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The main topic will be the model theory of NTP2 theories, but occasionally we will
discuss some other topics. If not stated otherwise, |̂ will be forking independence, that is

|̂ = |̂ f
.

1 On limit models

This is a topic from last year. We improve some result on limit models from section 5 of [9]
after having read parts of [2]. Let p(x) ∈ S(∅). Recall that Mp is a prime model over a
realization of p and that a p-limit model is a model M which is not prime over a realization
of p but it is a union of an elementary chain (Mi : i < ω) where each Mi is prime over a
realization of p. Recall also that

SIp = {(a, b) : a, b |= p and a semi-isolates b}

Similarly, we define
Ip = {(a, b) : a, b |= p and a isolates b}

Proposition 1.1 The following are equivalent in any small theory T :

1. There is a p-limit model.

2. There are a, b ∈Mp realizing p and such that tp(b/a) is nonisolated.

3. Ip is not symmetric in Mp.

4. Ip is not symmetric.

5. SIp is not symmetric in Mp.

Proof: 1 ⇔ 2. It is a better version of the proof of ⇒ of Proposition 5.7 of [9]: we
have M =

⋃
i<ωMi with Mi prime over ai |= p. We claim that for some i, tp(ai/a0) is

nonisolated; otherwise every tuple a ∈Mi is isolated over a0 for every i < ω and then M is
prime over a0.

2 ⇒ 3 ⇒ 4 is clear.

4 ⇒ 3. If tp(b/a) is isolated, it is realized in a prime model over a.

3 ⇒ 5. See Lemma 3.3 in [9].

5 ⇒ 2 is clear. 2
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2 Weak elimination of hyperimaginaries

Recall from [7] that T has weak elimination of hyperimaginaries (in short, WEH) if every
hyperimaginary is interbounded with a sequence of imaginaries. As shown there (Theorem
6.7), in any simple theory with weak elimination of hyperimaginaries, forking and thorn-
forking coincide in T eq. Moreover (Proposition 6.3), a simple theory T has weak elimination

of hyperimaginaries iff |̂ f
has weak canonical bases in T eq. Now we discuss some stuff

from [5].

Definition 2.1 T has dependence witnessed by imaginaries (in short, DWI) if for all hy-

perimaginaries a, b, if a 6 |̂ f

C
b, then a 6 |̂ f

C
d for some imaginary d ∈ acleq(Cb). Here C is a

set of hyperimaginaries (but we will see that one can assume it is a set of imaginaries) and
acleq(Cb) is the set of all imaginaries that are algebraic over Cb. On the other hand, it is
enough to obtain a tuple of imaginaries d instead of a single one and, if T is simple, even a
set D ⊆ acleq(Cb) such that a 6 |̂ f

C
D.

Proposition 2.2 The following are equivalent to DWI in any simple theory T :

1. If a, b are hyperimaginaries and C is a set of imaginaries such that a 6 |̂ f

C
b, then

a 6 |̂ f

C
d for some imaginary d ∈ acleq(Cb).

2. T has weak elimination of hyperimaginaries.

3. If a, b are hyperimaginaries and C is a set of hyperimaginaries such that a 6 |̂ f

C
b, then

a 6 |̂ f

C
d for some imaginary d ∈ acleq(b).

Proof: 1 ⇒ 2. Let e be a hyperimaginary and let C = acleq(e) (the set of all imaginaries
that are algebraic over e). Notice that C = acleq(C). We claim that for every hyper-

imaginary a, a |̂ f

C
e. Assume not, i.e., a 6 |̂ f

C
e. By assumption there is some imaginary

d ∈ acleq(Ce) such that a 6 |̂ f

C
d. But acleq(Ce) = C, and hence a 6 |̂ f

C
C, a contradiction.

By the claim, e |̂ f

C
e, which implies e ∈ bdd(C). Hence e is interbounded with a tuple of

imaginaries enumerating C.

2 ⇒ 3. Assume a, b are hyperimaginaries and C is a set of hyperimaginaries such that
a 6 |̂ f

C
b. By WEH, there is some set B of imaginaries such that bdd(B) = bdd(b). Hence

a 6 |̂ f

C
B and by finite character of forking there is some tuple d ∈ B such that a 6 |̂ f

C
d.

Clearly, d ∈ acleq(b). 2

Proposition 2.3 The following are equivalent in any simple theory T :

1. T has weak elimination of hyperimaginaries.

2. T has DWI.

3. |̂ f
= |̂ þ

and |̂ þ
has weak canonical bases in T eq.

Proof: 1 ⇔ 2. By Proposition 2.2.

1 ⇒ 3. This is Proposition 6.3 and Theorem 6.7 in [7].

3 ⇒ 1. By Proposition 6.3 in [7]. 2
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3 The weak independence theorem

Taken from Ben-Yaacov and Chernikov preprint [4].

Definition 3.1 The weak independence theorem over A is the following statement: if b
Ls≡A

b′, a |̂
A
bb′ and c |̂

A
ab, then there is some c′ such that c′a ≡A ca, c′b′ ≡A cb, and

c′ |̂
A
ab′.

Remark 3.2 The independence theorem over A implies the weak independence theorem
over A.

Proof: Choose first c1 such that bc
Ls≡A b′c1. Then c

Ls≡A c1, a |̂
A
b′, c |̂

A
a and c1 |̂ A b

′.
By the independence theorem there is some c′ such that c′ ≡Aa c, c′ ≡Ab′ c1 and c′ |̂

A
ab′.

Clearly, c′ satisfies all the requirements. 2

Recall that dA(a, b) ≤ n iff |= ncnA(a, b), that is, iff there are a0, . . . , an such that
a = a0, b = bn and for each i < n, |= nc(ai, ai+1) (ai, ai+1 start and infinite A-indiscernible
sequence).

Proposition 3.3 Assume forking coincides with dividing over A and the weak indepen-

dence theorem holds over A. Then T is G-compact over A, and in fact e
Ls≡A d iff

dA(e, d) ≤ 3.

Proof: Note that the hypothesis implies that A is an extension base. Let e
Ls≡A d.

Since A is an extension base, we may fix some global nonforking extension of tp(d/A).
Using this global type we can obtain (as in the case of simple theories) a Morley sequence
(di : i < ω) over A starting with d0 = d: first obtain a long A-independent sequence using
the global type and then use Erdös-Rado to make it A-indiscernible. Hence (di : i < ω) is
A-indiscernible and di |̂ A d<i for every i < ω. The assumption that forking and dividing
over A coincide implies that the pair lemma holds for forking independence: if a1 |̂ AB
and a2 |̂ Ac1 B, then a1a2 |̂ AB. Using this and some induction one easily checks that for

every i < ω, d≥i |̂ A d<i.
We have then d≥1 |̂ A d0. Without loss of generality, we can assume that d≥1 |̂ A d0e

(otherwise we replace d≥1 by some d′≥1 ≡Ad0 d≥1 having this property). The situation is
as follows

• d0
Ls≡A e

• d1 |̂ A d0e

• d>1 |̂ A d0d1

By the weak independence theorem (with a = d1, b = d0, b′ = e and c = d>1) there is some
d′<i such that d′>1d1 ≡A d>1d1 and d′>1e ≡A d>1d0 (we do not need the independence).
Notice that the sequences e+ d′>1 and d1 + d′>1 are A-indiscernible. This implies that

|= ncA(e, d′2) ∧ ncA(d1, d
′
2) ∧ ncA(d1, d0)

Hence dA(e, d) ≤ 3. 2
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4 The chain condition

We continue with [4], but changing slightly some things and taking into account some
material from [6].

Definition 4.1 Let π(x) be a partial type over A. We say that π(x) has the chain condition
over A with respect to π(x) if for every ϕ(x, y) ∈ L, if |= ncA(a0, a1) and π(x) ∪ {ϕ(x, a0)}
does not fork over A, then π(x) ∪ {ϕ(x, a0) ∧ ϕ(x, a1)} does not fork over A. If π(x) is
empty we just say that T has the chain condition over A.

Proposition 4.2 The following are equivalent for any partial type π(x) over A:

1. T has the chain condition over A with respect to π(x).

2. For any cardinal κ ≥ |T | + |A| + |x|, for any family (πi(x) : i < (2κ)+) of partial
types πi(x) of cardinality ≤ κ extending π(x), if πi(x) does not fork over A for every
i < (2κ)+, then πi(x) ∪ πj(x) does not fork over A for some i < j < (2κ)+.

3. For any cardinal κ ≥ |A|+ |T |+ |x|, for any family of formulas (ϕi(x, ai) : i < (2κ)+)
with ϕi(x, y) ∈ L(A), if π(x) ∪ {ϕi(x, ai)} does not fork over A for every i < (2κ)+,
then π(x) ∪ {(ϕi(x, ai) ∧ ϕj(x, aj))} does not fork over A for some i < j < (2κ)+.

4. For any partial type π(x, y) over A extending π(x), if (ai : i < ω) is A-indiscernible
and π(x, ai) does not fork over A for every i < ω, then

⋃
i<ω π(x, ai) does not fork

over A.

5. If (ai : i < ω) is A-indiscernible b |= π(x) and b |̂
A
a0, then there is some b′ ≡Aa0 b

such that (ai : i < ω) is indiscernible over Ab′ and b′ |̂
A

(ai : i < ω).

