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Abstract

In this short note, we want to investigate combinatorial descriptions of the
motivic fundamental group πA

1

1
(X(∆)) for a smooth toric variety associated to

the fan ∆. This reduces the computation of the fundamental group of the toric
variety X(∆) to a computation of the A1-localization of an explicitly given
sheaf of groups. As a corollary, a smooth toric variety for which the irrelevant
ideal in the Cox ring has codimension ≥ 3 has a torus as A1-fundamental
group.

1 Introduction

The goal of this paper is to give a sample application of the theory of fibre sequences
developed in my thesis [Wen07]. More precisely, I will exhibit some fibre sequences
describing the fundamental groups of smooth toric varieties. The main result can
be stated as follows:

Theorem 1 Let N be a lattice, and ∆ be a regular fan in N ⊗Z R. Let X(∆) be
the smooth toric variety corresponding to the fan ∆. The group of A

1-connected
components is given by

πA
1

0 (X(∆)) = G
rkN/N ′

m ,

where N ′ is the sublattice of N generated by ∆.
The fundamental group πA1

1 (X(∆)) sits in an exact sequence

1→ πA1

1 (X(∆, Z∆(1)))→ πA1

1 (X(∆))→ Hom(An−1(X(∆)), Gm)→ 1,

and πA1

1 (X(∆, Z∆(1))) can be described as follows

πA1

1 (X(∆, Z∆(1))) = ker
(
πA1

1 (DJ(∆))→ G
∆(1)
m

)
.

The space DJ(∆) is an analogue of the topological Davis-Januszkiewicz spaces
associated to the fan ∆, and its A

1-fundamental group is given as follows:

πA
1

1 (DJ(∆)) ∼= LA1

(
⋆ρ∈∆(1)Gm(U)/R

)
,

where LA1 is the A
1-localization functor on the category of sheaves of groups, and

associates to each sheaf of groups a stronlgy A
1-invariant sheaf of groups, and R

is the subgroup generated by commutators

(u1, ρ1)(u2, ρ2)(u
−1
1 , ρ1)(u

−1
2 , ρ2)

whenever ρ1 and ρ2 span a cone η ∈ ∆(2).
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One of the main corollaries of the above theorem is that the fundamental group
of a smooth toric variety over a general regular base depends only on ∆(1) and
∆(2). In particular the fundamental group of P

n, n ≥ 2, is isomorphic to the sheaf
of groups Gm for any regular base scheme, not just over a field.

The remaining problem in the above theorem is, that the fundamental group
of the spaces DJ(∆) is a graph product in the category of strongly A

1-invariant
sheaves of groups. However, computing coproducts in this category is not at all
easy. For example, the free product Gm ∗ Gm in the category of strongly A

1-
invariant sheaves of groups has an abelian commutator subgroup, which by Morel’s
work [Mor06] can be identified as KMW

2 . The above theorem therefore reduces the
complete computation of the fundamental group of a smooth toric variety to the
A

1-localization of a sheaf of groups which we can describe explicitly.
It is also interesting to note, that some of the work on homotopy types of

complements of subspace arrangements and the fundamental group of real toric
varieties is reflected in the above theorem: the fundamental group of a real toric
variety has the same graph product representation, only using Z/2Z instead of the
group of units Gm. As we will see later, some of the proofs from classical algebraic
topology directly carry over, once we have some general results on the theory of
fibre sequences developed in [Wen07].

Note also that the general idea of this paper carries through to arbitrary Gm-
cellular homotopy types: If the homotopy type is cellular, then its fundamental
groupoid can be expressed as a homotopy colimit of copies of Gm in the category
of strongly A

1-invariant sheaves of groups. This however is a rather useless state-
ment as the cellularity assumption does not give any information on the diagram
presentation. For toric varieties, we can explicitly write down diagrams in terms
of the fans.

Finally, I would like to draw the readers attention to the paper of Asok and
Doran [AD07], where similar results on the fundamental group of toric varieties
are obtained by different methods. The restriction to base fields in their paper
allows stronger results than we can achieve here.

Remarks on Non-Smooth and Non-Split Cases: Our results only apply to
smooth toric varieties which contain a split torus densely, and we can only give
some indications what goes wrong in the more general situations.

First, the torus covering space from Lemma 4.5 does only exist in this form
if the fan is regular. If the fan is still simplicial, it might be possible to find a
covering of X(∆) by a principal homogeneous space under a more general group
of multiplicative type, taking care of the étale fundamental group of the quotient
singularities of X(∆). However, if the fan is not even simplicial, then there is a
morphism of toric varieties X(∆, Z∆(1))→ X(∆), but it will not be a principal ho-
mogeneous space any more. Similarly, the description of the connected components
of Lemma 4.2 fails in general: what one can show is that for a quotient singularity
with group G, the connected components of X(∆) embed into the Nisnevich sheafi-
fication of H1

ét(−, G), but it is not clear which G-torsors over a henselian local ring
Oh

U,u are realized as pullbacks of the quotient presentation of X(∆). Summing up,
in the case of singular toric varieties X(∆), it is not possible to reduce a description
of the fundamental group to the Davis-Januszkiewicz spaces.
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In the non-split case, there are yet other complications to the description of the
connected components of X(∆): the Brauer group H2(X(∆), Gm) resp. its non-
trivial part H2(X(∆), Gm)/H2(k, Gm) start appearing, since the latter group can
be identified with the Galois cohomology group H1(Gal(E/k),Pic(X(∆))). These
elements may give rise to nontrivial connected components, since (in the non-split
but smooth case) the torus covering from Lemma 4.5 is classified by a morphism
to the classifying space BT , where T is the (non-split!) torus associated to the
Galois-module Pic(X(∆)). On connected components this classifying morphism
X(∆)→ BT yields a morphism

πA
1

0 (X(∆))→ πA
1

0 (BT ) ∼= H1
ét(−,Pic(X(∆))).

Beyond that general nonsense, there is nothing I can say at the moment about the
nature of this map. Finally, also the definition of the Davis-Januszkiewicz spaces
would have to be adjusted to deal with non-split tori.

Structure of the Paper: After some preliminaries and notations introduced
in Section 2, we explain in Section 3 what the A

1-fundamental groupoid actually
is, and how one can prove the van-Kampen theorem. We finally compute the
fundamental groupoid of a toric variety in Section 4. Some additional homotopy
decompositions of certain toric varieties are considered in Section 5.

Acknowledgements: First of all, I would like to thank my supervisor Annette
Huber-Klawitter for her encouragement and continued interest in my work. Fur-
thermore, Malte Witte and Claus Diem helped me out with some details on toric
varieties.

2 Preliminaries and Notation

A
1-Homotopy Theory: We mostly use the notation from [MV99]. We let S be

a regular finite type base scheme, and denote by SmS the category of smooth finite
type schemes over S. All the simplicial presheaves mentioned in the following
paper are presheaves on the category SmS with either the Zariski or Nisnevich
topology.

Toric Varieties: The definition of a fan ∆ and of the corresponding toric variety
can be found in [Ful93].

The following introduces the standard notation for lattices, fans etc. Usually,
the lattice in which the fans live will be denoted by N ∼= Z

n, M = HomZ(N, Z)
denotes the dual lattice, and 〈−,−〉 : M × N → Z the duality pairing. We let ∆
be a fan in N ×Z R, whose cones will usually be denoted by σ. The set of cones
in ∆ of dimension k will be denoted by ∆(k). Finally, we denote the toric variety
corresponding to the fan ∆ by X(∆, N). In the special case of a cone σ, we write
X(σ,N) for the corresponding affine toric variety. If the lattice is clear from the
context, we will simply write X(∆). The big torus of X(∆) corresponding to the
cone (0) is usually denoted by T.
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A cone σ generated by vectors v1, . . . , vn is called a simplex if the vectors
v1, . . . , vn are linearly independent. A fan ∆ is called simplicial, if all its cones are
simplices.

