Übungen zu Lineare Algebra II – Blatt 10 BONUS

Aufgabe 1 (1 + 2 + 2 Punkte). Seien $A' \hookrightarrow A \twoheadrightarrow A''$ und $B' \hookrightarrow B \twoheadrightarrow B''$ kurze exakte Sequenzen von Gruppen und sei gegeben ein Homomorphismus von Sequenzen

$$A' \stackrel{\frown}{\longrightarrow} A \xrightarrow{\longrightarrow} A''$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$

$$B' \stackrel{\frown}{\longrightarrow} B \xrightarrow{\longrightarrow} B''$$

Man zeige:

- (a) Ist g injektiv, dann ist f auch injektiv.
- (b) Ist g ein Isomorphismus und f surjektiv, so ist h injektiv.
- (c) Sind f und h beide surjektiv, so ist g auch surjektiv.

Aufgabe 2 (3 Punkte). Sei $x \in \mathbb{R}^3 \otimes \mathbb{R}^2$ der Vektor

$$x = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$$

Kann x als Summe zwei "einfacher Tensorelemente" $v \otimes w + v' \otimes w'$ ausgedrückt werden? Und als ein einziges "einfaches Tensorelement" $v \otimes w$?

Aufgabe 3 (2 Punkte). Sei $V' \stackrel{f}{\hookrightarrow} V \stackrel{g}{\twoheadrightarrow} V''$ eine kurze exakte Sequenz von Vektorräumen über k, und sei W ein weiterer Vektorraum über k. Man zeige, dass die folgende Sequenz auch exakt ist:

$$V' \otimes W \xrightarrow{f \otimes \mathrm{id}} V \otimes W \xrightarrow{g \otimes \mathrm{id}} V'' \otimes W$$

Aufgabe 4 (3 Punkte). Gegeben ein Endomorphismus $f \in \text{End } V$ eines Vektorraums mit $f \otimes f = \text{id}$ in $\text{End}(V \otimes V)$ gilt $f = \pm \text{id}$.

Aufgabe 5 (3 Punkte). Gegeben ein Körper K und endlichdimensionale K-Vektorräume V, W und Endomorphismen $f \in \text{End } V$ und $g \in \text{End } W$ gilt

$$\operatorname{tr}(f \otimes g) = \operatorname{tr}(f)\operatorname{tr}(g)$$

Abgabefrist: Donnerstag, den 16. Juli um 8.00 Uhr.