6. If (ai : i < ω) is A-indiscernible b |= π(x) and b |̂
A
a0, then there is some sequence

(a′i : i < ω) ≡Aa0 (ai : i < ω) which is indiscernible over Ab and b |̂
A

(a′i : i < ω).

Proof: 1 ⇒ 2. We can assume each πi(x) is closed under conjunction. Let πi(x) =
πi(x, ai) = {ϕij(x, ai) : j < κ} with ϕij(x, y) ∈ L. Assume πi(x, ai)∪πj(x, aj) forks over A
for every i < j < (2κ)+. Since κ is large enough, we can assume that ϕij(x, y) = ϕj(x, y)
for all i < (2κ)+ and j < κ. By Proposition 3.3 of [6] there are i < j < (2κ)+ such that
|= ncA(ai, aj). We can then choose some l < κ such that ϕl(x, ai) ∧ ϕl(x, aj) forks over A,
contradicting 1.

2 ⇒ 3 is clear.

3 ⇒ 4. We can extend the sequence to an A-indiscernible sequence (ai : i < λ) where
κ = |A| + |T | + |x| and λ = (2κ)+. By 3 and indiscernibility, for each i < j < λ, for each
ϕ(x, y) ∈ π(x, y), ϕ(x, ai) ∧ ϕ(x, aj) does not fork over A. We can inductively generalize
this and show that for any n < ω, for any i1 < . . . < in < λ, ϕ(x, ai1)∧ . . .∧ ϕ(x, ain) does
not fork over A, which implies that

⋃
i<λ π(x, ai) does not fork over A. For the induction

notice that (bi : i < λ) is A-indiscernible if bi = ai·(n+1), . . . , a(i+1)·(n+1).

4 ⇒ 5. Let p(x, y) ∈ S(A) be such that tp(b/Aa0) = p(x, a0). By 4
⋃
i<ω p(x, ai)

does not fork over A. Choose b′ |=
⋃
i<ω p(x, ai) such that b′ |̂

A
(ai : i < ω). We can

extend the sequence and then apply Erdös-Rado to extract an Ab′-indiscernible sequence
(a′i : i < ω) ≡A (ai : i < ω) such that b′ |̂

A
(a′i : i < ω). By conjugation over A we obtain

a corresponding b′′ for (ai : i < ω).

5 ⇔ 6. By conjugation over A.
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5 ⇒ 1. Let (ai : i < ω) be an A-indiscernible sequence such that ϕ(x, a0) does not fork
over A. Choose b |̂

A
a0 such that b |= π(x) and |= ϕ(b, a0). By 5 there is some b′ ≡Aa0 b

such that (ai : i < ω) is indiscernible over Ab′ and b′ |̂
A

(ai : i < ω). Since b′ |= π(x) and
|= ϕ(b′, a0) ∧ ϕ(b′, a1), the set π(x) ∪ {ϕ(x, a0) ∧ ϕ(x, a1)} does not fork over A. 2

Proposition 4.3 If T has the chain condition over A, then the weak independence theorem
over A holds.

Proof: We prove first the case |= ncA(b, b′). In fact we will see that the general case
follows from this particular case without the need of the chain condition.

Assume |= ncA(b, b′), a |̂
A
bb′ and c |̂

A
ab. Since a |̂

Ab
b′, by Lemma 10.6 of [8],

there is some a′ such that |= ncA(ab, a′b′). Fix an A-indiscernible sequence (aibi : i < ω)
with a0, b0, a,b1 = a, b, a′, b′. Since c |̂

A
a0b0, by point 5 of Proposition 4.2 there is some

c′ ≡Aa0b0 c such that c′ |̂
A

(aibi : i < ω) and (aibi : i < ω) is Ac′-indiscernible. It follows
that c′ |̂

A
ab′, c′b′ ≡A c′b ≡A cb and c′a ≡A ca.

Now we prove the general case. Fix n such that dA(b, b′) ≤ n and fix b0, . . . , bn such
that b0 = b, bn = b′ and |= ncA(bi, bi+1) for all i < n. Since a |̂

A
b0bn, we can assume

(changing a and c if necessary) that a |̂
A
b0, . . . , bn. Now we check by induction on i ≤ n

that there is some ci such that cibi ≡A cb0, cia ≡A ca and ci |̂ A abi. This will suffice. We
start with c0 = c. In order to obtain ci+1 from ci we apply the particular case proven above:
there is some ci+1 such that ci+1bi+1 ≡A cibi, ci+1a ≡A cia and ci+1 |̂ A bi+1a. Using now
the induction hypothesis on ci we see that ci+1bi+1 ≡A cb0 and ci+1a ≡A ca. 2

5 Indiscernible arrays

References for this section are [4], [10] and [3], but we do some things differently.

We will discuss arrays of the form A = (aij : i < α, j < β) where κ, λ are ordinals
(although more generally we could have dealt with linearly ordered sets). We understand
that the rows are (aij : j < β) for i < α and the columns are (aij : j < α) for i < β. Hence
our array looks like as follows:

a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

Each aij is a (possibly infinite) tuple and all have the same length. Sometimes we use the
notation ai = (aij : j < β) for the rows. The sequence of previous rows is a<i. Other
notations, like a>i are self-explanatory.

An (n,m)-subarray of (aij : i < α, j < β) is an array of the form (ailjk : l =
1, . . . , n and k = 1, . . . ,m) for some i1 < . . . < in < α and some j1 < . . . < jm < β.
In the case n = m we talk of an n-subarray.

Definition 5.1 An array is A-indiscernible if both the sequence of its rows and the se-
quence of its columns are A-indiscernible. Note that A-indiscernibility of rows imply that
each single column is A-indiscernible and, similarly, A-indiscernibility of columns imply
that each single row is A-indiscernible.
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Remark 5.2 The following are equivalent for any array A = (aij : i < α, j < β) and any
set A:

1. A is A-indiscernible.

2. For all n,m < ω all (n,m)-subarrays of A have the same type over A.

3. For any i1, . . . , in < α and j1, . . . , jn < β, the type tp(ai1j1 . . . ainjn/A) depends only
on the order (and equality) relations of i1, . . . , in and of ji, . . . , jn.

Proof: 1 ⇒ 2. Consider two (n,m)-subarrays a and b, the first one determined by i1 <
. . . < in < α and j1 < . . . < jn < β and the second one by i′1 < . . . < i′n < α and
j′1 < . . . < j′n < β. By A-indiscernibility of the sequence of columns, a has same type over
A as the (n,m)-subarray c determined by i1, . . . , in and j′1, . . . , j

′
n. Now by A-indiscernibility

of the sequence of rows, c has same type over A as b.

2 ⇒ 3. If the order of indexes in rows and columns coincide, for some n,m the corre-
sponding tuples of the array lie in the same positions in some (n,m)-subarrays.

3 ⇒ 1. Clear 2

Remark 5.3 Let (aij : i < α, j < β) be an A-indiscernible array. For any two strictly
increasing mappings f : α→ β and g : α→ β:

(aif(i) : i < α) ≡A (aig(i) : i < α)

Proof: By Remark 5.2, since (f(i) : i < α) and (g(i) : i < α) are order isomorphic. 2

Definition 5.4 The rows of an array (aij : i < α, j < β) are mutually indiscernible over
A if each row ai = (aij : j < β) is indiscernible over A and the rest a6=i = {alj : l < α, l 6=
i and j < β) of the array. The array is very indiscernible over A if it is A-indiscernible and
its rows are mutually indiscernible over A.

Remark 5.5 An array (aij : i < α, j < β) has rows mutually indiscernible over A if and
only if for any i1 < . . . < in < α and any choice bil and b′il for each l = 1, . . . , n of finite
increasing sequences with same length of tuples of the row il:

bi1 , . . . , bin ≡A b′i1 , . . . , b
′
in

Proof: It is clear that this new condition implies mutual indiscernibility of rows. For the
other direction, by induction on k ≤ n we check that b′i1 , . . . , b

′
ik
bik+1

, . . . , bin ≡A bi1 , . . . , bin .
The case k = 1 is clear by mutual indiscernibility. For the inductive step note that,
by mutual indiscernibility and the induction hypothesis, b′i1 , . . . , b

′
ik
b′ik+1

, bik+2
. . . , bin ≡A

b′i1 , . . . , b
′
ik
bik+1

, . . . , bin ≡A bi1 , . . . , bin . 2

Remark 5.6 1. If the rows of an array are mutually indiscernible over A, then the
sequence of its columns is A-indiscernible.

2. If an array has rows mutually indiscernible over A and the sequence of its rows is
A-indiscernible, then it is very indiscernible over A.

Proof: By Remark 5.5, since to check indiscernibility of columns it is enough to look at
finitely many rows of two given finite sequences of columns. 2
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Remark 5.7 Let β ≥ ω, assume the columns of A = (aij : i < α, j < β · α) are A-
indiscernible, and define bij = ai,β·i+j. Then the rows of B = (bij : i < α, j < β) are
mutually indiscernible over A. Hence, if A is an A-indiscernible array, then B is very
indiscernible over A.