A vector v ∈ Z
n is called primitive if its coordinates are coprime. A cone σ gen-

erated by vectors v1, . . . , vr is called regular if the vectors v1, . . . , vr are primitive,
and there exist further primitive vectors vr+1, . . . , vn such that det(v1, . . . , vn) =
±1. A fan is called regular if all its cones are regular.

The notion of a ∆-collection was defined in [Cox95a]. It allows to have a
concrete interpretation of the functor represented by a toric variety, and can also
be used to describe smooth toric varieties over arbitrary base schemes.

Definition 2.1 (∆-Collection) Let X be a scheme, and ∆ be a fan. A ∆-
collection on X consists of line bundles Lρ and sections uρ ∈ H0(X,Lρ), indexed

by ∆(1), and isomorphisms cm : ⊗ρL
⊗〈m,nρ〉
ρ

∼= OX , indexed by m ∈M , such that:

(i) cm ⊗ cm′ = cm+m′ for all m,m′ ∈M , and

(ii) uρ ∈ H0(X,Lρ) gives uρ : OX → Lρ, which induces u∗
ρ : L−1

ρ → OX . Then
the map ∑

σ∈∆max

⊗ρ6⊆σu∗
ρ :

⊕

σ∈∆max

⊗ρ6⊆σL−1
ρ → OX

is a surjection.

Note that the above definition implies that the whole theory of coverings of
toric varieties by orbits under the big torus T still works even over general base
schemes.

3 Homotopy Colimits and the Van-Kampen Theorem

In this section, we will discuss the van-Kampen theorem in the context of sim-
plicial presheaves as well as in the context of A

1-homotopy theory. For simplicial
presheaves, the statement of the van-Kampen theorem carries over verbatim from
the classical situation.

The Fundamental Groupoid: We first discuss the fundamental groupoid in
A

1-homotopy theory. We begin with the fundamental groupoid of a simplicial
presheaf:

Definition 3.1 (Fundamental Groupoid) Let T be a site, and let X be a
fibrant simplicial presheaf on T . The fundamental groupoid of X is the sheaf
of groupoids U 7→ Π1X(U), i.e. the object U ∈ T is assigned the fundamental
groupoid of the simplicial set X(U). Similarly, one can define the fundamental
groupoid of any simplicial presheaf as the fundamental groupoid of a fibrant re-
placement.

For a morphism of simplicial sheaves f : X → Y , there is an induced morphism
of fibrant replacements Ex∞ f : Ex∞ X → Ex∞ Y . This also induces an obvious
morphism of fundamental groupoid sheaves Π1f : Π1X → Π1Y .
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Definition 3.2 Let C be a small category. A category fibred in groupoids over
C is a small category D and a functor P : D → C, such that for any morphism
f : C ′ → C in C and any lifting D ∈ D of C, there is a lifting of f , i.e. a morphism
f : D′ → D with F (f) = f , which is unique up to unique isomorphism.

Now the next lemma explains how to translate between a sheaf of groupoids
and a category fibred in groupoids. For some applications it is better to consider
the fundamental groupoid as a category fibred in groupoids.

Lemma 3.3 Let T be a small site. Let Grpd/T denote the category of all small
categories fibred in groupoids over T , and let T opGrpd denote the category of
presheaves of groupoids. Then there are functors

F : Grpd/T → T opGrpd : (P : D → T ) 7→
(
U ∈ T 7→ P−1(idU )

)

and

G : T opGrpd→ Grpd/T : (Q : T op → Grpd→ Cat) 7→

∫

T
Q,

where
∫
T Q denotes the Grothendieck construction, which is defined as follows:

The objects of
∫
T Q are pairs of objects (U, V ) with U ∈ T and V ∈ Q(U), and

a morphism (U, V ) → (U ′, V ′) is given by a morphism f : U → U ′ in T and a
morphism g : U → Q(f)(U ′). The functor

∫
T Q→ T : (U, V ) 7→ U makes

∫
T Q a

category fibred in groupoids over T .
These functors induce an equivalence of the categories Grpd/T and T opGrpd.

The above is well-known and can be found e.g. in [Tho79].
It is therefore possible to either view the fundamental groupoid as a sheaf of

groupoids or as a category fibred in groupoids, living over the site T . The reason
why one should consider the fundamental groupoid as a fibred category is, that
there is also a reasonable Grothendieck topology on the fundamental groupoid.
This is important for possible definitions of homology with local coefficients for
simplicial presheaves.

Note that colimits in the category of groupoids are the sheafifications of the
corresponding pointwise operations.

Van-Kampen Theorem for Simplicial Presheaves: The van-Kampen the-
orem for simplicial sets, as e.g. given in [GJ99, p. 144], can be used to describe
the fundamental group(oid) of a homotopy pushout of spaces X = hocolim(U ←
U ×X V → V ) in terms of the fundamental groupoids of the spaces U , V and
U ×X V . There is also a generalization to more general homotopy colimits instead
of open coverings given in [Dro04].

As most of the homotopy theory statements, the van-Kampen theorem holds
for simplicial presheaves. This can be seen by constructing a suitable comparison
morphism and checking on points that it is a weak equivalence. We therefore obtain
the following version of the van-Kampen theorem, which is basically a sheafification
of [Dro04, Theorem 1.1].

5



Theorem 3.4 (van-Kampen Theorem) Let T be a site, and let I be a small
category. For any I-diagram X of simplicial presheaves on T , there is a natural
equivalence of sheaves of groupoids

Π1 hocolim
I

X
≃
−→ hocolim

I
Π1X .

If the homotopy colimit hocolimI X is a π0-connected simplicial presheaf, this yields
a corresponding isomorphism of groups.

Proof: We assume for simplicity that the site T has enough points.
Let X : I → ∆opShv(T ) be a diagram of simplicial presheaves. Applying the

functor Π1, this induces a corresponding diagram of sheaves of groupoids Π1X :
I → T opGrpd. Therefore we have a comparison morphism

hocolim
I

Π1X → Π1 hocolim
I

X .

This morphism is a weak equivalence, for the following reasons: For any point
p of T , we have the following weak equivalence of simplicial sets p∗(hocolimI X ) ≃
hocolimI p∗X . Then by the result of Farjoun [Dro04], the homotopy colimit
hocolimI p∗X of simplicial sets becomes a homotopy colimit of groupoids, i.e. we
have a weak equivalence Π1 hocolimI p∗X ≃ hocolimI Π1p

∗X . Finally, we put
together the above assertions to obtain a chain of weak equivalences of groupoids

p∗ hocolim Π1X ≃ hocolim p∗Π1X ≃ hocolim Π1p
∗X

≃ Π1 hocolim p∗X ≃ Π1p
∗ hocolimX

≃ p∗Π1 hocolimX .

The same statement also obtains for the categories fibred in groupoids, since the
Grothendieck construction commutes with homotopy colimits of groupoids, by
Thomason’s theorem [Tho79]. �

The following can also be found in [Dro04, Theorem 4.3 and Corollary 4.4].

Corollary 3.5 Let X be a simplicial presheaf, and let Xi →֒ X be an I-indexed
set of simplicial sub-presheaves of X, such that X =

⋃
Xi. Let X (3) be the diagram

of the simplicial presheaves Xi ∩Xj ∩Xk for all i, j, k ∈ I and morphisms given
by inclusions. Then we have

Π1X ≃ hocolim Π1X (3).

In particular, if the diagram X (3) consists of pointed and connected simplicial
presheaves, then Π1X ∼= colim Π1X (3). In that case, the group sheaf π1X can be
written as the quotient sheaf

π1X ∼=
(
⋆Iπ1Xi

)
/R,

where R are the relations coming from inclusions Xi ∩Xj →֒ Xi.

