Übungen zu Darstellungstheorie – Blatt 11

Aufgabe 1 (4 Punkte). Sei $\mathfrak{g} = \mathfrak{sl}(3; \mathbb{C})$.

- (i) Man bestimme das Casimir-Element $C \in U(\mathfrak{g})$.
- (ii) Man berechne das Bild von C unter das Harish-Chandra Homomorphismus, und man prüfe nach, dass es invariant ist unter der Dot-Wirkung der Weylgruppe.

Aufgabe 2 (4 Punkte). Man zeige: Das Zentrum von $U(\mathfrak{gl}(n;\mathbb{C}))$ ist der Polynomring, der erzeugt wird von den Elementen c_1, \ldots, c_n mit

$$c_i = \sum_{\nu : \mathbb{Z}/i\mathbb{Z} \to \{1,\dots,n\}} E_{\nu(0)\nu(1)} E_{\nu(1)\nu(2)} \cdots E_{\nu(i-1)\nu(i)}.$$

Insbesondere ist $c_1 = E_{11} + E_{22} + \cdots + E_{nn}$ die Einheitsmatrix in $\mathfrak{gl}(n;\mathbb{C})$ und c_2 ist der Casimiroperator zu einer geeigneten Bilinearform auf $\mathfrak{gl}(n;\mathbb{C})$.

(Hinweis: Man prüfe zuerst nach, dass die Elemente c_i im Zentrum liegen. Folgere man dann aus dem Harish-Chandra Isomorphismus, dass sie das ganze Zentrum erzeugen.)

Aufgabe 3 (4 Punkte). Für $A \in \mathfrak{gl}(n;\mathbb{C})$ sei $p_A(t) = (-1)^n t^n + f_1(A) t^{n-1} + \cdots + f_n(A)$ ihr charakteristiches Polynom, wobei $f_1 = (-1)^{n+1}$ tr und $f_n = \det$. Man zeige, dass $\mathcal{O}(\mathfrak{gl}(n;\mathbb{C}))^{\mathrm{GL}(n;\mathbb{C})}$ ein Polynomring ist in f_1, \ldots, f_n .

Aufgabe 4 (4 Punkte). Gegeben eine alternierende Matrix $A \in \operatorname{Mat}(2n; \mathbb{C})$ alias eine Matrix mit $A = -A^{\top}$ definieren wir die zugehörige alternierende Bilinearform $\omega_A \in \bigwedge^2(\mathbb{C}^{2n})^*$ durch $\omega_A(v, w) = v^{\top}Aw$. Die n-te äußere Potenz $\omega_A^{(n)} \in \bigwedge^{2n}(\mathbb{C}^{2n})^*$ von ω_A ist bestimmt durch die Vorschrift

$$\omega_A^{(n)}(v_1,\ldots,v_{2n}) = \sum_{\sigma \in P} \operatorname{sgn}(\sigma)\omega_A(v_{\sigma(1)},v_{\sigma(2)})\cdots\omega_a(v_{\sigma(2n-1)},v_{\sigma(2n)})$$

mit $P \subseteq S_{2n}$ der Menge aller Permutationen σ von $\{1, \ldots, 2n\}$ mit den Eigenschaften $\sigma(2i-1) < \sigma(2i)$ für alle i und $\sigma(1) < \sigma(3) < \cdots < \sigma(2n-1)$. Man definiert nun die **Pfaff'sche Determinante** Pf(A) durch die Identität

$$\omega_A^{(n)} = \operatorname{Pf}(A) \det$$

im eindimensionalen Raum $\bigwedge^{2n} (\mathbb{C}^{2n})^*$.

(i) Man zeige für $B \in \text{Mat}(2n; \mathbb{C})$ die Gleichung

$$Pf(B^{\top}AB) = det(B) Pf(A).$$

- (ii) Weiter zeige man $\operatorname{Pf}(S) = 1$ für $S \in \operatorname{Mat}(2n; \mathbb{C})$ die blockdiagonale Matrix mit n Blöcken $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ und folgere $\operatorname{Pf}(A)^2 = \det(A)$.
- (iii) Man folgere, dass $\mathrm{Pf} \in \mathcal{O}(\mathfrak{so}(2n;\mathbb{C}))^{\mathrm{SO}(2n;\mathbb{C})}$ aber $\mathrm{Pf} \notin \mathcal{O}(\mathfrak{so}(2n;\mathbb{C}))^{\mathrm{O}(2n;\mathbb{C})}$.
- (iv) Man zeige, dass als Elemente von $\mathcal{O}(\mathfrak{so}(2n;\mathbb{C}))$ gilt $f_i = 0$ für alle ungerade i (vgl. Aufgabe 3).
- (v) Es folgt: $\mathcal{O}(\mathfrak{so}(2n;\mathbb{C}))^{SO(2n;\mathbb{C})}$ ist echt größer ist das Erzeugte von den f_{2i} , $i=1,\ldots,n$.

Hinweis: Es kann nützlich sein, zu wissen, dass die symmetrischen Polynome in n Veränderlichen x_1, \ldots, x_n ein Polynomring sind in den Potenzensummen $p_i = x_1^i + \cdots + x_n^i$ (Aufgabe 2) oder alternativ in den elementaren symmetrischen Polynomen e_i (Aufgabe 3) für $i = 1, \ldots, n$.

Abgabefrist: Donnerstag, den 14. Juli.