Proof: Note that each (ai,β·i+j : j < β) is indiscernible over A ∪ {al,β·k+j : l < α, (k <
i or k < l < α) and j < β}. Hence (bij : j < β) is indiscernible over A∪ {blj : j < β, l 6= i}.
By Remark 5.6 B is very indiscernible over A. 2

Proposition 5.8 For any array A = (aij : i < α, j < λ) and any set A, if κ ≥ |A|+ |T |+
|aij |+ |α| and λ = i(2κ)+ , then there is an array B = (bij : i < α, j < ω) which has mutually
A-indiscernible rows and is locally like A, in the sense that for every choice in B of finitely
many rows and a finite subsequence in each of these rows, there is a corresponding choice
of subsequences in the same rows of A having (all together) the same type over A.

Proof: By the ordinary method of extracting indiscernible sequences based on Erdös-Rado,
there is some array A′ = (a′ij : i < α, j < ω) with A-indiscernible sequence of columns and
such that for every finite subsequence of columns in A′ there is a corresponding sequence
of columns in A with the same type over A. In particular, A′ is locally like A. The next
step is extending the array A′ to (a′ij : i < α, j < ω · α) with A-indiscernible sequence of
columns. Now by Remark 5.7 if we define bij = a′i,ω·i+j for i < α and j < ω, we obtain a
new array B = (bij : i < α, j < ω) with the required properties. 2

6 Array-dividing

Here the main reference is [4]

Definition 6.1 Let ϕ(x, y) ∈ L. We say that ϕ(x, a) array-divides over A if there is some
A-indiscernible array (aij : i, j < ω) with a = a00 and such that {ϕ(x, aij : i, j < ω} is
inconsistent.

Remark 6.2 If ϕ(x, a) divides over A, then it array-divides over A.

Proof: Let (ai : i < ω) be an A-indiscernible sequence with a = a0 such that {ϕ(x, ai) :
i < ω} is inconsistent. Let aij = aj . Then the array (aij : i, j < ω) witnesses that ϕ(x, a)
array-divides over A. 2

Proposition 6.3 If forking and dividing over A coincide and T has the chain condition
over A, then dividing and array-dividing over A coincide.

Proof: Assume ϕ(x, a) does not divide (fork) over A, let (aij : i, j < ω) be A-indiscernible
with a = a00 and let us check that {ϕ(x, aij) : i, j < ω} is consistent. Let n < ω.
By the chain condition over A,

∧
i<n ϕ(x, ai0) does not fork over A. Since the sequence

(bj : j < ω) with bj = (aij : i < n) is A-indiscernible, again by the chain condition over A,∧
i,j<n ϕ(x, aij) does not fork over A and hence it is consistent. 2

Definition 6.4 An A-indiscernible sequence (ai : i < ω) is a universal over A in tp(a0/A)
if {ϕ(x, ai) : i < ω} is inconsistent for every formula ϕ(x, y) ∈ L such that ϕ(x, a0) divides
over A.

Remark 6.5 1. In a simple theory, every Morley sequence over A is universal over A.
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2. In a NTP2 theory, every sequence generated over A by a strict A-invariant global type
is universal over A (see Proposition 4.4 of [7]); hence (see Proposition 4.11 of [7])
any type over a model M has universal indiscernible sequences over M .

Proposition 6.6 If forking and array-dividing over A coincide and for every type p(x)
over A there are universal indiscernible sequences over A in p(x), then T has the chain
condition over A.

Proof: Assume ϕ(x, y) ∈ L, ϕ(x, a0) does not fork over A , (aj : j < ω) is A-indiscernible
and ϕ(x, a0) ∧ ϕ(x, a1) forks over A. Let κ be large enough and extend the sequence
to an A-indiscernible sequence (aj : j < κ). Choose a universal indiscernible sequence
((aij : j < κ) : i < ω) over A in the type tp((aj : j < κ)/A) with a0j = aj . By the choice
of κ we can extract an A-indiscernible sequence ((a′ij : i < ω) : j < ω) from the sequence
of columns ((aij : i < ω) : j < κ). It follows that (a′ij : i, j < ω) is an A-indiscernible array.
By A-indiscernibility, for every j < l < κ, ϕ(x, a0j) ∧ ϕ(x, a0l) forks over A. Since we have
chosen a universal indiscernible sequence, for every j < l < κ, {ϕ(x, aij)∧ϕ(x, ail) : i < ω}
is inconsistent. Hence, for every j < l < ω, {ϕ(x, a′ij) ∧ ϕ(x, a′il) : i < ω} is inconsistent
and {ϕ(x, a′ij) : i, j < ω} is inconsistent too. Since a0 ≡A a′00, ϕ(x, a0) array-divides (and
forks) over A, a contradiction. 2

Definition 6.7 A partial type π(x) has TP2 if for some formula ϕ(x, y) ∈ L and some
k < ω there is some array (aij : i, j < ω) such that {ϕ(x, aij) : j < ω} is k-inconsistent for
every i < ω and π(x) ∪ {ϕ(x, aif(i)) : i < ω} is consistent for every f : ω → ω. We say that
π has NTP2 if it does not have TP2. A theory T has TP2 if the empty partial type has
TP2 in T . Similarly for NTP2. As shown in Lemma 7.4, this definition agrees with the one
given in [7] (where we required k = 2).

Remark 6.8 Nothing changes if in the definition of NTP2 type one requires that {ϕ(x, aij) :
j < ω} is k-inconsistent relatively to π(x), namely, p(x) ∪ {ϕ(x, ai,j1), . . . , ϕ(x, ai,jk)} is
inconsistent for all j1 < . . . < jk < ω. The reason is that in an array witnessing TP2 of
π(x) with this weaker requirement we can assume all rows have the same type over A and
hence adding the same formula θ(x) of π(x) to φ(x, y) we get k-inconsistency. If θ(x) has
parameters in A we can add the parameters to each tuple in the array.

Lemma 6.9 Let π(x) a partial NTP2 type over A. If the array (aij : i, j < ω) is very
indiscernible over A and the first column {ϕ(x, ai0) : i < ω} is consistent with π(x), then
π(x) ∪ {ϕ(x, aij) : i, j < ω} is consistent.

Proof: Let n < ω and let us check that π(x)∪ {ϕ(x, aij) : i < n, j < ω} is consistent. Let
bij = ai·n,j , . . . , ai·n+(n−1),j . Then the array (bij : i, j < ω) is also very indiscernible over A.
Let ϕn(x; y0, . . . , yn−1) =

∧
i<n ϕ(x; yi). We need to check that π(x)∪{ϕn(x, b0j) : j < ω} is

consistent. We know that π(x)∪{ϕn(x, bi0) : i < ω} is consistent. By mutual indiscernibility
over A (see Remark 5.5), for every f : ω → ω, the set π(x) ∪ {ϕn(x, bi,f(i)) : i < ω}
is consistent. If π(x) ∪ {ϕn(x, b0j) : j < ω} is inconsistent, then (see Remark 6.8) we
may assume that {ϕn(x, b0j) : j < ω} is k-inconsistent for some k < ω. Then every
{ϕn(x, bij) : j < ω} is k-inconsistent too for every i < ω, and therefore ϕn witnesses that
π(x) has TP2. 2

Lemma 6.10 Let π(x) bea NTP2 type over A. If the array (aij : i, j < ω) is indiscernible
over A and the diagonal {ϕ(x, aii) : i < ω} is consistent with π(x), then π(x) ∪ {ϕ(x, aij) :
i, j < ω} is consistent.
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Proof: Assume π(x)∪{ϕ(x, aij) : i, j < ω} is consistent. We can extend the array to an A-
indiscernible array (aij : i < ω, j < ω·ω). By indiscernibility of columns, π(x)∪{ϕ(x, ai,ω·i) :
i < ω} is consistent. Let bij = ai,ω·i+j . By Remark 5.7 (bij : i, j < ω) is very indiscernible
over A. Since bi0 = ai,ω·i, by Lemma 6.9 π(x) ∪ {ϕ(x, bij) : i, j < ω} is consistent. If
we define cij = (ai,n·j+k : k < n), we get an A-indiscernible array (cij : i, j < ω). If
ϕn(x; y0, . . . , yn−1) =

∧
i<n ϕ(x; yi), then the diagonal {ϕ(x, cii) : i < ω} is consistent with

π(x). Interchanging rows and columns and applying again this fact, we see that for each
m < ω, {

∧
i<m ϕ

n(x, ci+j,i) : j < ω} is consistent with π(x). In particular, this implies that
{ϕ(x, aij) : i < n, j < m} is consistent with π(x). Hence π(x) ∪ {ϕ(x, aij) : i, j < ω} is
consistent. 2

Proposition 6.11 If π(x) is a NTP2 type over A, then for any formula ϕ(x, y) ∈ L(A),
for any tuple a, π(x) ∪ {ϕ(x, a)} divides over A iff it array-divides over A.

Proof: Assume π(x) ∪ {ϕ(x, a)} does not divide over A and let (aij : i, j < ω) be an
A-indiscernible array with a = a00. Since (aii : i < ω) is A-indiscernible, π(x) ∪ {ϕ(x, aii) :
i < ω} is consistent. By Lemma 6.10, π(x)∪ {ϕ(x, aij) : i, j < ω} is consistent. This shows
that ϕ(x, a) does not array-divide over A. 2

Corollary 6.12 If T is NTP2 and A is an extension base, then T has the chain condition
over A, the weak independence theorem holds over A and T is G-compact over A.