The proof carries over verbatim from [Dro04] using the Postnikov decomposi-
tion from [MV99, Definition 2.1.29].
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The Local Van-Kampen Theorem: Now A
1-homotopy theory is not simply

homotopy theory of simplicial sheaves, there is also a localization involved. This
implies that not all sheaves of groupoids can appear as fundamental groupoids
of A

1-local simplicial presheaves. The groupoid sheaf notion corresponding to A
1-

locality of simplicial presheaves is the strong A
1-invariance, as used e.g. in [Mor06].

Definition 3.6 Let SmS be the site of smooth schemes over a regular finite type
scheme S, equipped with the Nisnevich topology. A sheaf of groups (resp. groupoids)
G is called A

1-invariant if for any smooth scheme U ∈ SmS the morphism G(U)→
G(U ×A

1) induced by the projection U ×A
1 → U is an isomorphism (resp. a weak

equivalence of groupoids).
It is called strongly A

1-invariant if the maps

H i
Nis(U,G)→ H i

Nis(U × A
1, G)

are isomorphisms for i = 0, 1. In case of a sheaf of groupoids, we again only require
a weak equivalence of groupoids for i = 0.

These are the relevant algebraic counterparts of A
1-local simplicial presheaves.

The inclusion GrpdA1 →֒ Grpd of the subcategory of strongly A
1-invariant sheaves

of groups resp. groupoids into the category of sheaves of groupoids has a left adjoint
G 7→ LA1G which we also refer to as A

1-localization. This follows from [Mor06,
Remark 4.11] by noting that the Postnikov tower argument does not depend on
the base scheme being a field. In particular, we have the following:

Lemma 3.7 Let I be a small category, and let G be an I-indexed set of strongly A
1-

invariant sheaves of groupoids. Then the A
1-local homotopy colimit hocolimA1

I G of
G is computed as

hocolim
I,A1

G ≃ LA1 hocolim
I

G.

The same argument as given in [Mor06] then implies the following slight vari-
ation of Morel’s van-Kampen theorem [Mor06, Theorem 4.12]:

Theorem 3.8 Let I be a small category, and let X be an I-diagram of simplicial
presheaves. Then there is a natural equivalence of strongly A

1-invariant sheaves of
groupoids

ΠA1

1 hocolim
I

X ≃ LA1 hocolim
I

Π1X .

In particular, for a simplicial presheaf X and a set of simplicial sub-presheaves
Xi →֒ X such that X =

⋃
Xi such that all triple intersections Xi ∩Xj ∩Xk are

π0-connected, we have the following presentation:

πA
1

1 X ∼= LA1

(
(⋆Iπ1Xi)/R

)
,

where R are the relations coming from inclusions Xi ∩Xj →֒ Xi.

The latter formulation is the one we will apply in the sequel.
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Toric Varieties as Homotopy Colimits: In [DI05], it was shown that the
usual covering of a toric variety X(∆) by the affine toric varieties Uσ for cones
σ ∈ ∆ yields a homotopy colimit description of X(∆):

For a fan ∆, we denote by I(∆) the category whose objects are the cones
σ of ∆, and whose morphisms are inclusions of cones σ ⊆ τ . Then there is an
I(∆)-diagram

D(∆) : I(∆)→ Shv(SmS) : σ 7→ X(σ),

where every X(σ) is A
1-weakly equivalent to a torus G

c(σ)
m with c(σ) denoting the

codimension of σ in N ⊗Z R.
Then there is a weak equivalence

X(∆) ≃ hocolim
σ∈∆

D(∆)

It also follows that X(∆) is A
1-weakly equivalent to the homotopy colimit with

the same index diagram and X(σ) replaced by the torus G
c(σ)
m .

Another way to describe the toric variety X(∆) as a homotopy colimit is via
the X (3)-description from Corollary 3.5, applied to the covering of X(∆) by the
open subschemes X(σ) for the cones σ ∈ ∆.

The problem in directly applying the van-Kampen theorem to this homotopy
colimit presentation is, that almost all of the spaces in the diagram are not A

1-
connected. We will use a different approach in Section 4: instead of the toric
variety, we will use a homotopy colimit of classifying spaces of tori to obtain a
presentation of the fundamental group of X(∆).

4 The Fundamental Group of a Toric Variety

In this section, we will finally describe the fundamental group of a toric variety. We
start with a description of the connected components. For a connected toric variety,
there is a nice A

1-covering given by the homogeneous coordinate ring of Cox.
The homotopy type of this object can be described using analogues of the Davis-
Januszkiewicz spaces. Finally, the fundamental group of the Davis-Januszkiewicz
space associated to a fan ∆ can be computed using the van-Kampen theorem.

Preliminaries on Connectedness: We first start with a statement about con-
nectedness of complements of codimension ≥ 2 subvarieties in A

n. Examples of
such situations are given by the homogeneous coordinate rings of Cox [Cox95b].

Lemma 4.1 Let Z →֒ A
n be the union of the codimension two coordinate subspaces

of A
n. Then A

n \ Z is A
1-connected.

Proof: By [MV99, Corollary 2.3.22], it suffices to show that

π0(SingA
1

• (An \ Z)(R)) = 0

for any henselian local ring R: This implies that a local and fibrant replacement
of SingA1

• (An \Z)(R) is A
1-connected, but this is equivalent to a local and fibrant

replacement of A
n \ Z.
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Now let a morphism SpecR→ A
n\Z be given. Interpreting the space A

n\Z as
a toric variety and using the description via ∆-collections, such a morphism is given
by n elements f1, . . . , fn ∈ R no (n − 1)-element subset of which has a common
zero. Let fi be the element with the lowest index such that fi is not invertible. Now
fi is a morphism SpecR → A

1, and there is a homotopy from fi to a morphism
f ′

i : SpecR → A
1 which factors through Gm, i.e. f ′

i is invertible. Applying this
homotopy does not change the f1, . . . , fi−1, they thus remain invertible. We can
therefore assume that all fi are invertible.

Using the same homotopy trick as above, we can move f1 by a homotopy
to the constant morphism 1 ∈ R: This is simply composing the morphism f1 :
SpecR→ A

1 with a contraction of A
1. Although this might pass through functions

f which have zeros, the assumption that we have moved all other functions fi to
invertible functions makes sure that the previous homotopy will be a homotopy of
morphisms SpecR → A

n \ Z. This process is then repeatedly applied to all the
functions fi, implying that the morphism (f1, . . . , fn) : SpecR→ A

n\Z we started
with is actually A

1-homotopic (through a chain of elementary A
1-homotopies) to

(1, . . . , 1). �

The Connected Components of X(∆): In the following, we will show that
connectedness of the fan implies A

1-connectedness of the corresponding toric vari-
ety. For non-connected fans, we can split the toric variety into a connected factor
and a torus. This completely describes the connected components of X(∆).

Lemma 4.2 Let N be a lattice, and let ∆ be a regular fan such that span ∆(1) =
N ⊗Z R. Then X(∆) is A

1-connected.

Proof: Analoguous to the proof of Lemma 4.1, it suffices to show

π0(SingA1

• (X(∆))(R)) = 0

for any henselian local ring R.
Now let R be any local ring. We are going to show that SingA

1

• (X(∆)) is
connected in the following steps: (i) deals with the big torus T in X(∆), and (ii)
produces paths from orbits to the torus.

