PD Dr. Markus Junker Übungen: Charlotte Bartnick

Mathematische Logik

Blatt 4

Abgabe: 15.05.2023, 18 Uhr

Aufgabe 1 (4 Punkte).

In der Sprache $\mathcal{L} = \{c, f, R\}$ mit einem Konstantenzeichen c, einem zweistelligen Funktionszeichen f sowie einem zweistelligen Relationszeichen R betrachten Sie die folgende \mathcal{L} -Formel:

$$\varphi = \left(\forall v_2 \left(Rv_2 v_0 \land \exists v_3 \forall v_1 (fv_3 v_5 \doteq v_3 \rightarrow Rcv_5) \right) \lor \exists v_1 v_2 \doteq ffv_1 cv_5 \right)$$

- a) Welche Vorkommen von Variablen sind frei in φ ? Welche Vorkommen von Variablen in φ sind durch welche Quantoren gebunden?
- b) Welche Variablen in φ sind frei für den Term $\sigma = fv_0 f c v_2$?
- c) Finden Sie eine zu φ logisch äquivalente Formel, in der jeder Quantor eine eigene Individuenvariable hat und alle Individuenvariablen so selten wie möglich vorkommen.
- d) Belegen Sie mit einem Beispiel, dass die Folgerung im Substitutionslemma für die \mathcal{L} -Formel $\psi = \exists v_0 \, v_3 \doteq f v_0 c$ und die Ersetzung v_3 durch σ nicht gilt.

Aufgabe 2 (4 Punkte).

Sei \mathcal{M} eine \mathcal{L} -Struktur. Eine Teilmenge A von M^n heißt definierbar, wenn sie der Form $\{\bar{a} \in M^n \mid (\mathcal{M}, \beta_{\bar{a}}) \models \varphi(v_{i_1}, \dots, v_{i_n})\}$ für eine \mathcal{L} -Formel $\varphi(v_{i_1}, \dots, v_{i_n})$ ist. Hierbei steht \bar{a} für ein n-Tupel (a_1, \dots, a_n) und $\beta_{\bar{a}}$ für die Belegung mit $\beta_{\bar{a}}(i_j) = a_j$ für $j = 1, \dots, n$.

- a) Zeigen Sie, dass die definierbaren Mengen unter endlichen Vereinigungen, endlichen Schnitten und Komplementen abgeschlossen sind.
- b) Zeigen Sie: wenn $A \subseteq M^n$ und $B \subseteq M^k$ definierbar sind, ist es auch $A \times B \subseteq M^{n+k}$.
- c) Ist das Intervall $(0, \infty) \subseteq \mathbb{R}$ in der Struktur $\mathcal{M} = (\mathbb{R}, +_{\mathbb{R}}, -_{\mathbb{R}}, \cdot_{\mathbb{R}}, 0, 1)$ definierbar?

Aufgabe 3 (4 Punkte).

Es seien φ und ψ beliebige \mathscr{L} -Formeln.

- a) Beweisen Sie das folgende Quantorengesetz: $\exists v_i(\varphi \land \psi) \models (\exists v_i \varphi \land \exists v_i \psi)$.
- b) Belegen Sie mit einem Beispiel, dass $(\exists v_i \varphi \land \exists v_i \psi) \not\models \exists v_i (\varphi \land \psi)$.
- c) Falls v_i nicht frei in φ ist, zeigen Sie, dass $\exists v_i(\varphi \land \psi) \sim (\varphi \land \exists v_i \psi)$.
- d) Beweisen die folgende Äquivalenz nur mit Anwendung elementarer Regeln aus dem Skript (hierbei ist $\mathcal{L} = \{P\}$ die Sprache mit einem einstelligen Prädikat):

$$\forall v_0 \exists v_1 \forall v_2 ((Pv_0 \land Pv_1) \rightarrow Pv_2) \sim ((\forall v_0 Pv_0 \land \exists v_1 Pv_1) \rightarrow \forall v_2 Pv_2)$$

(Bitte wenden!)

Aufgabe 4 (4 Punkte).

Eine \mathscr{L} -Formel ist in pr"anexer Normalform, wenn sie der Form $\mathsf{Q}_1v_{i_1}\dots\mathsf{Q}_nv_{i_n}$ ϕ ist, wobei jedes Q_i entweder für \exists oder für \forall steht und ϕ quantorenfrei ist. Dabei heißt ϕ quantorenfrei, wenn die Formel aus atomaren Formeln und Junktoren aufgebaut wurde, d.h. keine Quantoren enthält.

- a) Zeigen Sie: Jede Formel ist logisch äquivalent zu einer Formel in pränexer Normalform. **Hinweis:** Wählen Sie ein vollständiges Junktoren-System (umgehen Sie zumindest \rightarrow und \leftrightarrow), benennen Sie Variablen um wie in Aufgabe 1 c).
- b) Sei $\mathcal{L} = \{c, f, R\}$ die Sprache aus Aufgabe 1 von diesem Blatt. Bringen Sie die folgende Formel in pränexe Normalform:

$$(\exists v_1 f v_2 v_0 \doteq v_1 \to \forall v_3 R v_1 v_3)$$

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter nach Übungsgruppe entweder im Fach 3.02 oder 3.03 im Keller des mathematischen Instituts.