Proof: By Proposition 4.3, the weak independence theorem follows from the chain con-
dition. Since in a NTP2 theory forking and dividing coincide over extension bases, by
Proposition 3.3 the weak independence theorem implies G-compactness. Hence we only
need to check the chain condition over extension bases.

Consider first the case of A = M . As indicated in Remark 6.5, there are universal
indiscernible sequences in any type over M . By propositions 6.11 and 6.6, T has the chain
condition over M . Consider now the general case of an extension base A. We use point 3 of
Proposition 4.2. Let κ ≥ |T |+ |A|+ |x| and assume ϕi(x, ai) does not fork over A for every
i < (2κ)+. Choose a model M ⊇ A such that M |̂

A
(ai : i < (2κ)+). Then no ϕi(x, ai)

forks over M and hence ϕi(x, ai)∧ϕj(x, aj) does not fork over M for all i < j < (2κ)+. By
Lemma 4.8 of [7], ϕi(x, ai) ∧ ϕj(x, aj) does not fork over A. 2

7 Burden

Based on [1] and [10].

Definition 7.1 An inp-pattern of depth κ in a partial type π(x) is an array (aij : i <
κ, j < ω) together with numbers ki < ω and formulas ϕi(x, yi) ∈ L for i < κ such that

1. {ϕi(x, aij) : j < ω} is ki-inconsistent for every i < κ.

2. π(x) ∪ {ϕi(x, aif(i)) : i < κ} is consistent for every f : κ→ ω.

The burden of π(x) is the supremum bdn(π) of all depths of inp-patterns in π(x). We write
bdn(a/A) = bdn(tp(a/A)).

Remark 7.2 The fact bdn(π) = ω means that there are arbitrarily large finite depths of
inp-patterns in π and none of depth ω1. This is compatible both with the existence and the
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inexistence of patterns of depth ω. Perhaps it would have been better to define the burden
as the first cardinal κ for which there is no inp-pattern of depth κ. With this definition one
would have bdn(π(x)) > κ iff there is some inp-pattern of depth κ in π(x). But then the
difficulty is that with this notion we would have bdn(π) = 1 iff π is algebraic (and there
would not exist types of burden zero). This could be repaired by defining the burden as the
least κ for which there is no inp-pattern of depth κ+ 1 (this does not change the burden if
it is ≥ ω).

Remark 7.3 1. bdn(π(x)) = 0 iff π(x) is algebraic.

2. If π(x) ` π′(x), then bdn(π(x)) ≤ bdn(π′(x)).

3. bdn(π(x)) <∞ iff bdn(π(x)) < |T |+

Proof: 1. Assume π(x) is not algebraic and let (ai : i < ω) be a sequence of different
realizations of π. The inp-pattern of depth 1 defined by the formula x = y, the number
k = 2 and the parameters (ai : i < ω) shows that bdn(π) ≥ 1. Assume now bdn(π) ≥ 1, and
let ϕ(x, y) with k and (ai : i < ω) be a inp-pattern of depth 1 in π(x). For each i < ω choose
a maximal subset Ii ⊆ ω such that Σi(x) = π(x)∪{ϕ(x, ai) : i < ω} is consistent (any such
set has cardinality ≤ k) and choose a realization bi of Σi(x). If j 6∈ Ii then Σi(x)∪Σj(x) is
inconsistent and therefore bi 6= bj . Now choose inductively in ∈ ω r

⋃
m<n Iim . It follows

that bi0 , bi1 , . . . , are different realizations of π(X), which proves that π(x) is not algebraic.

3. In an inp-pattern of depth |T |+ there is some k < ω and some formula ϕ(x, y) which
are used in infinitely many rows. By compactness we can then extend the pattern with k
and ϕ to any possible depth. 2

Lemma 7.4 If π has TP2, then for any set A there is some very A-indiscernible array
(aij : i, j < ω) and some formula ϕ(x, y) ∈ L such that {ϕ(x, aij) : j < ω} is 2-inconsistent
for every i < ω and π(x) ∪ {ϕ(x, ai,f(i)) : i < ω} is consistent for every f ∈ ωω.

Proof: Start with an array (aij : i, j < ω), a natural number k and a formula ϕ(x, y)
witnessing TP2, choose λ large enough and extend the array to (aij : i < λ, j < ω) with all
paths consistent with π(x) and with k-inconsistent rows. We can extract using Erdös-Rado
an array with A-indiscernible sequence of rows and locally like the previous one. Next,
we extend its rows to width λ and we apply Proposition 5.8. After all this, we end up
with a very A-indiscernible array witnessing TP2 with ϕ(x, y) and k. We denote it again
by (aij : i, j < ω). Now we want to reduce k to 2. We may assume k is minimal, that
is, no array and formula witness TP2 of π(x) with a smaller number. Consider the set
{ϕ(x, ai,0), ϕ(x, ai,1) : i < ω}. If it is consistent with π(x), then (by indiscernibility of
the array) the formula ψ(x; y0y1) = ϕ(x, y0) ∧ ϕ(x, y1) and the array (ai,2·jai,2·j+1 : i <
ω, j < ω) witness TP2 with a smaller number. If it is inconsistent with π(x), we choose
n < ω such that {ϕ(x, ai,0), ϕ(x, ai,1) : i < n} is inconsistent with π(x). Then the formula
ψ(x; y0, . . . , yn−1) =

∧
i<n ϕ(x, yi) together with the array (an·i,j , . . . , an·(i+1)−1,j : i <

ω, j < ω) witnesses TP2 with k = 2. 2

Remark 7.5 T is NTP2 iff all types have burden < ∞. In fact, if T has TP2, then for
every set A there is a type p(x) ∈ S(A) with bdn(p(x)) =∞.

Proof: Assume T has TP2 and let A be any set. Use Lemma 7.4 to witness this with ϕ
and an array (aij : i, j < ω) with mutually A-indiscernible rows. Let b |= {ϕ(x, ai0) : i < ω}
and let p(x) = tp(b/A). By Remark 5.5, (ai0 : i < ω) ≡A (aif(i) : i < ω) and hence
p(x) ∪ {ϕ(x, aif(i)) : i < ω} is consistent for every f ∈ ωω. By compactness, bdn(p) = ∞.
2
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Definition 7.6 The rows of an array (aij : i < α, j < β) are almost mutually indiscernible
over A if each row ai = (aij : j < β) is indiscernible over Aa<i(al0 : l > i). Notice that in
such arrays, (ai0 : i < α) ≡A (aif(i) : i < α) for every f : α→ β.

Lemma 7.7 If the rows of the array (aij : i < α, j < β) are almost mutually indiscernible
over A, then there is some array (a′ij : i < α, j < β) with rows mutually indiscernible over
A and such that (a′ij : j < β) ≡Aai0 (aij : j < β) for every i < α.

Proof: As a first step we extend the width of the array to a conveniently large cardinal λ
preserving almost mutual indiscernibility. We apply then Proposition 5.8 and compactness
to obtain an array (a′ij : i < α, j < β) which is locally like our previous array and has
mutually A-indiscernible rows. We claim that (a′i0 : i < α) ≡A (ai0 : i < α). To check
this, assume i0 < . . . < ik < α. There are j0, . . . , jk < λ such that a′i00, . . . , a

′
ik0 ≡A

ai0j0 , . . . , aikjk . But ai0j0 , . . . , aikjk ≡A ai00, . . . aik0. This proves the claim. Now take
(a′′ij : i < α, j < β) such that (a′ij : i < α, j < β)(a′i0 : i < α) ≡A (a′′ij : i < α, j <
β)(ai0 : i < α). The rows of the new array are again mutually A-indiscernible and moreover
(a′′ij : j < β)ai0 ≡A (a′ij : j < β)a′i0 ≡A (aij : j < β)ai0 for every i < α. 2

Lemma 7.8 Let ∆ be a finite set of formulas of L(A), let (aij : i < n, j < ω) be an array
and let k < ω. For each i < n there are ji0 < . . . < jik < ω such that the rows of the array
(ai,jil : i < n, l ≤ k) are ∆-indiscernible, meaning that for each ϕ(x1, . . . , xr; y) ∈ ∆, each

row is ϕ(x1, . . . , xr; a)-indiscernible for any tuple a of elements of the remaining rows.

Proof: By Ramsey’s Theorem, there is an infinite subset I ⊆ ω such that the sequence of
columns of (aij : i < n, j ∈ I) is indiscernible with respect to all formulas in ∆, letting the
variables range over elements of any row. By the trick explained in the proof of Remark 5.7
it suffices now to take n consecutive segments of length k+ 1 in the increasing enumeration
of I, obtaining this way a diagonal of tuples lying in disjoint columns. 2

Lemma 7.9 Assume the rows of the array (aij : i < α, j < β) are mutually A-indiscernible
and let b be any tuple. Let pi(x, y) = tp(bai0/A) and suppose

⋃
i<α,j<β pi(x, aij) is consis-

tent. Then there is some array (a′ij : i < α, j < β) with rows mutually indiscernible over
Ab and such that (a′ij : j < β) ≡Aai0 (aij : j < β) for all i < α.