(i) Since ∆ is regular, and the one-dimensional cones ρ ∈ ∆(1) generate N⊗ZR,
there are generators vρ of the cones ρ ∈ ∆(1) which generate N . Let vi1 , . . . , vin

be such a set of generators of N , and consider the fan ∆̃ consisting of the one-
dimensional cones corresponding to the generators vi1 , . . . , vin . This is a subfan of
∆, and we find that the inclusion T → X(∆) factors into the following inclusions
T →֒ X(∆̃) →֒ X(∆). The toric variety X(∆̃) is isomorphic to the complement
of the codimension 2 coordinate subspaces in A

n, and by Lemma 4.1, it is A
1-

connected. Therefore, any two morphisms f0, f1 : SpecR → T → X(∆) can be
connected by a homotopy H : SpecR[t]→ X(∆̃) →֒ X(∆).

(ii) Let f : SpecR → X(∆) be a general morphism. Since SpecR is local,
there is an affine open subset X(σ) such that f factors through the inclusion
X(σ) →֒ X(∆). As in the proof of [DI05, Lemma 5.2 and 5.3], we can split

X(σ) ∼= X(σ′) × G
codim(σ)
m , and there is a homotopy Hσ′ : X(σ′) × A

1 → X(σ′)
with Hσ′(0) = (0, . . . , 0) and Hσ′(1) = id. Composing this homotopy with the
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morphism f : SpecR → X(σ), we can obtain a chain of homotopies from f to a
morphism g : SpecR→ X(σ) which lands in the big torus T.

This implies that for any two morphisms f, g : SpecR→ X(∆), there is a chain
of homotopies connecting them: first move both f and g into the big torus, using
(ii). Then using (i), we can connect f and g. �

In the following, we will occasionally call a fan connected if ∆(1) spans N⊗Z R.

Remark 4.3 A general fan which contains a cone of maximal dimension is also
A

1-connected, since the morphism T →֒ X(∆) factors through an affine toric vari-
ety X(σ), which is contractible, cf. [DI05, Lemma 5.2].

For a simplicial variety, we can embed the torus T into a quotient of X(∆̃), but
it is not clear if this is A

1-connected. It may well be that the group of connected
components in this case is something like a subsheaf of H1

ét
(−, N/N ′) where N is

the lattice in which ∆ lives, and N ′ is the sublattice that is generated by minimal
generators of one-dimensional cones in ∆.

Lemma 4.4 Let ∆ be a regular fan, let N ′ = N ∩ span∆(1) be the sub-lattice of
N generated by ∆. Then there is a splitting

X(∆, N) ∼= X(∆, N ′)×G
rk(N/N ′)
m .

In particular, π0(X(∆, N)) ∼= G
rk(N/N ′)
m , and the inclusion X(∆, N ′) →֒ X(∆, N)

induces isomorphisms

πA
1

n (X(∆, N ′))
∼=
−→ πA

1

n (X(∆, N))

for all n ≥ 1.

Proof: Almost by definition, N/N ′ is free, and there is a sequence of fans

(∆, N ′)→ (∆, N)→ ({0}, N/N ′),

which also has a splitting ({0}, N/N ′) → (∆, N) and therefore the corresponding
sequence of toric varieties has a splitting. This implies the statements about the
homotopy groups.

From Lemma 4.2, the toric variety X(∆′) will be A
1-connected. �

Note that the above statements do not depend on the base being a field.

The Torus Covering Space: In the following, we assume that the fan ∆ is
connected, hence the toric variety X(∆) is A

1-connected.
Recall from [Cox95b] the description of the homogeneous coordinate ring. The

free abelian group of T-equivariant Weil divisors can be identified with Z
∆(1), and

there is a morphism M → Z
∆(1) mapping a rational function χm : T → Gm for

m ∈ M to the divisor div(χm) = −
∑

ρ〈m,nρ〉Dρ in Z
∆(1). Here, the Dρ are the

irreducible T-equivariant Weil divisors corresponding to minimal generators of the
one-dimensional cones ρ ∈ ∆(1). The divisor class group An−1(X(∆)) is then
given by the short exact sequence

0→M → Z
∆(1) → An−1(X(∆))→ 0.

10



The homogeneous coordinate ring is the polynomial ring S = k[xρ | ρ ∈ ∆(1)]. This
ring is An−1(X(∆))-graded by associating to each monomial

∏
ρ x

aρ
ρ the image of

the tuple of powers (a1, . . . , ad) ∈ Z
∆(1) in An−1(X) as its degree.

Using [Cox95b, Proposition 1.1], we can also interpret the homogeneous coor-
dinate ring as ⊕

D∈An−1(X(∆))

H0(X(∆),O(D)).

In this ring, there is one ideal of special interest, which generalizes the “ir-
relevant” ideal in the homogeneous coordinates of projective space. This ideal is
generated by the monomials xσ̂ =

∏
ρ6∈σ(1) xρ.

Note that the Cox ring can also be written as the toric variety associated to
(∆, Z∆(1)), where we replace the lattice N by the lattice which is generated by all
the one-dimensional cones. This will obviously be smooth and quasi-affine, and
can be identified with the Cox ring. For a simplicial fan, this will be a torsor under

the torus G
∆(1)−n
m , where n = rkN .

Lemma 4.5 Let ∆ be a regular fan. Then the following is an A
1-local fibre sequence

Hom(An−1(X(∆)), Gm)→ X(∆, Z∆(1))→ X(∆).

Proof: From homotopy distributivity [Wen07, Corollary 3.1.12], it follows that
we can restrict to affine toric varieties X(σ) →֒ X(∆): Indeed, if

Hom(An−1(X(∆)), Gm)→ X(σ, Z∆(1))→ X(σ)

is a fibre sequence of simplicial presheaves for every cone σ, then the corresponding
homotopy colimit

Hom(An−1(X(∆)), Gm)→ hocolim
σ∈∆

X(σ, Z∆(1))→ hocolim
σ∈∆

X(σ)

is also a fibre sequence of simplicial presheaves with fibre Hom(An−1(X(∆)), Gm).
From the homotopy colimit presentation of toric varieties, it follows that this fibre
sequence is weakly equivalent to the fibre sequence

Hom(An−1(X(∆)), Gm)→ X(∆, Z∆(1))→ X(∆).

The fact that the latter fibre sequence is A
1-local follows by [Wen07, Theorem

4.3.10], since the base scheme S is assumed to be regular, and therefore the clas-
sifying space of the split torus Hom(An−1(X(∆)), Gm) is A

1-local. Note that we
have assumed that ∆ is regular, and therefore An−1(X(∆)) ∼= Pic(X(∆)) is free
abelian of rank ∆(1)− rkN .

From [DG70, Exposé VIII, Proposition 4.1], we obtain conditions when the
above covering is a torsor under a torus: For a regular fan ∆, the description of
X(∆, Z∆(1)) as ⊕

D∈An−1(X(∆))

H0(X(∆),O(D))

implies that Condition (a) in [DG70, Exposé VIII, Proposition 4.1] is satisfied.
Since we are dealing with invertible sheaves, we also have isomorphisms

H0(X(σ),O(D)) ⊗H0(X(σ),O(E)) → H0(X(σ),O(D + E))

11



induced from the isomorphisms O(D)⊗O O(E)
∼=
−→ O(D +E), which is Condition

(b). It then follows that X(∆, Z∆(1)) is a Hom(An−1(X(∆)), Gm)-torsor over X(∆)
and therefore a fibre sequence. �

Remark 4.6 The above can be generalized to simplicial fans ∆. We do not ex-
plicitly need the statement from [Cox95b, Theorem 2.1] that X(∆) is actually the
geometric quotient of X(∆, Z∆(1)). All we need is that X(σ, Z∆(1)) is a torsor un-
der the group Hom(An−1(X(∆)), Gm) over X(σ). For a general base field, one can
give conditions under which X(∆) is the geometric quotient of X(∆, Z∆(1)) under
the Hom(An−1(X(∆)), Gm)-action, cf. [ANHS02].

