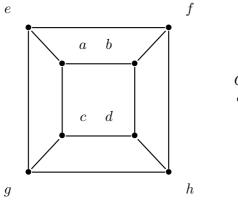
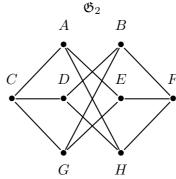
Übungen zur Vorlesung Mathematische Logik

SS 2009, Blatt 6

Aufgabe 1. Sei $S := \{E\}$ mit zweistelligem E; \mathfrak{G}_1 und \mathfrak{G}_2 seien die Graphen:





- 1. Die Graphen \mathfrak{G}_1 und \mathfrak{G}_2 sind isomorph. Geben Sie einen Isomorphismus an.
- 2. Prüfen Sie, ob $\mathfrak{G}_i \models \varphi_j$ für $i \in \{1, 2\}$ und $j \in \{1, 2, 3\}$, wobei

 $\varphi_1 := \exists x \exists y \exists z (Exy \land Eyz \land Ezx)$

 $\varphi_2 := \forall x \forall y (\neg Exy \to \exists z (Exz \land Ezy))$

 $\varphi_3 := \forall x \exists y_1 \exists y_2 \exists y_3 \exists y_4 (Exy_1 \land Exy_2 \land Exy_3 \land Exy_4).$

Aufgabe 2. Sei S eine Symbolmenge, $\mathfrak B$ eine S-Struktur mit Träger B, und $M\subseteq B$. Gelte weiterhin

 $M \neq \emptyset$ oder S enthält ein Konstantensymbol.

Zeigen Sie, daß die Menge

$$X := \{ t^{\mathfrak{B}}[a_1, \dots, a_n] \mid n \ge 0, \ a_1, \dots, a_n \in M, \ t \in T_n^S \}$$

Träger einer Substruktur von $\mathfrak B$ ist, d.h. daß es eine Struktur $\mathfrak A$ mit $\mathfrak A\subseteq \mathfrak B$ und A=X gibt.

Aufgabe 3. Sei $S:=\{+,\cdot,0,1,\leq,f,d\}$, wobei die Funktionssymbole f und d ein- und zweistellig sind. Sei \Re eine S-Struktur mit Träger \mathbb{R} , in der $+,\cdot,0,1$ und \leq wie üblich interpretiert sind, $f^{\Re}:\mathbb{R}\to\mathbb{R}$ eine Funktion und d^{\Re} die Abstandsfunktion ist, d.h. $d^{\Re}(r,r')=|r-r'|$ für alle $r,r'\in\mathbb{R}$. Symbolisieren Sie:

- 1. $f^{\mathfrak{R}}$ ist gleichmässig stetig.
- 2. Wenn $f^{\mathfrak{R}}$ streng monoton ist, dann ist $f^{\mathfrak{R}}$ injektiv.
- 3. $f^{\mathfrak{R}}$ ist differenzierbar.

Aufgabe 4. Für eine Menge M seien

$$P_e(M) := \{Y \subseteq M \mid Y \text{ ist endlich }\}$$

 $P_{e,ce}(M) := \{Y \subseteq M \mid Y \text{ ist endlich oder } M \setminus Y \text{ ist endlich}\}$

- 1. Ist $P_e(M)$ Träger einer Substruktur der Booleschen Algebra P(M) und damit selbst eine Boolesche Algebra?
- 2. Is $P_{e,ce}(M)$ Träger einer Substruktur der Booleschen Algebra P(M) und damit selbst eine Boolesche Algebra?

Aufgabe 5. Für $n \in \mathbb{N}$ seien die Mengen V_n und \overline{n} induktiv wie folgt definiert:

$$V_0 := \emptyset, \qquad \overline{0} := \emptyset,$$

 $V_{n+1} := P(V_n), \qquad \overline{n+1} := \overline{n} \cup \{\overline{n}\}.$

Weiter sei $V_{\mathbb{N}} := \bigcup_{n \in \mathbb{N}} V_n$. Zeigen Sie:

- 1. V_n ist endlich.
- 2. $V_n \subseteq V_m$ für n < m.
- 3. Aus $x \in V_n$ folgt $x \subseteq V_n$.
- 4. Aus $x \in V_{\mathbb{N}}$ folgt $x \subseteq V_{\mathbb{N}}$.
- 5. $\overline{n} \in V_{n+1} \setminus V_n$.
- 6. $V_{\mathbb{N}}$ ist abzählbar.

Geben Sie $\overline{0}, \overline{1}, \overline{2}$ und $\overline{3}$ explizit an.

Abgabe: Mittwoch, 10. Juni, vor der Vorlesung.

Die Übungsblätter und die Einteilung der Übungen findet man auch unter http://home.mathematik.uni-freiburg.de/bjoern/lehre/logik09/logik09.html