Proof: Let b′ |=
⋃
i<α,j<β pi(x, aij). Fix a finite set ∆ of formulas of L(Ab′), a finite subset

S ⊆ α and some k < ω. Choose with the Lemma 7.8 a finite array (ai,jil : i ∈ S, l ≤ k)
with mutually ∆-indiscernible rows. By Remark 5.5, this array has the same type over
A as (ail : i ∈ S, l ≤ k). Let f ∈ Aut(C/A) send the first array to the second one,
and let ∆′ = f(∆). Then (ail : i ∈ S, l ≤ k) is ∆′-indiscernible, ∆′ is over Af(b′) and
f(b′)ai0 ≡A b′ai,ji0 ≡A bai0 for every i ∈ S. By compactness, the rows of (aij : i < α, j < β)
are mutually indiscernible over Ab′′ for some b′′ such that b′′ ≡Aai0 b for every i < α. By
conjugation over A we obtain the array with the required properties over Ab. 2

Proposition 7.10 The following are equivalent for any partial type π(x) over A and any
cardinal κ:

1. There is no inp-pattern of depth κ in π(x).

2. If b |= π(x) and the rows of the array (aij : i < κ, j < ω) are almost mutually
indiscernible over A, then for some i < κ there is an Ab-indiscernible sequence (a′j :
j < ω) ≡Aai0 (aij : j < ω).
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3. If b |= π(x) and the rows of the array (aij : i < κ, j < ω) are mutually indiscernible
over A, then for some i < κ there is an Ab-indiscernible sequence (a′j : j < ω) ≡Aai0
(aij : j < ω).

Proof: 1 ⇒ 2. Assume b |= π(x) and the rows of (aij : i < κ, j < ω) are almost mutually
indiscernible over A. Let pi(x, y) = tp(bai0/A) and let qi(x) =

⋃
j<ω pi(x, aij). If each

qi(x) is inconsistent, we can find in each case some ϕi(x, y) ∈ pi(x, y) and some ki < ω
such that {ϕi(x, aij) : j < ω} is ki-inconsistent. Notice that b |= {ϕi(x, ai0 : i < κ}. By
almost mutual indiscernibility over A, (ai0 : i < κ) ≡A (aif(i)) : i < κ) for each f : κ → ω.
Hence π(x) ∪ {ϕi(x, aif(i)) : i < κ} is consistent for each such f , which shows that we have
obtained an inp-pattern of depth κ in π(x). If, on the contrary, some qi(x) is consistent,
then we can apply Lemma 7.9 to the array consisting in this single row and we obtain some
Ab-indiscernible sequence (a′j : j < ω) ≡Aai0 (aij : j < ω).

2 ⇒ 3. Clear.

3 ⇒ 1. Assume there is an inp-pattern of depth κ in π(x), with array (aij : i < κ, j < ω),
formulas (ϕi(x, yi) : i < κ) and numbers (ki : i < κ). By an application of Proposition 5.8
(after extending the width of the array) we can assume that the rows are mutually A-
indiscernible. Let b |= π(x)∪ {ϕi(x, ai0) : i < κ}. Then |= ϕi(b, ai0) and {ϕ(x, aij) : j < ω}
is inconsistent. This means that we can not find some i < κ as in point 3. 2

Proposition 7.11 If there is an inp-pattern of depth κ1 · κ2 in tp(b1b2/A), then either
there is an inp-pattern of depth κ1 in tp(b1/A) or there is an inp-pattern of depth κ2 in
tp(b2/Ab1).

Proof: We assume that there is no inp-pattern of depth κ1 in tp(b1/A) and there is no inp-
pattern of depth κ2 in tp(b2/Ab1), and we will apply Proposition 7.10. Let (a(i,j),k : (i, j) ∈
κ1 × κ2, k < ω) be an array with mutually A-indiscernible rows. We consider the cartesian
product κ1× κ2 lexicographically ordered and we use the notation a(ij) = (a(i,j),k : k < ω).
We inductively obtain some sequence a′i = (a′ij : j < ω) and some ordinal αi < κ2 for each
i < κ1 in such a way that

1. a′i is indiscernible over b2Di, where Di = Aa′<ia≥(i+1,0).

2. a′i ≡Dia(i,αi),0 a(i,αi).

3. The rows of the array a′≤i ∪ a≥(i+1,0) are mutually A-indiscernible.

By the assumption (in case i = 0) and the inductive hypothesis applied to 3 (cases i successor
or limit), the rows (a(i,j) : j < κ2) are mutually indiscernible over Di. Note that there is no
inp-pattern of depth κ2 in tp(b2/Di). By Proposition 7.10, for some αi < κ2, there is some
Dib2-indiscernible sequence a′i ≡Dia(i,αi),0 a(i,αi). Clearly, all conditions of the construction
are satisfied. It follows that the rows of (a′i : i < κ1) are almost mutually indiscernible
over Ab2. By Proposition 7.10 there is some i < κ2 and some Ab1b2-indiscernible sequence
(aj : j < ω) ≡Ab2a′i0 a

′
i. Then (aj : j < ω) ≡Aa(i,αi)0 a(i,αi) and again by Proposition 7.10

we conclude that there is no inp-pattern of depth κ1 · κ2 in tp(b1b2/A). 2

Remark 7.12 If the burden of a type π were defined as the least cardinal κ for which there
is no inp-pattern of depth κ in π, then Proposition 7.11 would read as follows:

bdn(b1b2/A) ≤ bdn(b1/A) · bdn(b2/Ab1)

With our official definition we have for successor cardinal numbers κ1, κ2 < ω:

bdn(b1/A) < κ1 & bdn(b2/Ab1) < κ2 ⇒ bdn(b1b2/A) < κ1 · κ2
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Corollary 7.13 If T has TP2, then this is witnessed by some formula ϕ(x, y) where x is
a single variable and the number is k = 2.

Proof: If T is TP2, then (by Remark 7.5 and Proposition 7.11) for some single element
b, for some set A, bdn(b/A) = ∞. Let ϕ(x, y) witness it. Then x is a single variable. As
shown in the proof of Lemma 7.4, we can then take k = 2. 2

8 dp-rank

Based on [1], [10] [14] and [11].

Definition 8.1 An ict-pattern (meaning independent contradictory types pattern) of depth
κ in a partial type π(x) is an array (aij : i < κ, j < ω) together with formulas ϕi(x, yi) ∈ L
for i < κ such that for every f : κ→ ω, the set

Γf (x) = {ϕi(x, ai,f(i)) : i < κ} ∪ {¬ϕi(x, aij) : i < κ, j 6= f(i)}

is consistent with π(x). The dependence rank (also called the dp-rank) of π(x) is the supre-
mum dprk(π) of all depths of ict-patterns in π(x). We write dprk(a/A) = dprk(tp(a/A)).

Proposition 8.2 1. bdn(π) ≤ dprk(π).

2. If π is NIP, then bdn(π) = dprk(π) <∞; otherwise dprk(π) =∞.

Proof: 1. Let π(x) be a partial type over A. We show that we can obtain an ict-pattern
of depth κ in π(x) from an inp-pattern of depth κ in π(x). Let (ϕi(x, yi) : i < κ), with
(aij : i < κ) and (ki : i < κ) define an inp-pattern in π(x). We can assume that the rows of
the array are mutually indiscernible over A. Choose a realization b of π(x) ∪ {ϕi(x, ai0) :
i < κ}. If i < κ, there are at most ki < ω indexes j < ω such that |= ϕi(b, aij) and we can
delete them of the array. Hence we can assume that |= ¬ϕi(b, aij) for every j 6= 0. This
means that π(x) ∪ {ϕi(x, ai0) : i < κ} ∪ {¬ϕi(x, aij) : i < κ, 0 < j < ω} is consistent. By
mutual indiscernibility over A, the same happens for any other path f : κ→ ω. Therefore
we have an ict-pattern in π(x).

2. Let π(x) be a partial type over A. If π(x) has IP, witnessed by ϕ(x, y) and (aij : j <
κ, i ∈ ω), (bJ : J ⊆ κ× ω) such that bJ |= π(x) and |= ϕ(bJ , aij)⇔ (i, j) ∈ J , then we can
obtain an ict-pattern in π(x) defining ϕi(x, yi) = ϕ(x, y) for all i < κ, j < ω.

Now assume π(x) is NIP and let us check that bdn(π) ≥ dprk(π). Let (ϕi(x, yi) : i < κ),
with (aij : i < κ, j < ω) define an ict-pattern in π(x). We can assume that the rows
of the array are mutually A-indiscernible. Let ψi(x; y1y2) = ϕi(x, y1) ∧ ¬ϕi(x, y2) and
let bij = ai,2·jai,2·j+1. Since π(x) is NIP, π(x) ∪ {ψi(x; bij) : j < ω} is inconsistent.
Then for some θi(x, zi) ∈ L for some tuple ci ∈ A, for some ki < ω, θi(x, ci) ∈ π(x)
and {θi(x, ci) ∧ ψi(x, bij) :< ω} is ki-inconsistent. Then the formulas χi(x; y1y2, zi) =
ψi(x; y1y2) ∧ θi(x, zi) with parameters (bijci : i < κ, j < ω) and numbers (ki : i < κ) define
a inp-pattern of depth κ in π(x).