From Lemma 4.1, we know that X(∆, Z∆(1)) is A
1-connected, and from the

long exact homotopy sequence we obtain an extension of homotopy group sheaves

1→ πA
1

1 (X(∆, Z∆(1)))→ πA
1

1 X(∆)→ Hom(An−1(X(∆)), Gm)→ 1.

It thus suffices to compute the fundamental group πA1

1 (X(∆, Z∆(1))) in terms of
the fan ∆. This is what we will do in the following paragraphs.

Example 4.7 Let N be the lattice generated by e1, . . . , en, and let e0 = −
∑n

i=1 ei.
The fan ∆ given by the cones generated by n-element subsets of {e0, . . . , en} de-
scribes the toric variety X(∆) ∼= P

n. The corresponding fan ∆ in Z
∆(1) consist-

ing of cones generated by n-element subsets of {e0, . . . , en}, and the toric variety
X(∆, Z∆(1)) is isomorphic to A

n+1 \ {0}. In this case, the fibre sequence from
Lemma 4.5 is the usual quotient presentation of projective space:

Gm → A
n+1 \ {0} → P

n.

�

Remark 4.8 The homogeneous coordinate ring which appeared as total space of
the above torus bundle can also be defined for more general schemes. One example
one could look at are the Cox rings of del Pezzo surfaces, which in favourable cases
can also be described by explicit equations. If we can derive a presentation of the
corresponding fundamental group from these equations, similar computations could
be done for del Pezzo surfaces.

The Davis-Januszkiewicz Spaces DJ(∆): As already mentioned, the cellular
presentation of a toric variety X(∆) as a homotopy colimit of tori is not suitable
as input for the van-Kampen theorem. The key idea is to produce for a fan ∆
a simplicial presheaf DJ(∆) whose fundamental group can be computed via the
van-Kampen theorem. On the other hand, these spaces have the property that
they sit in a fibre sequence

X(∆, Z∆(1))→ DJ(∆)→ BG
∆(1)
m ,

which then allows to compute the fundamental group of X(∆, Z∆(1)).
This procedure has been applied in classical algebraic topology, where it was

used e.g. for studying the homotopy type of complements of subspace arrange-
ments, cf. [GT06]. Similar ideas also appear in the computation of the fundamental
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group of a real toric variety, cf. [Uma04]. The definition of the Davis-Januszkiewicz
spaces as a union of classifying spaces of tori was first given by Buchstaber and
Panov, cf. [BP02, Definition 6.27]. The following is an A

1-homotopy version of
their definition:

Definition 4.9 Let ∆ be a fan. We denote by BT the classifying space of the

split torus G
∆(1)
m = Hom(Z∆(1), Gm), which can also be identified with the product

of ∆(1) copies of P
∞. Then we define the Davis-Januszkiewicz space DJ(∆) as

follows: For any cone σ ∈ ∆, we denote by

BT (σ) = {(x1, . . . , xd) ∈ BT | xρ = ∗ if ρ 6∈ σ(1)}

the subsheaf of BT consisting of the copies of BGm in BT indexed by those

ρ ∈ ∆(1) which are not in σ(1). Note that BT (σ) ≃ BG
dim(σ)
m , but we are also

interested in the embedding BT (σ) →֒ BT . Then DJ(∆) is defined as the following
union of classifying spaces of tori:

DJ(∆) =
⋃

σ∈∆

BT (σ) →֒ BT = BG
∆(1)
m .

Example 4.10 Let ∆ be a fan given by the “boundary” of an n-cone. Then
DJ(∆) is the fat wedge W (BGm, . . . , BGm). Examples of such a situation are the
fans presenting the projective spaces P

n−1: there are n cones of dimension (n− 1),
glued together like the boundary of an n-cone. �

Example 4.11 Let ∆ be the fan in Z
n given by the n one-dimensional cones

generated by the ei. Then DJ(K) is the n-fold wedge BGm ∨ · · · ∨BGm. �

Writing both X(∆, Z∆(1)) and DJ(∆) as unions of corresponding subspaces,
we obtain the following:

Proposition 4.12 The following is an A
1-local fibre sequence:

X(∆, Z∆(1))→ DJ(∆)→ BG
∆(1)
m .

Proof: (i) First, let σ be a cone in ∆(k). Then the following is a fibre sequence:

G
∆(1)−k
m → DJ(σ) ≃ BG

k
m → BG

∆(1)
m .

This follows, since the morphism DJ(σ) → BG
∆(1)
m is a product of the identity

BG
k
m → BG

k
m and the base-point inclusion ∗ → BG

∆(1)−k
m . The homotopy fibre

of the former is trivial, whereas for the latter, it is the torus G
∆(1)−k
m .

(ii) From Corollary 3.5, we can translate the description of DJ(∆) as a union
of BT (σ) into a description as a homotopy colimit.

The space X(∆, Z∆(1)) can also be presented as a union: All the cones of
X(∆, Z∆(1)) lie in the positive orthant, therefore we have an open immersion
X(∆, Z∆(1)) →֒ A

∆(1). Then X(∆, Z∆(1)) can be written as the following union
inside A

∆(1):
X(∆, Z∆(1)) =

⋃

σ∈∆

T (σ),
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where T (σ) = {(x1, . . . , xd) ∈ A
∆(1) | xρ 6= 0 if ρ ∈ σ(1)}. Note that the latter is

exactly the description of the irrelevant ideal in the homogeneous coordinate ring
of [Cox95b]. Using Corollary 3.5 again, we can also translate this presentation of
X(∆, Z∆(1)) into a homotopy colimit presentation. Note that the index categories
of the corresponding homotopy colimit presentations for DJ(∆) and X(∆, Z∆(1))
are the same.

(iii) Puppe’s theorem for simplicial presheaves, cf. [Wen07, Proposition 3.1.16],
now implies that the homotopy fibre of the morphism

DJ(∆) ≃ hocolim
σ1,σ2,σ3∈∆

BT (σ1 ∩ σ2 ∩ σ3)→ BG
∆(1)
m

is the homotopy colimit of the corresponding fibres:

X(∆, Z∆(1)) ≃ hocolim
σ1,σ2,σ3∈∆

T (σ1 ∩ σ2 ∩ σ3).

Thus we have established the following fibre sequence of simplicial presheaves:

X(∆, Z∆(1))→ DJ(∆)→ BG
∆(1)
m .

(iv) Since the base scheme S is regular, the classifying space BG
∆(1)
m is A

1-local.
Using [Wen07, Theorem 4.3.10], the fibre sequence from (iii) is then an A

1-local
fibre sequence of simplicial presheaves. �

Example 4.13 Let ∆ be the fan presenting P
n. Then the fan ∆ in Z

∆(1) describes
the toric variety A

n+1 \ {0}. The A
1-local fibre sequence from Proposition 4.12 is

then

A
n+1 \ {0} ≃ Gm ∗ · · · ∗Gm →W (BGm, . . . , BGm)→ BGm × · · · ×BGm,

where the dots signify n + 1 copies of the spaces involved. �

Example 4.14 Similarly, for the fan consisting of n one-dimensional cones in Z
n,

we obtain the following fibre sequence:

A
n \ Z → BGm ∨ · · · ∨BGm → BGm × · · · ×BGm.

