Übungen zu Analysis III – Blatt 9

Aufgabe 1 (3 Punkte). Sei (X, μ) ein Maßraum und sei $f: X \to [0, \infty]$ meßbar. Sei $\phi(t) = \mu(\{x \in X \mid f(x) > t\})$. Man zeige:

$$\int_X f\mu = \int_{[0,\infty)} \phi\lambda,$$

wobei λ das Lebesguemaß ist.

Aufgabe 2 (3 Punkte). Sei (X, μ) ein Maßraum und sei $f: X \to [0, \infty]$ meßbar.

- (i) Für alle $a \in (0, \infty)$ zeige man $\mu(\{x \in X \mid f(x) \ge a\}) \le \frac{1}{a} \int_X f\mu$.
- (ii) Es gilt $\int_X f\mu = 0$ genau dann, wenn f = 0 fast überall (alias, wenn $\mu(\{x \in X \mid f(x) \neq 0\}) = 0$).

Aufgabe 3 (4 Punkte). Gegeben eine meßbare nichtnegative Funktion g auf einem Maßraum (X, \mathcal{M}, μ) mit $\int_X g\mu < \infty$ gibt es für jedes $\epsilon > 0$ ein $\delta = \delta_{\epsilon} > 0$ derart, dass für alle $A \in \mathcal{M}$ gilt

$$\mu(A) < \delta \implies \int_A g\mu < \epsilon.$$

(Hinweis: Es gibt sicher eine meßbare Stufenfunktion $h: X \to [0, \infty)$ mit $h \leq g$ und $\int g\mu < \int h\mu + \epsilon/2$.)

Aufgabe 4 (2 Punkte). Man zeige: ist (X, μ) ein Maßraum und $g: X \to [0, \infty]$ messbar, so erhalten wir ein neues Maß $g\mu$ auf X durch die Vorschrift $(g\mu)(A) = \int_A g\mu$, und für jede weitere meßbare Funktion $f: X \to [0, \infty]$ gilt mit der Konvention $0 \cdot \infty = 0 = \infty \cdot 0$ die Identität von Maßen $(fg)\mu = f(g\mu)$.

Aufgabe 5 (4 Punkte). Sei (X, μ) ein Maßraum und $I \subseteq \mathbb{R}$ halboffen und $f: X \times I \to \mathbb{R}$ eine Abbildung derart, dass $x \mapsto f(x,t)$ integrierbar ist für alle $t \in I$ und $f \mapsto f(x,t)$ differenzierbar für alle $x \in X$. Existiert eine integrierbare Abbildung $g: X \to \mathbb{R}$ mit $g(x) \ge |\partial_t f(x,t)|$ für alle x und t, so ist $x \mapsto \partial_t f(x,t)$ integrierbar für alle t und es gilt

$$\partial_t \int f(x,t) \, \mu \langle x \rangle = \int \partial_t f(x,t) \, \mu \langle x \rangle.$$

(Hinweis: Dominierte Konvergenz und Mittelwertsatz.)

Aufgabe 6 (4 Punkte). Man zeige: Gegeben metrische Räume X, Y mit abzählbaren dichten Teilmengen fällt das Produkt der σ -Algebren der jeweils topologisch meßbaren Mengen zusammen mit der σ -Algebra der topologisch meßbaren Mengen des Produkts, in Formeln

$$Borel(X) \boxtimes Borel(Y) = Borel(X \times Y).$$