Finally, assume that dprk(π) = ∞ and let us show that π has IP. We may find an
ict-pattern of length ω in π(x) with constant formula ϕi(x, yi) = ϕ(x, y). Look at the first
column (ai0 : i < ω). Given J ⊆ ω choose f : ω → ω be such that f(i) = 0 ⇔ i ∈ J .
Since π(x) ∪ {ϕ(x, aif(i)) : i < κ} ∪ {¬ϕ(x, aij) : i < κ, f(i) 6= j < ω} is consistent,
π(x) ∪ {ϕ(x, ai0) : i ∈ J} ∪ {¬ϕ(x, ai0) : i ∈ ω r J} is consistent. Hence ϕ(x, y) and
{ai0 : i < ω} witness that π(x) has IP. 2
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Remark 8.3 1. dprk(π(x)) = 0 iff π(x) is algebraic.

2. If π(x) ` π′(x), then dprk(π(x)) ≤ dprk(π′(x)).

3. dprk(π(x)) <∞ iff dprk(π(x)) < |T |+

Proof: 1. If π(x) is not algebraic we easily find an ict-pattern of depth 1 in π(x) using
the formula x = y. On the other hand, if there is an ict-pattern of depth 1 in π(x), it is
clear that π(x) has infinitely many realizations.

2 is clear.

3. Similar to the proof of 3 of Remark 7.3. 2

Proposition 8.4 let π(x) be a partial type over A. The following are equivalent:

1. There is no ict-pattern of depth κ in π(x).

2. If (aij : i < κ, j < ω) has mutually A-indiscernible rows and b |= π(x), then some row
(aij : j < ω) is Ab-indiscernible.

3. If (aij : i < κ, j < ω) has mutually A-indiscernible rows and b |= π(x), then for some
i < κ, aij ≡Ab ail for all j, l < ω.

Proof: 3 ⇒ 1. Assume there an ict-pattern of depth κ in π(x), given by formulas
(ϕi(x, yi) : i < κ) and some array (aij : i < κ, j < ω). We may assume that the rows are
mutually A-indiscernible. Let b |= π(x)∪ {ϕi(x, ai,0) : i < κ} ∪ {¬ϕi(x, aij) : i < κ, 0 < j <
ω}. Then ai0 and ai1 have different type over Ab, contradicting 3.

1 ⇒ 3. Assume (aij : i < κ, j < ω) has mutually A-indiscernible rows, b |= π(x) and
in each row there are elements with different type over Ab, say for each i < κ there are
ϕi(x, yi) ∈ L(A) and k, l < ω such that |= ϕi(b, aik)∧¬ϕi(b, ail). Adding the parameters of
ϕi to each element of the row if necessary, we can assume that ϕi(x, yi) ∈ L. By compactness
we can find such an array where the rows have the order type of the integers. Hence it is
of the form (aij : i < κ, j ∈ Z). Let us look at some i < κ. Either {j ∈ Z :|= ϕi(b, aij)} is
cofinal or {j ∈ Z :|= ¬ϕi(b, aij) : j < ω} is cofinal and similarly, either {j ∈ Z :|= ϕi(b, aij)}
is coinitial or {j ∈ Z :|= ¬ϕi(b, aij) : j < ω} is coinitial. Deleting some elements of the row
we may assume that either |= ϕi(b, ai0)∧¬ϕ(b, aij) for all j > 0 or |= ¬ϕi(b, ai0)∧ϕ(b, aij)
for all j > 0; and similarly we may assume that either |= ϕi(b, ai0)∧¬ϕ(b, aij) for all j < 0
or |= ¬ϕi(b, ai0)∧ϕ(b, aij) for all j < 0. There are four possible cases. The first case is that
|= ϕi(b, ai0)∧¬ϕ(b, aij) for all j 6= 0. In this case we take ψi(x, yi) = ϕi(x, yi). The second
case is similar, with ϕ and ¬ϕ switching its roles. Here we take ψi(x, yi) = ¬ϕi(x, yi). In the
third case we have |= ϕi(b, aij) for all j ≤ 0 and |= ϕi(b, ai,j) for all j > 0. Then we replace
the row by (bij : jZ) where bi = a2·i,2·i+1 and we take ψi(x; y1

i y
2
i ) = ϕi(x, y

1
i ) ∧ ¬ϕi(x, y2

i ).
The fourth case is similar (exchanging ϕi and ¬ϕi(x, yi)) and has a similar solution. In
any case, after modifying the row we obtain a formula ψi such that π(x) ∪ {ψi(x, ai0) : i <
κ} ∪ {¬ψi(x, aij) : i < κ, 0 6= j ∈ Z} is consistent. By Remark 5.5 any other path produces
a corresponding set also consistent with π(x). Hence (after restricting the row to indexes
≥ 0) this array and these formulas provide an ict-pattern of depth κ in π(x).

2 ⇔ 3. In fact we only need to check 3 ⇒ 2. Assume we have a counterexample to
2, given by the array (aij : i < κ, j < ω) and b |= π(x). Consider some row i < κ. For
some n < ω there are j0 < . . . < jn−1 < l0 < . . . < ln−1 < ω such that aij0 . . . aijn−1

6≡Ab
ail0 . . . ailn−1

. Without loss of generality, jk = k and lk = n + k. We define a new row
(bij : j < ω) putting bij = ai,n·j , . . . , ai,n·j+n−1. We do a corresponding modification in
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every other row. That way we obtain an array (bij : i < κ, j < ω) with mutually A-
indiscernible rows. Note that in each row there are two elements with different type over
Ab. Hence we have a counterexample to 3. 2

9 Simple types in NTP2 theories

Based on [10].

Definition 9.1 Recall from [7] that a partial type π(x) is simple if there are not parameters
(bf : f ∈ ωω), (as : s ∈ ω<ω), formula ϕ(x, y) ∈ L and number < ω such that

1. bf |= π(x) for all f ∈ ωω.

2. bf |= ϕ(x, af�n) for all f ∈ ωω for all n < ω.

3. {ϕ(x, asan) : n < ω} is k-inconsistent for all s ∈ ω<ω.

The same notion is defined if we allow ϕ(x, y) ∈ L(A) since the additional parameters of ϕ
can be added to the nodes as of the tree.

We say that the partial type Σ(u) is co-simple if there are no such objects as where each
as is a tuple of realizations of Σ(u) (this replaces condition 1 on π) and ϕ(x, y) ∈ L(A). In
this case this does not seem to be equivalent to ϕ(x, y) ∈ L since adding the new parameters
to the branches bf is not enough (k-inconsistency might be lost). Note that y is a tuple of
the form u1 . . . um where each ui has the length of u.

Proposition 9.2 The following are equivalent for any partial type π(x) over A:

1. π(x) is simple.

2. D(π,∆, k) < ω for all ∆, k.

3. For any completion p(x) ∈ S(B) of π(x) there is some C ⊆ B such that |C| ≤ |T |+ |x|
and p(x) does not fork over C.

4. If A ⊆ C, a |= π and b |̂
C
a, then a |̂

C
b.

Proof: See Proposition 7.3 in [7]. 2

Remark 9.3 1. Any extension of a simple type is simple.

2. If π(x, y) is simple, then the type ∃yπ(x, y) is simple. Therefore, if π(x, y) is a simple
partial type over A, then π � x = {ϕ(x) ∈ L(A) : π(x, y) ` ϕ(x)} is simple.

3. tp(a/A) and tp(b/Aa) are simple if and only if tp(ab/A) is simple. More generally,
tp(ai/Aa<i) is simple for all i < α if and only if tp((ai : i < α)/A) is simple.

4. If the types πi(xi) are simple for all i ∈ I, then
⋃
i∈I πi(xi) is simple.

5. If the types π1(x), π2(x) are simple, then the type π1(x) ∨ π2(x) is simple.

Proof: See remarks 7.2 and 7.5 in [7]. 2

Remark 9.4 Simple types are NTP2.
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Proof: Assume π(x) is a TP2 type over A, witnessed by ϕ(x, y), k < ω and the aray
(aij : i, j < ω). Put a′∅ = a0,0 and a′s = an,s(n−1) if n ≥ 1 and s ∈ ωn. Note that
π(x) ∪ {ϕ(x, a′f�n) : n < ω} is consistent for each f ∈ ωω. Hence (a′s : s ∈ ωω) with k and
ϕ(x, y) witness that π(x) is not simple. 2

Note the parenthesis in next proposition. They mean that each statement can be read
relatively to dividing or forking. Equivalence between 1, 2 and 5 with forking was known
for us.

Proposition 9.5 The following are equivalent for any partial type π(x) over A:

1. π is simple.

2. For any completion p(x) ∈ S(B) of π(x) there is some C ⊆ B such that |C| ≤ |T |+ |x|
and p(x) does not divide (fork) over C.

3. If B ⊇ A, (bi : i < ω) is a Morley sequence in tp(b/B) and π(x) ∪ {ϕ(x, b)} divides
(forks) over B, then π(x) ∪ {ϕ(x, bi) : i < ω} is inconsistent.

4. If B ⊇ A, a |= π and (bi : i < λ) is B-independent, where λ = i(2κ)+ and κ ≥
|B|+ |T + |a|+ |bi|, then a |̂ d

B
bi (a |̂

B
bi) for some i < λ.