In the above, the space Z is the union of the codimension two coordinate planes
given by {xi = 0, xj = 0} for i 6= j and i, j ∈ {1, . . . , n}. �

For the Davis-Januszkiewicz spaces, we can use the van-Kampen theorem to
compute their fundamental groups:

Proposition 4.15 Let ∆ be a fan. Then the A
1-fundamental group of DJ(∆) is

given as follows:

πA1

1 (DJ(∆)) ∼= LA1

(
⋆ρ∈∆(1)Gm(U)/R

)
,

where L1
A

is the A
1-localization functor on the category of sheaves of groups, and

associates to each sheaf of groups a stronlgy A
1-invariant sheaf of groups, and R

is the subgroup generated by commutators

(u1, ρ1)(u2, ρ2)(u
−1
1 , ρ1)(u

−1
2 , ρ2)

whenever ρ1 and ρ2 span a cone η ∈ ∆(2).
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Proof: We can apply the van-Kampen theorem to the description of DJ(∆) given
in Definition 4.9. It follows that we have a colimit presentation

⋆
A1

i,j π
A1

1 (BT (σi ∩ σj)) ⇉ ⋆
A1

i πA1

1 (BT (σi))→ πA1

1 (DJ(∆))→ 1.

The fundamental group sheaves appearing in the above are

πA
1

1 (BT (σi))(U) =
∏

ρ∈σi(1)

Gm(U).

We consider the presheaf of groups π1(DJ(∆)), whose sections over a smooth
scheme U over S are given by the free product of the groups

∏
ρ∈σi(1)

Gm(U), with
relations given by the inclusions

∏
ρ∈σ(1) Gm(U) →֒

∏
ρ∈τ(1) Gm(U) for an inclusion

of cones σ < τ .
We can give an alternative presentation of the above groups, by defining a

group W (U,∆) as the following graph product of groups: The graph has vertices
ρ ∈ ∆(1) and edges η ∈ ∆(2), and the groups associated to each vertex are copies
of Gm(U). The group W (U,∆) has as elements the words

(u1, ρ1)(u2, ρ2) · · · (un, ρn), ui ∈ Gm(U), ρi ∈ ∆(1),

which are subject to the relations (ui, ρi)(uj , ρj) = (uj , ρj)(ui, ρi) whenever ρi and
ρj span a cone η in ∆(2).

We describe morphisms between these presentations: Let (a1, σ1) · · · (an, σn)
be a word in π1(DJ(∆)). We map every tuple (ai,1, . . . , ai,k) ∈

∏
ρ∈σi(1)

Gm(U) to
the word (ai,1, ρ1) · · · (ai,k, ρk) in the graph product W (U,∆). This is well-defined,
since the relations in π1(DJ(∆)) come from inclusions of cones τ < σ, and all
we need to check is that (a, τ) and (b, σ) commute if τ < σ. This indeed holds,
since also in the graph product, all the elements (ai, ρi) for ρi ∈ σ(1) commute by
definition.

There is a morphism in the other direction as well: Let (a1, ρ1) · · · (an, ρn) be
a word in the graph product W (U,∆). There are copies of Gm in the presentation
of π1(DJ(∆)) for every one-dimensional cone, so (a1, ρ1) · · · (an, ρn) can be inter-
preted also as a word in π1(DJ(∆)). We only need to check that (ai, ρi) and (aj , ρj)
commute in π1(DJ(∆)) if ρi and ρj span a cone in ∆. But then there is a copy
of Gm × Gm in the presentation of π1(DJ(∆)), and inclusions Gm → Gm × Gm.
Evaluating the word (ai, ρi)(aj , ρj)(a

−1
i , ρi)(a

−1
j , ρj) in Gm × Gm, it is equal to

(1, 1), therefore (ai, ρi) and (aj, ρj) commute in π1(DJ(∆)) and the morphism of
groups is well-defined.

Finally, it is easy to check that the above morphisms are inverses of each other,
and therefore π1(DJ(∆))(U) and W (U,∆) are isomorphic groups.

The above identification is an identification for groups, which is compatible
with the restriction morphisms. This follows since the diagram over which we take
the colimit of the groups is always the same, only the group changes along the
morphism Gm(U) → Gm(V ). This implies that the two presheaves we can write
down for the two different presentations are the isomorphic. The same then follows
for their sheafifications.

This means that the fundamental group sheaf we computed with the van-
Kampen theorem is the graph product in the category of sheaves of groups ap-
pearing in the statement of the proposition. The A

1-local fundamental group
πA1

1 (DJ(∆)) is then the A
1-localization of the non-local fundamental group. �
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Remark 4.16 Note that the fundamental group of a real toric variety also has a
graph product presentation, cf. [Uma04, Proposition 2.3]. The only change is that
instead of the group of units Gm(R), one uses the group Z/2Z = π0(Gm(R)).

Corollary 4.17 Under the assumptions of Proposition 4.15, the A
1-fundamental

group of X(∆, Z∆(1)) is given as follows:

πA1

1 (X(∆, Z∆(1))) ∼= ker
(
πA1

1 (DJ(∆))→ G
∆(1)
m

)

Moreover, the sheaf of groups πA1

1 (X(∆, Z∆(1))) is the commutator subgroup sheaf
of πA1

1 (DJ(∆)).

Proof: From Proposition 4.12, we have the A
1-local fibre sequence

X(∆, Z∆(1))→ DJ(∆)→ BG
∆(1)
m ,

and the associated long exact homotopy sequence is

· · · → πA1

2 (BG
∆(1)
m )→ πA1

1 (X(∆, Z∆(1)))→ πA1

1 (DJ(∆))→

→ πA1

1 (BG
∆(1)
m )→ πA1

0 (X(∆, Z∆(1)))→ · · ·

From Lemma 4.1, we know that πA1

0 (X(∆, Z∆(1))) = 0, and the homotopy groups

of BG
∆(1)
m are given by

πA1

n (BG
∆(1)
m )(U) =





Pic(U)∆(1) n = 0

G
∆(1)
m n = 1

0 otherwise,

cf. [MV99, Proposition 4.3.8]. The presentation given in the corollary follows from
this.

The remark on commutator subgroups can be seen as follows: The morphism

πA1

1 (DJ(∆))→ G
∆(1)
m is the morphism of graph products induced by the inclusion

of the graph (∆(1),∆(2)) into the clique on ∆(1). Including more edges means

that more commutators are factored out, and therefore the group sheaf G
∆(1)
m is

the maximal abelian quotient of the graph product πA
1

1 (DJ(∆)). �

Some Corollaries: We first note that even without being able to explicitly
compute the A

1-localization of the above graph product, we can still state the
following corollary:

Corollary 4.18 Let ∆ be a connected regular fan. Then the motivic fundamental
group πA

1

1 (X(∆)) only depends on the graph whose vertices are the elements of ∆(1)
and whose edges are the elements of ∆(2).

The description of the fundamental group of the homogeneous coordinate ring
X(∆, Z∆(1)) allows to give conditions when it is simply connected. In this case,
X(∆, Z∆(1)) is exactly the universal covering of X(∆).

The basic condition is a codimension conditions: It turns out that the homo-
geneous coordinate ring is simply connected if the codimension of the irrelevant
ideal is strictly greater than 2. This condition has also been obtained by Asok and
Doran in [AD07].
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Corollary 4.19 Let ∆ be a connected regular fan such that the following holds:
For any two vi, vj ∈ ∆(1), the cone generated by vi and vj is in ∆(2). Then we
have an isomorphism

πA
1

1 (X(∆)) ∼= G
∆(1)−n
m ,

where n = rkN . The universal covering of X(∆) is then given by X(∆, Z∆(1)).

Proof: By Lemma 4.5, it suffices to show that X(∆, Z∆(1)) is simply connected.
From the assumptions it follows that the graph product is indexed by a clique, and
therefore reduces to a direct product of commutative groups. Therefore

πA
1

1 (DJ(∆)) ∼= LA1

( ∏

ρ∈∆(1)

Gm

)
∼=

∏

ρ∈∆(1)

Gm,

with the morphism πA1

1 (DJ(∆))→ BG
∆(1)
m being the identity. Corollary 4.17 then

implies that X(∆, Z∆(1)) is simply connected. �

Note that the above corollary does not use the A
1-local van-Kampen theorem.

