homotopy Types of Solvable Groups: In this paragraph, we will study the
homotopy types of split solvable groups. We need to understand a couple of special
cases, beginning with unipotent groups. Recall that a smooth connected linear
algebraic group is unipotent if it has a filtration {1} = Un ⊆ Un−1 ⊆ · · · ⊆ U1 ⊆
U0 = U such that Ui+1 is normal in Ui and the quotient Ui/Ui+1 is isomorphic to (a
form of) the additive group Ga. Note that such forms only exist over non-perfect
fields, since for a perfect field k we have H1(k,Ga) = 0.

Via an inductive argument, one obtains the following result:

Proposition 5.5 Let U be a unipotent smooth connected linear algebraic group
over a perfect field k. Then U is A

1-contractible. Moreover, any principal U -bundle
U → X → Y induces an A

1-weak equivalence X
≃
−→ Y .

In particular, any connected linear algebraic group has the homotopy type of a
reductive group, since the morphism φ : G → G/RuG is an A

1-weak equivalence,
where RuG denotes the unipotent radical of G.

Next, we will deal with groups of multiplicative type. On the one hand, we
know that groups of multiplicative type are A

1-local, they are discrete objects in
the A

1-homotopy category. On the other hand, not every torsor under a group
of multiplicative type over affine space is extended, i.e. induces an A

1-local fibre
sequence. The basic example of this phenomenon is a finite étale group scheme
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whose order is divisible by the characteristic of the base field. The next proposition
will show that this comprises all the difficulties.

We introduce some notation to be used in the next proposition: For a group T of
multiplicative type, there is the following exact sequence of groups of multiplicative
type

1→ T 0 → T → µ→ 1,

where µ is finite étale and T 0 is connected.

Proposition 5.6 Let k be a field, and let φ : G→ H be a torsor under a group T
of multiplicative type such that µ has order prime to the characteristic of k. Then
there is an A

1-local fibre sequence

T
i
−→ G

p
−−→ H

and the inclusion of the fibre induces isomorphisms i∗ : πA1

n (G,x) → πA1

n (H, p(x))
for any n ≥ 2 and any choice of base point x ∈ G.

Proof: Using étale descent, it is easy to show that a group T of multiplicative
type over a field k is A

1-rigid, cf. [Wen07, Example 4.4.3].
It follows from [MV99, Proposition 4.3.1] and our assumption on the order of

the finite étale group scheme µ that the classifying space Bµ is A
1-local.

By the standard theory of classifying spaces, there is a fibre sequence of clas-
sifying spaces associated to the exact sequence of groups above:

BT 0 → BT → Bµ.

To show that BT is A
1-local, it suffices now to show BT 0 is A

1-local.
First note, that by [MV99, Proposition 4.3.8], the classifying space BG

n
m of a

split torus is A
1-local. To prove BT 0 is A

1-local, we will show that H1
ét(X,T

0)→
H1

ét(X ×A
1, T 0) is an isomorphism for any smooth X. Let therefore E → X ×A

1

be a T 0-torsor and let L/k be a splitting field for T 0. As was noted above, the
classifying space of a split torus is local, and so EL → (X×kL)×A

1 is a G
n
m-torsor

which is extended from X×kL. Therefore, to present the T 0-torsor E, we can find
a covering Ui → X and a cocycle of the special form ρij : (Ui ×X Uj)× A

1 → T 0.
By homotopy invariance of T 0 this yields a presentation for a torsor E0 → X, such
that the extension E0 × A

1 → X × A
1 is isomorphic to E. This shows that the

classifying space BT 0 is A
1-local. A similar assertion about homotopy invariance

of torsors under tori can be found in [CTS87, Lemma 2.4].
The groupG is a T -torsor over H, therefore it induces a simplicial fibre sequence

and is thus classified by a morphism into BT , the classifying space of T -torsors.
This is local by the argument above, so [Wen07, Theorem 4.3.10] implies that
T → G→ H is an A

1-local fibre sequence. �

Using the fact that any solvable group arises as an extension of a group of
multiplicative type by a unipotent group, we can finally describe the homotopy
type and fibre bundles under connected solvable groups.

Proposition 5.7 Let G be a connected solvable group over a perfect field k. Then
there exists a unipotent subgroup Gu →֒ G such that G/Gu is a connected group of
multiplicative type.
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The projection φ : G→ G/Gu is an A
1-local weak equivalence. The classifying

spaces BG and B(G/Gu) are therefore A
1-weakly equivalent, and therefore any

principal G-bundle induces an A
1-local fibre sequence.

Proof: The algebraic assertions about solvable groups can be found in [Bor91,
Theorem V.15.4]. The fact that the projection φ : G → G/Gu is an A

1-weak
equivalence follows from Proposition 5.5. From standard theory on classifying
spaces, there is a fibre sequence BGu → BG → B(G/Gu), which together with
Proposition 5.6 implies the statement about principal G-bundles. �

Corollary 5.8 For any smooth connected linear algebraic group G, there is an
A

1-local fibre sequence RG → G → G/RG. In particular, there are induced iso-
morphisms of sheaves of homotopy groups i∗ : πA1

n (G,x) → πA1

n (G/RG, p(x)) for
any n ≥ 2 and any choice of base point x ∈ G.

Reduction to Chevalley Groups: The previous corollary reduced the descrip-
tion of homotopy types of algebraic groups over a perfect field to the study of split
semi-simple groups. It is still possible to make a semisimple group “even simpler”
by decomposing it into an almost direct product of simple groups. We therefore
get an A

1-homotopy version of [Jar81, Theorem 3.2.5 and Corollary 3.2.6].