5. If A ⊆ C, a |= π and b |̂
C
a, then a |̂ d

C
b (a |̂

C
b).

Proof: 1 ⇒ 2. Non forking implies non dividing. The rest is in Proposition 9.2.

2 ⇒ 3. Let κ = |T |+|x|, let I be of order type (κ+)∗ (the reverse ordering of κ+) and let
(ci : i ∈ I) be a B-indiscernible sequence with the same Ehrenfeucht-Mostowski type over B
as (bi : i < ω). Then (ci : i ∈ I) is Morley over B. If π(x) ∪ {ϕ(x, bi) : i < ω} is consistent,
then π(x)∪{ϕ(x, ci) : i ∈ I} is consistent too. Let a be a realization of this set of formulas.
By 2, there is some I0 ⊆ I of cardinality ≤ κ such that tp(a/B(ci :∈ I)) does not divide
(fork) over B(ci : i ∈ I0). Choose j ∈ I such that j < I0. Then (ci : i ∈ I0) |̂

B
cj (this is

due to a version of Lemma 5.14 of [8] for forking independence which holds because forking
independence has left transitivity; see Remark 12.15 of [8]). By Proposition 4.9 of [8] and
Lemma 4.8 of [7] ϕ(x, cj) divides (forks) over B(ci : i ∈ I0), which is a contradiction since
|= ϕ(a, cj).

3 ⇒ 4. Assume a 6 |̂ d

B
bi for all i < λ. By the choice of λ we can extract a Ba-

indiscernible sequence (b′i : i < ω) which is locally like (bi : i < λ) over Ba. Then it is a
Morley sequence over B and there is some ϕ(x, y) ∈ L(B) such that |= ϕ(a, b′i) and ϕ(x, b′i)
divides over B for all i < ω. This contradicts 3. Similar for the forking version.

4 ⇒ 5. Since b |̂
C
a, there is a long Morley sequence (bi : i < λ) in tp(b/Ca) which is

independent over C and b = b0. By 4, a |̂ d

C
bi for some i < λ and by Ba-indiscernibility,

a |̂ d

C
b. Similar for forking.

5 ⇒ 1. Like the proof of the corresponding implication in Proposition 7.3 of [7]. 2

Remark 9.6 Let π(u) be a co-simple partial type over A. If each b ∈ B is a tuple of
realizations of π(u), then any extension π′(u) of π(u) over B is co-simple.

Proposition 9.7 Let π(u) be a partial type over A, ϕ(x, y) ∈ L(A) and k < ω,where y is
a tuple u1, . . . , um and each ui is a tuple of the length of u. The following are equivalent:
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1. π(u) is not co-simple, witnessed by ϕ(x, y) and k.

2. There is a sequence (ai : i < ω) where each ai is a tuple of realizations of π(u) and
ϕ(x, ai) divides over Aa<i with respect to k for all i < ω and {ϕ(x, ai) : i < ω} is
consistent.

3. There is a sequence (ai : i < ω) where each ai is a tuple of realizations of π(u) and
there is some b such that |= ϕ(b, ai) for all i < ω, (ai : i < ω) is Ab-indiscernible and
ϕ(x, ai) divides over Aa<i with respect to k for all i < ω.

Proof: See the proof of Proposition 12.23 in [8]. 2

Proposition 9.8 The following are equivalent for any partial type π(u) over A:

1. π(u) is co-simple.

2. If B is a set of realizations of π(u) and q(x) ∈ S(AB), then for some B′ ⊆ B of
cardinality ≤ |A|+ |T |+ |u|, q(x) does not divide (fork) over AB′.

3. If B is a set of realizations of π(u), (ai : i < ω) is a Morley sequence over AB,
every ai is a tuple of realizations of π(u) and ϕ(x, a0) divides (forks) over AB, then
{ϕ(x, ai) : i < ω} is inconsistent.

4. If B is a set of realizations of π(u), and (ai : i < λ) is an AB-independent sequence of

tuples of realizations of π(u), where λ = i2κ+ and κ ≥ |AB|+ |ai|+ |b|, then b |̂ d

AB
ai

(b |̂
AB

ai) for some i < λ.

5. If B is a set of realizations of π(u), a is a tuple of realizations of π and a |̂
AB

b,

then b |̂ d

AB
a (b |̂

AB
a).

Proof: Like the proof of Proposition 9.5. For 1 ⇒ 2 use also Proposition 9.7. 2

Proposition 9.9 Let π(x) be a simple partial type over A and assume the chain condition
over A holds with respect to π(x). Let (ai : i < ω) be a Morley sequence in π(x) over A
and for each i < ω let ai be an indiscernible sequence over A of length ω starting with ai.
Then we can find bi ≡Aai ai for each i < ω such that the array (bi : i < ω) has mutually
A-indiscernible rows.

Proof: By Lemma 7.7 it suffices to find such array with almost mutually A-indiscernible
rows. We construct the sequences bi by induction on i in such a way that

1. bi ≡Aai ai

2. bi is indiscernible over Ab̄<ia>i

3. b≤ia>i+1 |̂ A ai+1

4. a≥i+1 |̂ A b≤i.

Since (by 1 ) the first element of bi is ai, 2 implies that the rows will be almost mutually
A-indiscernible. We use the chain condition in the form of point 6 of Proposition 4.2. Note
that simplicity of π(x) allows us to use symmetry and transitivity of independence when
working with tuples composed of realizations of π. Hence 3 follows from 4 (and the fact
that ai+1 |̂ A a>i+1, which holds because the sequence is Morley over A).
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We start noticing that a>0 |̂ A a0 and then the chain condition gives us some b0 ≡Aa0 a0

which is indiscernible over Aa>0 and such that a>0 |̂ A b0 (which is condition 4 for i = 0).

Now assume inductively 4 and 3 for i − 1, namely, a≥i |̂ A b<i and b<ia>i |̂ A ai. With

the chain condition we choose now bi ≡Aai ai indiscernible over Ab<ia>i and such that
b<ia>i |̂ A bi. Then a>i |̂ Ab<i bi and this together with the induction hypothesis gives 4 :

a>i |̂ A b≤i. 2

Proposition 9.10 Let π(x) be a simple partial type over A and a |= π. If the chain
condition holds over A with respect to π(x) and tp(b/A) is NTP2, then a |̂

A
b implies

b |̂ d

A
a.

Proof: Since a |̂
A
b, there is a Morley sequence (ai : i < ω) over Ab in tp(a/Ab) which is

also Morley over A (see Lemma 5.11 in [8]). We can assume a = a0. Assume ϕ(x, y) ∈ L(A),
|= ϕ(b, a) and ϕ(x, a) divides over A and let a0 = (a0

i : i < ω) be an A-indiscernible sequence
witnessing it, namely, {ϕ(x, a0

i ) : i < ω} is inconsistent and a = a0
0. Hence {ϕ(x, a0

i ) : i < ω}
is k-inconsistent for some k < ω. Choose ai such that aiai ≡A a0a0. By Proposition 9.9
we may assume that the rows of the array (ai : i < ω) are mutually A-indiscernible. Notice
that b |= {ϕ(x, ai) : i < ω} and hence the first column {ϕ(x, ai) : i < ω} is consistent with
tp(b/A). By Remark 5.5 all paths give similar consistent sets of formulas. Since each row
is k-inconsistent, this array shows that tp(b/A) has TP2. 2

Proposition 9.11 Let π(x) be a simple partial type over A.

1. For any ϕ(x, y) ∈ L(A), for any tuple a such that a |̂
A
A, π(x)∪{ϕ(x, a)} forks over

A iff it divides over A.

2. If A is an extension base, the chain condition holds over A with respect to π(x).

Proof: 1. Assume π(x) ∪ {ϕ(x, a)} forks over A . Since a |̂
A
A, there is a Morley

sequence (ai : i < ω) in tp(a/A). By point 3 of Proposition 9.5 π(x)∪ {ϕ(x, ai) : i < ω} is
inconsistent. This implies that π(x) ∪ {ϕ(x, a)} divides over A.

2. By 1 and Proposition 6.11 π(x) ∪ {ϕ(x, a)} forks over A iff it array-divides over A.
Hence we can easily adapt the proof of Proposition 6.6 (choosing a Morley sequence as
universal indiscernible sequence). 2

Proposition 9.12 Let π(u) be a partial type over A. If π(u) is not co-simple, then for some
model M ⊇ A, for some tuple a of realizations of π(u), for some b, tp(a/Mb) coinherits

from M but b 6 |̂ d

M
a.

