Aufgabe 1 (Einfach zusammenhängende Mengen)

- a) Vermöge stereographischer Projektion können wir $\widehat{\mathbb{C}}$ mit \mathbb{S}^2 identifizieren. Fertigen Sie eine möglichst genaue Skizze der Menge $\Omega := \{z \in \mathbb{C} : |\text{Re } z| < 1\}$ als Teilmenge von \mathbb{S}^2 an und weisen Sie nach, daß Ω einfach zusammenhängend ist (vgl. Vorlesung, Bsp. 3. nach Def. 5.6).
- b) Untersuchen Sie, ob das Komplement der logarithmischen Spirale, das heißt ob die Menge $\mathbb{C}^* \setminus \{z = e^{t(1+i)} : t \in \mathbb{R}\}$ mit $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ einfach zusammenhängend ist.
- c) Konstruieren Sie ein einfach zusammenhängendes Gebiet $\Omega \subset \mathbb{C}$, so daß $\widehat{\mathbb{C}} \setminus \Omega$ notwendigerweise genau eine, die Menge $\mathbb{C} \setminus \Omega$ jedoch unendlich viele Zusammenhangskomponenten hat.

Aufgabe 2 (Holomorphe Zweige des Logarithmus und der n-ten Wurzel)

Sei $\Omega \subset \mathbb{C}$ einfach zusammenhängendes Gebiet und $f:\Omega \to \mathbb{C}$ holomorph ohne Nullstellen. Zeigen Sie:

- a) Es existiert eine holomorphe Funktion $g:\Omega\to\mathbb{C}$ mit $\exp(g(z))=f(z)$ für alle $z\in\Omega$.
- b) Für jedes $n \in \mathbb{N}$ existiert eine holomorphe Funktion $h: \Omega \to \mathbb{C}$ mit $(h(z))^n = f(z)$ für alle $z \in \Omega$.

Aufgabe 3 (Pullback von k-Formen)

Sei $\Omega \subset \mathbb{C}$ offen. Für 1-Formen α, β auf Ω ist $\alpha \wedge \beta : \Omega \to \bigwedge^2(\mathbb{R}^2, \mathbb{C}), (\alpha \wedge \beta)(v, w) := \alpha(v)\beta(w) - \alpha(w)\beta(v)$. Die äußere Ableitung einer 1-Form $\alpha = a\,dx + b\,dy$ ist die 2-Form $d\alpha := da \wedge dx + db \wedge dy$.

Seien $\Omega, \Omega' \subset \mathbb{C}$ offen und $f \in C^1(\Omega, \Omega')$, f = u + iv. Der Pullback der 1-Form $\alpha = a \, dx + b \, dy$ auf Ω' unter f ist die 1-Form $f^*\alpha := (a \circ f) \, du + (b \circ f) \, dv$ auf Ω . Der Pullback der 2-Form $\phi = \varphi \, dx \wedge dy$ auf Ω' unter f ist die 2-Form $f^*\phi := (\varphi \circ f) \, du \wedge dv$ auf Ω . Beweisen Sie folg. Rechenregeln für den Pullback:

- i) $f^*(\lambda \omega + \mu \eta) = \lambda f^* \omega + \mu f^* \eta$ für $\lambda, \mu \in \mathbb{C}$ und ω, η 1-Formen oder ω, η 2-Formen auf Ω' .
- ii) $f^*(\omega \wedge \eta) = (f^*\omega) \wedge (f^*\eta)$ für 1-Formen ω, η auf Ω' .
- iii) $(g \circ f)^* \psi = f^*(g^* \psi)$ für $f \in C^1(\Omega, \Omega'), g \in C^1(\Omega', \Omega'')$ und ψ eine 1- oder 2-Form auf Ω'' .
- iv) $d(f^*\eta) = f^*d\eta$ für $f \in C^2(\Omega, \Omega')$ und η eine 1-Form auf Ω' .

Aufgabe 4 (Der Begriff der 2-Kette)

Sei $\Omega \subset \mathbb{C}$ offen und $\phi: \Omega \to \bigwedge^2(\mathbb{R}^2, \mathbb{C}), \ \phi = \varphi \, dx \wedge dy$, eine 2-Form. Ist $E \subset \Omega$ meßbar und φ auf E integrierbar, so setzen wir $\int_E \phi := \int_E \varphi(x,y) \, dx \, dy$. Ferner seien $\mathcal{E}^1(\Omega) := \{\alpha = a \, dx + b \, dy : a,b \in C^\infty(\Omega,\mathbb{C})\}$ und $\mathcal{E}^2(\Omega) := \{\phi = \varphi \, dx \wedge dy : \varphi \in C^\infty(\Omega,\mathbb{C})\}$ die $R\"{a}ume \ der \ 1$ - und $der \ 2$ -Formen auf Ω .

Wir können eine Abbildung $f \in C^2(R, \Omega)$ auf einem Rechteck $R = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{C}$ (d.h. $f \in C^2$ auf einer offenen Umgebung von R) als eine Linearform auf $\mathcal{E}^2(\Omega)$ auffassen: $[f] : \mathcal{E}^2(\Omega) \to \mathbb{C}, \quad \phi \mapsto \int_R f^* \phi$.

Eine Linearform $\Lambda: \mathcal{E}^2(\Omega) \to \mathbb{C}$ heißt 2-Kette, wenn es $f_j \in C^2(R_j, \Omega)$ auf $R_j = [a_{1,j}, b_{1,j}] \times [a_{2,j}, b_{2,j}]$ und $n_j \in \mathbb{Z}$ gibt mit $\Lambda = \sum_{j=1}^k n_j [f_j]$, d.h. mit $\Lambda(\phi) = \sum_{j=1}^k n_j \int_{R_j} f_j^* \phi$ für alle $\phi \in \mathcal{E}^2(\Omega)$.

Der Rand einer 2-Kette Λ ist die Linearform $\partial \Lambda : \mathcal{E}^1(\Omega) \to \mathbb{C}, \ \partial \Lambda(\alpha) := \Lambda(d\alpha).$

Zeigen Sie: Ist Λ eine 2-Kette in Ω , so ist $\partial \Lambda$ eine 1-Kette in Ω . Leiten Sie dazu für gegebene Darstellung $\Lambda = \sum_{j=1}^{k} n_j [f_j]$ von Λ eine konkrete Darstellung von $\partial \Lambda$ als 1-Kette her.

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Dienstag, dem 01.07.2008, bis 9.15 Uhr.