We only use that the simplicial fundamental group of the Davis-Januszkiewicz
space can be computed to be a torus, which is already A

1-local.

Example 4.20 The space A
n \{0} is a model of the join Gm ∗ · · · ∗Gm of n copies

of Gm, cf. Example 4.10. If n ≥ 3, then Proposition 4.15 implies that

πA1

1 (W (BGm, . . . , BGm)) ∼= πA1

1 (BGm × · · · ×BGm).

From Corollary 4.17, we find that A
n \{0} is simply connected for n ≥ 3. Note

again that this statement holds in general, i.e. for a general regular base scheme
S, the scheme A

n
S \ {0} is simply connected for any n ≥ 3.

Over a field, we can also see that A
n \ {0} is simply connected by applying the

A
1-connectivity theorem to the obviously (n − 2)-connected model Σn−1

s G
∧n
m . �

Remark 4.21 The condition in Corollary 4.19 for X(∆, Z∆(1)) to be simply con-
nected is one of the conditions given in [Uma04, Theorem 1.1] under which the
fundamental group π1(X(∆)(R)) of a real toric variety is abelian. The other con-
dition can not be generalized as easily: its proof uses the fact that Z/2Z∗Z/2Z ∼= Z.

Note however that at least in the case of A
2 \ {0} the conclusion still obtains:

It follows from the work of Morel that the fundamental group of A
2 \{0} is abelian,

in fact equal to the abelian group KMW
2 .

In Corollary 4.17 above, we identified the group πA1

1 (A2 \ {0}) as the commu-
tator subgroup of Gm ∗ Gm, and we therefore find that the commutator subgroup
sheaf of Gm ∗A1 Gm is in fact abelian.

5 Some Wedge Decompositions

In this section, we want to describe some homotopy splittings of spaces appearing
frequently when dealing with toric varieties. First, we repeat the probably well-
known decomposition of suspensions of products of simplicial presheaves. Then we
show how a simplicial presheaf version of Ganea’s theorem can be used to describe
the homotopy groups of suspensions of tori. Finally, we note that certain for certain
toric varieties, the Cox ring can be decomposed into a wedge of spheres.
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Suspensions of Tori:

Lemma 5.1 Let X1, . . . ,Xn be simplicial presheaves. Then there is a weak equiv-
alence

Σ(X1 × · · · ×Xn) ≃

n∨

k=1

( ∨

1≤i1<···<ik≤n

ΣXi1 ∧ · · · ∧Xik

)
.

Proof: For two pointed spaces X and Y , there is a weak equivalence

Σ(X × Y ) ≃ ΣX ∨ ΣY ∨ (ΣX ∧ Y ).

This is a consequence of the same fact for simplicial sets, by checking on points,
cf. [Mor06, p. 78]: The cofibre sequence X ∨ Y → X × Y → X ∧ Y splits after
one suspension, using the co-H-group structure of Σ(X × Y ).

The rest of the statement follows by induction. �

Corollary 5.2 The homotopy type of the suspension of a split torus ΣG
n
m is

given by

ΣG
n
m ≃

n∨

k=1

(
n

k

)
Sk+1,k.

Ganea’s Theorem: For a computation of the fundamental group of the suspen-
sion of a torus, the following version of Ganea’s theorem is however much more
suitable. A proof of this proposition can be found in [Wen07].

Proposition 5.3 Let X be a simplicial presheaf on a site T , and let Lf be a
localization functor. Then the following is an f -local fibre sequence:

ΣΩLfX → LfX ∨ LfX → LfX.

Similarly, there is a fibre sequence

ΩLfX ∗ΩLfY → LfX ∨ LfY → LfX × LfY.

Corollary 5.4 Let S be a regular scheme. Then there is an A
1-local fibre se-

quence
ΣΩBG

n
m ≃ ΣG

n
m → BG

n
m ∨BG

n
m → BG

n
m.

The conclusion still obtains for a general group T of multiplicative type over a field
k of characteristic zero.

Consequently, we have the following presentation of the fundamental group of
ΣG

n
m:

πA
1

1 (ΣG
n
m) = ker((Gn

m ∗A1 G
n
m)→ G

n
m).

Note that the problem at the moment is that we are not yet able to com-
pute even simple things like free products in the category of strongly A

1-invariant
sheaves of groups. Describing the corresponding usual colimits of the sheaf of
groups above therefore only gives non-local models for the corresponding motivic
fundamental groups.
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Suspensions of tori can be realized be toric varieties. One way to see this is
via the fibre sequence above: we presented the suspension of the torus G

n
m as

homotopy fibre:
ΣG

n
m → BG

n
m ∨BG

n
m → BG

n
m.

The morphism BG
n
m ∨ BG

n
m → BG

n
m is not exactly like the morphisms we could

interpret as DJ(∆)→ BG
n
m. However, the fibre sequence

G
n
m ∗G

n
m → BG

n
m ∨BG

n
m → BG

n
m ×BG

n
m

can be interpreted as being realized by toric varieties. The homotopy fibre G
n
m∗G

n
m

is the toric variety given by the following fan: Let N be a lattice of rank n, and let
the fan ∆ consist of two n-cones in N×N , namely the ones generated by e1, . . . , en

resp. by en+1, . . . , e2n. Then we also have BG
n
m ∨ BG

n
m ≃ DJ(∆). To obtain the

homotopy type of ΣG
n
m, we consider the fibre sequence

ΩX ∗ΩX → ΣΩX → X,

for the special case of X ≃ BG
n
m. Then there is an associated fibre sequence

G
n
m → G

n
m ∗G

n
m → ΣG

n
m,

which is extended from the previous one by a loop space on the left. Therefore,
the toric variety having ΣG

n
m as homotopy type is presented by the fan ∆ in N

consisting of the two cones 〈e1, . . . , en〉 and 〈−e1, . . . ,−en〉.
Another way to describe the fan realizing ΣG

n
m is the following: The suspension

is the homotopy colimit of the diagram ∗ ← G
n
m → ∗. In the A

1-local category,
we can choose a suitable cofibrant resolution of this diagram as A

n ← G
n
m → A

n.
Then we take the ordinary colimit, glueing the two copies of A

n along G
n
m. This is

also exactly the description of the toric variety described in the previous paragraph.
Note also, that the above fibre sequence provides yet another presentation of

the fundamental group of ΣG
n
m: The long exact sequence for the torus bundle over

ΣG
n
m looks as follows:

1→ πA1

1 (Gn
m ∗G

n
m)→ πA1

1 (ΣG
n
m)→ G

n
m → 1.

Here, we have already made the identifications πA1

1 (Gn
m) = 1, πA1

0 (Gn
m) ∼= G

n
m and

πA1

0 (Gn
m∗G

n
m) ∼= 1. This is very close to the presentation of the fundamental group

of P
1 as an extension of Gm by the unramified Milnor-Witt K-group sheaf KMW

2 .
We shortly explain how the above description of the suspension of a torus can

be used to describe sheaves of groups, whose A
1-localizations are the fundamental

groups of Sn+1,n-spheres. On the one hand, we have an explicit sheaf of groups
modelling the fundamental group of a suspended torus:

π1(ΣG
n
m) ∼= ker

(
G

n
m ∗G

n
m → G

n
m

)
.

