Mathematische Logik

Blatt 10

Abgabe: 03.07.2023, 18 Uhr

Aufgabe 1 (3 Punkte).

a) Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ eine (primitiv) rekursive Funktion. Zeigen Sie, dass die Funktion

$$g(x_1,\ldots,x_k,y) = \sum_{z \le y} f(x_1,\ldots,x_k,z)$$

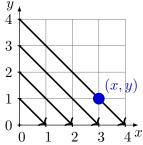
auch (primitiv) rekursiv ist.

b) Zeigen Sie, dass die Teilmenge $A = \{2^k\}_{k \in \mathbb{N}} \subset \mathbb{N}$ primitiv rekursiv ist.

Aufgabe 2 (7 Punkte).

In dieser Aufgabe prüfen wir, dass die in der Vorlesung definierte Abbildung

$$\beta_1^2: \mathbb{N}^2 \to \mathbb{N} \\ (x,y) \mapsto \binom{x+y+1}{2} + x$$
 , bildlich dargestellt als



eine Bijektion von \mathbb{N}^2 nach \mathbb{N} bestimmt, die sogar primitiv rekursiv ist:

- a) Schließen Sie aus der Identität $1+2+\ldots+n=\binom{n+1}{2}=\frac{1}{2}\cdot n\cdot (n+1),$ dass die Funktion β_1^2 injektiv ist.
- b) Zeigen Sie induktiv, dass jedes n aus \mathbb{N} im Bildbereich von β_1^2 liegt. Schließen Sie, dass β_1^2 eine Bijektion ist.
- c) Zeigen Sie, dass β_1^2 primitiv rekursiv ist.
- d) Zeigen Sie, dass die Funktionen $\alpha_1 = \pi_1^2 \circ (\beta_1^2)^{-1}$ und $\alpha_2 = \pi_2^2 \circ (\beta_1^2)^{-1}$ (mit der Notation aus Definition 7.1 im Skript) primitiv rekursiv sind. Insbesondere ist $(\beta_1^2)^{-1} = (\alpha_1, \alpha_2)$ auch primitiv rekursiv.

Hinweis: Es gibt viele mögliche Lösungen. Es kann hilfreich sein zu benutzen, dass $\beta_1^2(x,y) \ge \max\{x,y\}$ gilt und $\Gamma_{\beta_1^2}$ zu betrachten.

(Bitte wenden!)

Aufgabe 3 (4 Punkte).

- a) Sei $f: \mathbb{N} \to \mathbb{N}$ eine rekursive streng monoton steigende Funktion. Zeigen Sie, dass die Teilmenge $f(\mathbb{N})$ von \mathbb{N} rekursiv ist.
- b) Sei $g: \mathbb{N} \to \mathbb{N}$ eine rekursive Funktion mit unendlichem Bildbereich. Zeigen Sie, dass es eine rekursive streng monoton steigende Funktion $h: \mathbb{N} \to \mathbb{N}$ derart gibt, dass $h(\mathbb{N}) \subseteq q(\mathbb{N})$.

Insbesondere folgt hieraus, dass jede unendliche rekursiv aufzählbare Teilmenge A von \mathbb{N} eine rekursive unendliche Teilmenge $B\subseteq A$ besitzt.

Aufgabe 4 (2 Punkte).

Seien A und B rekursiv aufzählbare Teilmengen von \mathbb{N}^k derart, dass $A \cap B$ und $A \cup B$ rekursiv sind. Zeigen Sie, dass A und B beide rekursiv sind.

Bonusaufgabe 5 (2 Bonuspunkte).

Die Fibonacci-Folge ist definiert durch:

$$a_0 = a_1 = 1$$
 und $a_{n+2} = a_{n+1} + a_n$ für $n \ge 2$.

Zeigen Sie, dass die Funktion $n \mapsto a_n$ primitiv rekursiv ist.

Hinweis: Eine Möglichkeit ist die Benutzung der Funktionen α_1 , α_2 und β_1^2 aus Aufgabe 1. Dazu zeigen Sie, dass die Funktion $h(n) = \beta_1^2(a_n, a_{n+1})$ primitiv rekursiv ist und folgern, dass es auch $\alpha_1(h(n))$ ist.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER NACH ÜBUNGSGRUPPE ENTWEDER IM FACH 3.02 ODER 3.03 IM KELLER DES MATHEMATISCHEN INSTITUTS.