Aufgabe 1 (Isolierte Singularitäten & Residuum)

- a) Bestimmen Sie die Arten aller auftretenden Singularitäten: i) $f(z) = \frac{z^3 + 3z + 2i}{z^2 + 1}$, ii) $g(z) = z \, e^{1/(1-z)}$.
- b) Berechnen Sie die folgenden Residuen:

i) $res_0 \frac{1-\cos z}{z^3}$, ii) $res_0 \frac{z^{n-1}}{\sin^n z}$.

Aufgabe 2 (Berechnung reeller Integrale mittels Residuensatz)

- a) Verifizieren Sie die Gleichung $\int_0^\infty \frac{\cos x}{(1+x^2)^3} dx = \frac{7\pi}{16e}$.
- b) Verifizieren Sie für natürliches $n \ge 2$ die Gleichung $\int_0^\infty \frac{dx}{1+x^n} = \frac{\pi}{n} (\sin \frac{\pi}{n})^{-1}$.

Aufgabe 3 (Meromorphe Funktionen)

Sei I : $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ gegeben durch I $(z) = \frac{1}{z}$ für $z \in \mathbb{C}^*$, I $(0) = \infty$, sowie I $(\infty) = 0$. Es sei weiter $\Omega \subset \widehat{\mathbb{C}}$ offen. Eine Fkt. $f: \Omega \to \mathbb{C}$ heißt holomorph auf Ω , falls f auf $\Omega \setminus \{\infty\}$ und $f \circ I$ auf I $(\Omega) \setminus \{\infty\}$ holomorph ist. Eine Fkt. $g: \Omega \to \mathbb{C}$ heißt meromorph auf Ω , falls eine Menge $P_g \subset \Omega$ ohne Häufungspunkt in Ω existiert, so daß g auf $\Omega \setminus P_g$ holomorph und jedes $z \in P_g$ Polstelle von g ist.

- a) Es sei $\Omega \subset \widehat{\mathbb{C}}$ ein Gebiet. Definieren Sie auf der Menge $\mathcal{M}(\Omega)$ der auf Ω meromorphen Funktionen eine Addition + und eine Multiplikation · , so daß $(\mathcal{M}(\Omega), +, \cdot)$ einen Körper bildet.
- b) i) Zeigen Sie: Die auf ganz $\widehat{\mathbb{C}}$ meromorphen Funktionen sind genau die ganzrationalen, die auf ganz $\widehat{\mathbb{C}}$ sogar holomorphen unter ihnen genau die konstanten.
 - ii) Folgern Sie aus i) den Fundamentalsatz der Algebra.

Anmerkung: $(\mathcal{M}(\Omega), +, \cdot)$ ist identisch dem Quotientenkörper der auf Ω holomorphen Funktionen. Die auf Ω meromorphen Funktionen sind als Abbildung zwischen Riemannschen Flächen genau die auf Ω holomorphen nach $\widehat{\mathbb{C}}$, Polstellen treten somit nicht mehr gesondert als isolierte Singularität in Erscheinung.

Aufgabe 4 (Elliptische Funktionen)

Eine meromorphe Funktion $f: \mathbb{C} \to \widehat{\mathbb{C}}$ heißt *elliptisch*, falls es über \mathbb{R} linear unabhängige $\omega_1, \omega_2 \in \mathbb{C}$ gibt, so daß f sowohl ω_1 , als auch ω_2 -periodisch ist.

Das Paar (ω_1, ω_2) heißt $Erzeugendensystem\ des\ Gitters\ \Gamma = \{k_1\omega_1 + k_2\omega_2 : k_1, k_2 \in \mathbb{Z}\}$, das durch ω_1, ω_2 aufgespannte halboffene Parallelogramm $P = \{t_1\omega_1 + t_2\omega_2 : 0 \le t_1, t_2 < 1\}$ Fundamentalbereich.

- a) Sei $f: \mathbb{C} \to \widehat{\mathbb{C}}$ eine elliptische Funktion mit Polstellen a_1, \ldots, a_k im Fundamentalbereich. Zeigen Sie: $\sum_{\nu=1}^k res_{a_{\nu}} f = 0$.
- b) Folgern Sie: Hat eine elliptische Funktion f in P höchstens einen einfachen Pol, so ist f konstant.
- c) Eine nichtkonstante elliptische Funktion f nimmt in P (unter Berücksichtigung von Vielfachheiten) jeden Wert aus $\widehat{\mathbb{C}}$ gleich oft an.

Anmerkung: Trotz der bewiesenen Restriktionen existieren auch nichtkonstante elliptische Funktionen, als wichtigstes Beispiel die durch $\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Gamma \setminus \{0\}} (\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2})$ gegebene Weierstraßsche \wp -Funktion.