For a smooth scheme U , the sections of π1(ΣG
n
m) can be described as words

(a1, b1, . . . , an, bn) of n-tuples of units ai, bi ∈ G
n
m(U) such that the elementwise

product a1b1 · · · anbn = (1, . . . , 1). On the other hand, we have produced a wedge
decomposition

ΣG
n
m ≃

n∨

k=1

(
n

k

)
Sk+1,k.
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Note that in particular, there is only one copy of the highest-dimensional sphere
Sn+1,n in ΣG

n
m. Moreover, we can cover the subspace

n−1∨

k=1

(
n

k

)
Sk+1,k →֒ ΣG

n
m ≃

n∨

k=1

(
n

k

)
Sk+1,k

by n copies of ΣG
n−1
m . This follows by using the decomposition Σ(Gn−1

m ×Gm) ≃
ΣG

n−1
m ∨ ΣGm ∨ (ΣG

n
m ∧ Gm) inductively as in Lemma 5.1. The morphisms in-

duced on π1 by the inclusions ΣG
n−1
m →֒ ΣG

n
m are given by mapping the word

(a1, b1, . . . , an, bn) of (n − 1)-tuples of units ai, bi ∈ G
n−1
m (U) to the associated

word (a′1, b
′
1, . . . , a

′
n, b′n) of n-tuples of units a′i, b

′
i ∈ G

n
m(U), where

a′i = (ai,1, ai,2, . . . , 1, . . . , ai,n−1)

and the 1 is inserted at the k-th place. If the word (a1, b1, . . . , an, bn) in π1(ΣG
n−1
m )

is in the kernel of the fold map, then obviously the word (a′1, b
′
1, . . . , a

′
n, b′n) will

also be in the kernel of the fold map.
We finally apply the van-Kampen theorem to the cofibre sequence

n−1∨

k=1

(
n

k

)
Sk+1,k →֒ ΣG

n
m ≃

n∨

k=1

(
n

k

)
Sk+1,k → Sn+1,n,

and we find that the simplicial fundamental group of Sn+1,n can be described as
the quotient of the group sheaf

π1(ΣG
n
m) ∼= ker

(
G

n
m ∗G

n
m → G

n
m

)
.

by the normal subgroups generated by the n-tuples of units having at least one 1
in them.

This sheaf of groups is not strongly A
1-invariant in general: In the case of the

S3,2-sphere, the above description yields the quotient of ker(G2
m ∗ G

2
m → G

2
m) by

the normal subgroups generated by pairs of units (a, 1) resp. (1, a). This can
be identified with the commutator subgroup of ker(Gm ∗ Gm → Gm) by map-
ping the pair (a, b) to the commutator aba−1b−1. However, by the work of Morel
[Mor06], we know that the A

1-localization of the above sheaf of groups is actually
abelian, and equal to the unramified Milnor-Witt K-group sheaf KMW

2 . It there-
fore seems reasonable to conjecture that the A

1-local fundamental groups of the
spheres Sn+1,n can be described in a similar way like Milnor-Witt K-theory, but
with the multiplicative group Gm replaced by an n-fold direct product of Gm and
suitably adjusted relations.

After that short digression on the homotopy groups of spheres, we will describe
one particular homotopy decomposition for a toric variety. This is again an example
of a topological result that carries over directly to the A

1-homotopy world, only a
slight adjustment in the motivic indexing of the spheres involved is needed. The
following result was proven in [GT06] for the case of topological spaces. The proof
proceeds along the same lines as in the above reference.

Proposition 5.5 Let X1, . . . ,Xn be simplicial presheaves on a site T , and let Lf

be a localization functor. Then there is a fibre sequence

Fn → LfX1 ∨ · · · ∨ LfXn → LfX1 × · · · × LfXn,
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where the homotopy fibre Fn admits the following wedge decomposition

Fn ≃

n∨

k=2

( ∨

1≤i1<···<ik≤n

(k − 1)(ΣΩLfXi1 ∧ · · · ∧ ΩLfXik)
)
.

Proof: We proceed by induction on n, the base case being n = 2. Then F2
∼=

ΣΩLfX1 ∧ ΩLfX2, and the above is a fibre sequence by Proposition 5.3.
The following arguments are similar to those of [GT06], since we only compute

in the non-local category of simplicial presheaves, where all the homotopy distribu-
tivity tools are available. Now assume the proposition holds for Fn−1 with n ≥ 3.
For any k ≤ n, we denote Mk = LfX1 ∨ · · · ∨LfXk and Nk = LfX1× · · · ×LfXk.
Then Mn = Mn−1∨LfXn. We plan to apply Puppe’s theorem [Wen07, Proposition
3.1.16] to the following diagram of fibre sequences:

Fn−1 × ΩLfXn

��

ΩNn
//

��

oo ΩNn−1

��

Mn−1

��

∗oo //

��

LfXn

��

Nn Nn =
//

=
oo Nn.

The vertical arrow sequences are fibre sequences, and we want to take the pushouts
of the horizontal diagrams. This yields a fibre sequence

(Fn−1 × ΩLfXn) ∪h
ΩNn

ΩNn−1 →Mn−1 ∨ LfXn = Mn → Nn,

where the homotopy fibre is Fn. Therefore we have a homotopy pushout diagram:

ΩNn−1 × ΩLfXn
h //

g

��

Fn−1 × ΩLfXn

��

ΩNn−1
// Fn.

As described in [GT06], the morphism g is the product projection and h ≃ ∗ ×
idΩLfXn . Then [GT06, Lemma 2] also goes through, since this lemma is only
concerned with homotopy colimits. Alternatively, the lemma can be proved by
looking at the points of the site. Therefore Fn ≃ (ΩNn−1 ∗ ΩLfXn) ∨ (Fn−1 ⋊

ΩLfXn). Furthermore, by inductive assumption, Fn−1 is a wedge of suspensions,
therefore the cofibre sequence Fn−1 → Fn−1 ⋊ΩLfXn → Fn−1∧ΩLfXn splits, and
we have Fn−1 ⋊ ΩLfXn ≃ Fn−1 ∨ (Fn−1 ∧ΩLfXn). Putting together Lemma 5.1,
the decomposition of Fn−1, we get the required decomposition of Fn.

Finally, the fibre sequence is an A
1-local fibre sequence, since it has a local base.

Therefore, the decomposition holds also A
1-locally, because localization commutes

with homotopy colimits. �

Corollary 5.6 The scheme A
n \ Z, where Z is the union of all codimension 2

coordinate subspaces, is weakly A
1-equivalent to the following wedge of spheres:

n∨

k=2

(k − 1)

(
n

k

)
Sk+1,k.
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This corollary is an A
1-homotopy version of a result obtained by Grbić and

Theriault, cf. [GT06].

Corollary 5.7 Let ∆ be a regular fan. Let ∆′
1, . . . ,∆

′
n be a decomposition of ∆

into subfans of ∆ generated by the connected components of the graph (∆(1),∆(2)).
Then there is a homotopy decomposition

X(∆, Z∆(1)) ≃
∨

k=2

( ∨

1≤i1<···<ik≤n

(k − 1)(ΣΩDJ(∆′
i1) ∧ · · · ∧ΩDJ(∆′

ik
))

)
.

Note that the assertion about the homotopy type of A
n \ Z above is a special

case of the latter corollary. For a fan given by a set of cones which only intersect
in (0), the spaces ΩDJ(∆′

i) are again tori, whence several interesting homotopy
types can be realized by toric varieties. Note that there are other general conditions
under which complements of complex subspace arrangements split as a wedge of
spheres, cf. [GT06]. These conditions could also be carried over to the motivic
setting.

Finally, we want to note that in case all the above spaces ΩDJ(∆) are actu-
ally tori, the corresponding real realization X(∆, Z∆(1))(R) is aspherical. General
conditions for this to happen have been given in [Uma04]. However, there seems
to be no general structure result as yet to describe the motivic homotopy types of
X(∆, Z∆(1)) for ∆ a flag-like fan. The fan describing P

1×P
1 provides an example

of a flag-like fan such that X(∆, Z∆(1)) does not split as a wedge of spheres.
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