Übungen zu Analysis III – Blatt 11

Aufgabe 1 (4 Punkte). (i) Man berechne die Fourierreihe von $f: [0, 2\pi] \to \mathbb{R}, f(x) = x$.

(ii) Man folgere die Gleichung

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Aufgabe 2 (2 Punkte). Sei $(v_i)_{i\in I}$ eine summierbare Familie von Vektoren eines normierten Vektorraums V mit $s = \sum_{i\in I} v_i$. Man zeige, dass es eine höchstens abzählbare Teilmenge $J\subseteq I$ gibt, mit $v_i=0$ für alle $i\notin J$.

Aufgabe 3 (2 Punkte). Sei \mathcal{H} ein Hilbertraum und $V \subseteq \mathcal{H}$ ein abgeschlossener Untervektorraum mit Hilbertbasis $(e_i)_{i \in I} \subset V$. Man zeige: die orthogonale Projektion $\mathcal{H} \to V$ wird gegeben durch $v \mapsto \sum_{i \in I} \langle e_i, v_i \rangle e_i$.

Aufgabe 4 (4 Punkte). Gegeben topologische Gruppen G, H zeige man, dass die durch $\chi \mapsto (\chi \circ \operatorname{in}_1, \chi \circ \operatorname{in}_2)$ gegebene Abbildung ein Gruppenisomorphismus $\mathfrak{X}(G \times H) \to \mathfrak{X}(G) \times \mathfrak{X}(H)$ ist. (Hier bezeichnen $\operatorname{in}_1 \colon G \to G \times H$ und $\operatorname{in}_2 \colon H \to G \times H$ die natürlichen Inklusionen.)

Aufgabe 5 (4 Punkte). Sei $U \subseteq \mathbb{R}^2$ eine beschränkte \mathcal{C}^1 -berandete Teilmenge, und sei $\gamma \colon [0, 2\pi] \to \partial U$, $\gamma(t) = (x(t), y(t))$ ein stetig differenzierbarer Weg, der ∂U mit konstanter Geschwindigkeit parametrisiert. Seien $c_{\nu} = \langle e^{i\nu t}, x(t) \rangle$ und $d_{\nu} = \langle e^{i\nu t}, y(t) \rangle$ die Fourier-Koeffizienten von x und y.

(i) Man zeige für die Länge L von ∂U die Gleichung

$$\left(\frac{L}{2\pi}\right)^{2} = \sum_{\nu=-\infty}^{\infty} \nu^{2} \left(|c_{\nu}|^{2} + |d_{\nu}|^{2} \right).$$

(Hinweis: man benutze die Formel für die Fourier-Koeffizienten von x'(t) und y'(t).)

(ii) Mit Hilfe der Green'schen Formel und der Aufgabe 4 auf dem Blatt 10 zeige man für die Fläche A von U die Gleichung

$$A = \pi \sum_{\nu = -\infty}^{\infty} i\nu (\overline{c_{\nu}} d_{\nu} - c_{\nu} \overline{d_{\nu}}).$$

(iii) Man folgere

$$L^{2} - 4\pi A = 2\pi^{2} \sum_{\nu \neq 0} (|\nu c_{\nu} - i d_{\nu}|^{2} + |\nu d_{\nu} + i c_{\nu}|^{2} + (\nu^{2} - 1)(|c_{\nu}|^{2} + |d_{\nu}|^{2})).$$

(iv) Man folgere die **isoperimetrische Ungleichung** $L^2 \geq 4\pi A$, und man zeige, dass die Gleichung $L^2 = 4\pi A$ gilt genau dann, wenn γ ein Kreis ist.