Übungen zur Vorlesung Mathematische Logik

SS 2009, Blatt 8

Aufgabe 1.

- (a). Ist die Regel $\frac{\Gamma \quad (\varphi \wedge \psi)}{\Gamma \quad \varphi}$ ableitbar?
- (b). Ist die Sequenz $\neg(\neg\varphi \land \psi) \psi \varphi$ ableitbar?
- (c). Ist die Regel $\frac{\Gamma \varphi}{\Gamma \neg \varphi}$ ableitbar?

Aufgabe 2. Für $\Phi \subseteq L^S$ sei \mathfrak{I}^{Φ} die Henkin-Interpretation zu Φ . Ein *Literal* λ ist ein Ausdruck der Gestalt

(1)
$$\lambda = \varphi$$
 oder (2) $\lambda = \neg \varphi$

für atomares φ . Ausdrücke der Gestalt (1) sind *positive* Literale, solche der Gestalt (2) *negative*. Ausdrücke der Gestalt $\forall x_1 \dots \forall x_n (\lambda_1 \vee \dots \vee \lambda_r)$, wobei $\lambda_1, \dots, \lambda_r$ Literale sind und höchstens eines davon positiv ist, sind *universelle Hornausdrücke*.

- (a). Zeigen Sie, daß für jede widerspruchsfreie Menge Φ universeller Hornausdrücke $\mathfrak{I}^{\Phi} \models \Phi$ gilt.
- (b). Folgern Sie: Die Struktur $\mathfrak{T}^{\Phi_{\text{Grp}}}$ ist eine Gruppe.

Aufgabe 3. Sei S endlich oder $S = S_{\infty}$. Zeigen Sie:

- (a). Die Menge $\{\Gamma \varphi \mid \Gamma \varphi \text{ Sequenz und } \vdash \Gamma \varphi\}$ ist aufzählbar.
- (b). Falls Φ aufzählbar ist, so auch die Menge $\{\psi \mid \Phi \vdash \psi\}$.

Aufgabe 4. Für $\Phi \subseteq L^S$ sei wieder \mathfrak{I}^{Φ} die Henkin-Interpretation zu Φ . Zeigen Sie:

Gilt $\mathfrak{I}^{\Phi} \models \Phi$, so hat \mathfrak{I}^{Φ} die folgende *universelle Eigenschaft*: Für jedes Modell $\mathfrak{I} = (\mathfrak{A}, \beta)$ von Φ wird durch $h : \bar{t} \mapsto \mathfrak{I}(t)$ für $t \in T^S$ ein Homomorphismus $h : \mathfrak{T}^{\Phi} \to \mathfrak{A}$ definiert. (Insbesondere ist zu zeigen, daß h wohldefiniert ist.)

Aufgabe 5.

(a). R sei ein dreistelliges Relationssymbol und $\varphi = \forall x \forall y \exists z Rxyz$. Weiter sei f ein zweistelliges Funktionssymbol. Zeigen Sie, daß es für alle $\{R\}$ -Strukturen $\mathfrak{A} \in \operatorname{Mod}(\varphi)$ eine Funktion $g: A \times A \to A$ gibt, so daß für die $\{R, f\}$ -Expansion \mathfrak{A}' von \mathfrak{A} mit $f^{\mathfrak{A}'} = g$ und für den $\{R, f\}$ -Satz

$$\varphi' = \forall x \forall y Rxy f(x, y)$$

gilt, daß $\mathfrak{A}' \models \varphi'$. Folgern Sie, daß φ und φ' erfüllbarkeitsäquivalent sind (d.h. Erf φ genau dann, wenn Erf φ'). Sind φ und φ' logisch äquivalent?

- (b). Wir wollen mit dieser Idee alle Existenzquantoren eliminieren. Sei S eine Symbolmenge. Definieren Sie für eine geeignete Symbolmenge S' mit $S \subseteq S'$ eine Abbildung $\cdot^+: L^S \to L^{S'}, \ \varphi \mapsto \varphi^+$, so daß für alle $\varphi = \varphi(x_1, \ldots, x_n)$ gilt:
 - (i) φ^+ ist universell,
 - (ii) für alle S-Strukturen \mathfrak{A} und alle $(a_1, \ldots, a_n) \in A^n$ mit $\mathfrak{A} \models \varphi[a_1, \ldots, a_n]$ gibt es eine S'-Expansion \mathfrak{A}^+ von \mathfrak{A} , so daß $\mathfrak{A}^+ \models \varphi^+[a_1, \ldots, a_n]$,
 - (iii) $\varphi^+ \models \varphi$.

Folgern Sie: φ und φ^+ sind erfüllbarkeitsäquivalent.

Hinweis: Um ·+ zu definieren, gehe man bei gegebenem φ zunächst zu einem logisch äquivalenten Ausdruck in pränexer Normalform über.

Abgabe: Mittwoch, 24. Juni, vor der Vorlesung.

Die Übungsblätter und die Einteilung der Übungen findet man auch unter http://home.mathematik.uni-freiburg.de/bjoern/lehre/logik09/logik09.html