Proposition 5.9 Let G be a connected smooth semisimple split linear algebraic
group over k, and let S1, . . . , Sn be the finite set of minimal connected normal
algebraic subgroups of G of nonzero dimension. Then the multiplication homomor-
phism

m : S1 × · · · × Sn → G : (s1, . . . , sn) 7→ s1 · · · sn

is a surjective homomorphism with finite, étale, central kernel P . Therefore, if the
order of P is prime to the characteristic of k, the following is an A

1-local fibre
sequence:

P →֒ S1 × · · · × Sn
m
−→ G.

In the latter situation, we have a short exact sequence of A
1-homotopy group

sheaves:

0→

n⊕

i=1

πA
1

1 (Si)→ πA
1

1 (G)→ P → 0,

and for all l ≥ 2, the multiplication map induces isomorphisms

n⊕

i=1

πA
1

l (Si)
∼=
−→ πA

1

l (G).

Proof: The algebraic argument works as in the proof of [Jar81, Theorem 3.2.5].
That the corresponding morphism induces a fibre sequence if the order of P is
prime to the characteristic of k follows from Proposition 5.6.

The right exactness of the short exact sequence of π1-sheaves follows since the
functorK1(G,R) is trivial for any simple, simply connected groupG and semi-local
ring R, cf. [Abe69]. The group of connected components π0(Si) can be identified
with K1 of the corresponding root system by Corollary 4.10. �
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Corollary 5.10 Let G be a smooth, linear and split algebraic group. Then for
any n ≥ 2, we have isomorphisms of sheaves

πA1

n (G)(U) ∼=
⊕

KVn+1(Φ, U),

where the direct sum ranges over all irreducible and reduced components of the root
system of G/RG.

5.3 A1-Locality for Split Groups

We finally show that the fibrant replacement of SingA1

• (G) for a split group G is
A

1-local. This follows from the fibre sequences established above. It should also
follow from these fibre sequences that SingA

1

• (G) has the affine Brown-Gersten
property for any split group.

Proposition 5.11 Let G be a split smooth linear algebraic group over a perfect
field k. Assume that the fundamental group of its semisimple part has order prime
to the characteristic of k. Then a fibrant replacement of SingA1

• (G) in the simplicial
model structure is A

1-local.

Proof: (i) For a simply-connected Chevalley group, this is Theorem 4.8.
(ii) Any semi-simple group can be written as

1→ Π1(G)→ S1 × · · · × Sn → G→ 1,

where Si are the minimal connected normal simple subgroups of G and Π1(G) is
the fundamental group of the semisimple group G, cf. also Proposition 5.9. This
induces an S1 × · · · × Sn-torsor

S1 × · · · × Sn → G→ BΠ1(G).

This induces a fibre sequence

SingA1

• (S1 × · · · × Sn)→ SingA1

• (G)→ SingA1

• (BΠ1(G)).

But by our assumptions, Π1(G) is a finite étale group scheme of order prime to
the characteristic of the base, therefore BΠ1(G) is A

1-local, and we have a weak
equivalence

SingA
1

• (BΠ1(G)) ≃ BΠ1(G).

Now we apply the fibrant replacement to this fibre sequence. Then the base is a
fibrant and A

1-local simplicial presheaf, and the same holds for the fibre, by Step
(i). Therefore SingA

1

• (G) becomes A
1-local after fibrant replacement.

(iii) Now any reductive group G sits in an extension

1→ RG→ G→ G/RG→ 1,

where the group G/RG is semisimple. Applying Corollary 5.8, we obtain a fibre
sequence

SingA1

• (RG)→ SingA1

• (G)→ SingA1

• (G/RG).

After a fibrant replacement, the fibre is A
1-local, because it is weakly equivalent to

a torus, and the base is A
1-local by Step (ii). Therefore, the total space is A

1-local.
(iv) Now for any connected group G, there is a simplicial weak equivalence

SingA1

• (G) ≃ SingA1

• (G/RuG), where RuG denotes the unipotent radical. This
finishes the proof. �
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[GMV91] Fritz J. Grunewald, Jens Mennicke, and Leonid Vaserstein. On
symplectic groups over polynomial rings. Mathematische Zeitschrift,
206(1):35–56, 1991.

28



[Hir03] Philip Steven Hirschhorn. Model Categories and Their Localizations,
volume 99 of Mathematical Surveys and Monographs. American Math-
ematical Society, 2003.

[Jar81] John Frederick Jardine. Algebraic Homotopy Theory, Groups and K-
Theory. PhD thesis, University of British Columbia, 1981.

[Jar83] John Frederick Jardine. On the homotopy groups of algebraic groups.
Journal of Algebra, 81:180–201, 1983.

[Jou73] Jean-Pierre Jouanolou. Une suite exacte de Mayer-Vietoris en K-
théorie algébrique. In Algebraic K-Theory I: Higher K-Theories, vol-
ume 341 of Lecture Notes in Mathematics, pages 293–316. Springer,
1973.

[KS82] V.I. Kopeiko and Andrei A. Suslin. Quadratic modules and the orthog-
onal group over polynomial rings. Journal of Mathematical Sciences,
20(6):2665–2691, 1982.

[KV69] Max Karoubi and Orlando Villamayor. Foncteurs Kn en algèbre et en
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