Proof: Fix some formula ϕ(x, y) witnessing the failure of co-simplicity. Let T sk be some
skolemization of T . Then ϕ(x, y) witnesses the failure of co-simplicity of π(u) in T sk. By
point 3 of Proposition 9.7, after extending the indiscernible sequence to length ω+1, in T sk

there are a sequence (ai : i ≤ ω) of tuples ai of realizations of π, some b and some number
k < ω, such that |= ϕ(b, ai) for all i < ω, (ai : i ≤ ω) is Ab-indiscernible and ϕ(x, ai)
divides over Aa<i with respect to k for all i ≤ ω. Let M be the Skolem hull of Aa<ω. By
indiscernibility, tp(aω/Mb) is a coheir of tp(aω/Mb) (in T sk and in T ). By construction

b 6 |̂ d

Aa<ω
aω, witnessed in T sk by ϕ(x, y) ∈ L. Since M is definable over Aa<ω, ϕ(x, y) also

witnesses in T sk that b 6 |̂ d

M
aω. Since ϕ(x, y) ∈ L we have b 6 |̂ d

M
aω also in T . 2

Corollary 9.13 Let π(x) be a simple type over the extension base A and let tp(b/A) be
NTP2. If a |= π(x), then: a |̂

A
b iff b |̂

A
a.
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Proof: By propositions 9.11, 9.10 and 9.5. 2

Corollary 9.14 Let T be NTP2.

1. Simple types are co-simple.

2. If π(x) is a simple partial type over A and a |= π(x), then for every b: a |̂
A
b iff

b |̂
A
a.

3. If π(x) is a simple partial type over A and a |= π(x), then for every B,C: if a |̂
A
B

and a |̂
AB

C, then a |̂
A
BC.

Proof: 1. By Proposition 9.12 and Proposition 9.10, since in a NTP2 theory the chain
condition holds over models.

2. By 1, and propositions 9.2 and 9.8.

3. By 2. 2

Remark 9.15 We could define the notion of co-NTP2 type similarly to the way co-simple
types were defined, requiring that the parameters of the array realize the type (or perhaps
are tuples of realizations of the type). Then the proof of Proposition 9.10 would give:

Let π(x) be a simple co-NTP2 partial type over A and a |= π. If the chain condition

holds over A with respect to π(x), then a |̂
A
b implies b |̂ d

A
a.

Moreover parallel to Corollary 9.14 we would have:

1. Simple co-NTP2 types are co-simple.

2. If π(x) is a simple co-NTP2 partial type over A and a |= π(x), then for every b:
a |̂

A
b iff b |̂

A
a.

3. If π(x) is a simple co-NTP2 partial type over A and a |= π(x), then for every B,C:
if a |̂

A
B and a |̂

AB
C, then a |̂

A
BC.

The question is then whether simple types are co-NTP2.

10 The triangle-free random graph

Definition 10.1 The theory of the triangle-free random graph is the theory of an irreflex-
ive, symmetric binary relation R without triangles and such that for any disjoint finite sets
A, B if no R-relations holds between elements of A ( A is an anti-clique), then there is
some c 6∈ A ∪ B such cRa for all a ∈ A and ¬cRb for all b ∈ B. This can be written as
a set of first-order axioms. In this section T will be this theory. We will use here a, b, c, x
for elements (points, singletons) and ā, b̄, c̄, x̄ for (possibly infinite) tuples. The following
notation will be also convenient: Ra(A) is the set of all b ∈ A such that R(a, b).

Remark 10.2 T is complete, is ω-categorical and has quantifier elimination.

Proof: We do a back-and-forth between models M,N of T . The set of partial isomorphism
is the set of all isomorphisms between finite substructures. It is clearly non empty. Assume
f is such an isomorphism and let a ∈M be a new element. Let A ∪B be the domain of f ,
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where a is R-related to all elements in A and to none in B. Let A′ = f(A) and B′ = f(B).
A′ is an anti-clique. By the axioms of T there is some b ∈ N which is R-related to all
elements of A′ and to none of B′ and it is not in the range of f . The mapping f ∪ {(a, b)}
works. 2

Proposition 10.3 All non algebraic types p(x) ∈ S1(A) are TP2.

Proof: For i, j < ω choose aijbij such that aijRbik for all j 6= k and no other R-
relation holds between all them and between them and A. This array can easily obtained
by induction on i. Now let ϕ(x; yz) = xRy ∧ xRz. Note that {ϕ(x; aijbij) : j < ω} is
2-inconsistent for all i < ω and {ϕ(x; aif(i)bif(i)) : i < ω} is consistent with p(x) for every
f : ω → ω. This witnesses TP2 of p(x). 2

Remark 10.4 In T , acl(A) = A.

Proof: Let a 6∈ A. Construct inductively a0, a1, . . . such that a = a0 and ai+1 6∈ Aa0 . . . ai,
Rai+1(A) = Ra(A). This shows that tp(a/A) has infinitely many realizations. 2

Remark 10.5 If (ai : i < ω) is indiscernible, then ¬R(ai, aj) for all i < j < ω.

Lemma 10.6 If a, b, b′ 6∈ C, R(a, b), R(a, b′), Rb(C)∩Rb′(C) = ∅ and b 6= b′, then a 6 |̂ d

C
bb′.

Proof: Notice that ¬R(b, b′). Let p(x, b, b′) = tp(a/Cbb′), with p(x, y, z) ∈ S(C). We
will find some sequence (bib

′
i : i < ω) with bb′ ≡C bib

′
i and Σ(x) =

⋃
i<ω p(x, bi, b

′
i) 2-

inconsistent. We start with b0b
′
0 = bb′. We want now to choose b1 such that Rb(C) =

Rb1(C), ¬R(b0, b1) and R(b′0, b1). This is possible since Rb(C)∪{b′0} is an anticlique. Since
b0 ≡C b1, we can now choose b′1 such that b0b

′
0 ≡C b1b

′
1 and ¬R(b′1, b

′
0). By iteration, we

obtain the sequence with the additional property that ¬R(bi, bj),¬R(b′ib
′
j) and R(b′i, bj) for

all i < j < ω. Since Σ(x) contains R(x, b′i) ∧R(x, bj) for all i < j, it is 2-inconsistent. 2

Lemma 10.7 Assume a 6∈ C and B ∩ C = ∅. If for all b, b′ ∈ B such that R(a, b) and

R(a, b′) it happens that Rb(C) ∩Rb′(C) 6= ∅, then a |̂ d

C
B.

Proof: Let b̄ enumerate Ra(B) and let b̄′ enumerate BrRa(B). Let p(x, b̄, b̄′) = tp(a/BC)
with p(x, ȳ, ȳ′) ∈ S(C). Assume (b̄ib̄

′
i : i < ω) is C-indiscernible, with b̄b̄′ = b̄0b̄

′
0 and let

us check that Σ(x) =
⋃
i<ω p(x, b̄i, b̄

′
i) is consistent. For this it is enough to check that

Ra(C) ∪ {b̄i : i < ω} is an anti-clique. Clearly there is no R-relation between elements of
Ra(C) and elements of b̄i. Let b̄i = (bij : j ∈ J). By indiscernibility ¬R(bij , b

k
j ). If i < k < ω

and j, l ∈ J are different, then Rbij (C) ∩Rbkl (C) 6= ∅ and therefore ¬R(bij , b
k
l ) . 2

Proposition 10.8 A |̂ d

C
B iff AC ∩BC = C and for all a ∈ Ar C for all b, b′ ∈ B r C:

if R(a, b) and R(a, b′) then Rb(C) ∩Rb′(C) 6= ∅.

Proof: Recall that A |̂ d

C
B ⇔ AC |̂ d

C
BC ⇔ Ar C |̂ d

C
B r C.

⇒. If a ∈ AC ∩ BC then a |̂ d

C
a and therefore a ∈ acl(C) = C. The rest follows from

Lemma 10.6.

⇐. We can assume A r C to be finite and the proof can be realized by induction
on |A r C|. Using the fact that ā |̂ d

C
B together with b̄ |̂ d

Cā
B implies āb̄ |̂ d

C
B, it is

enough to check it for the case of a single element a. And the case A = {a} follows from
Lemma 10.7. 2
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Proposition 10.9 In T |̂
A

= |̂ d

A
.

Proof: It is enough to check that dividing has the extension property. Let ā = a1, . . . , an
and assume A ⊆ B ⊆ C and ā |̂ d

A
B. We want to find some ā′ ≡B ā such that ā′ |̂

A
C.

We can assume that ai 6∈ B for all i = 1, . . . , n. Let p(x̄) = tp(ā/B) and let Σ(x) =
p(x̄) ∪ {xi 6= c ∧ ¬R(xi, c) : c ∈ C r B, 1 ≤ i ≤ n}. It is consistent and if ā′ |= Σ(x) then
ā′ |̂

A
C. 2

Proposition 10.10 Let p(x) ∈ S(A) be non algebraic and such that for some a ∈ A,
R(x, a) ∈ p(x):

1. If B is a set of realizations of p(x), then A |̂
C
B iff AC ∩BC = C.

2. p(x) is co-simple.

Proof: 1. By Proposition 10.8.

2. By 1 and point 4 of Proposition 9.8. 2

11 Strict nonforking

Based on [12].

Recall from [7] the following definition and facts:

Definition 11.1 1. A global type p(x) is Lascar invariant over C iff for every ϕ(x, y) ∈
L, for all tuples a

Ls≡C b, if ϕ(x, a) ∈ p then ϕ(x, b) ∈ p.

2. a |̂ i

C
b iff for some global type p(x) ⊇ tp(a/Cb), p(x) is Lascar invariant over C.

3. a |̂ ist

C
b iff for some global type p(x) ⊇ tp(a/Cb), p(x) is Lascar invariant over C and

for every B ⊇ Cb, for every c |= p(x) � B, B |̂
C
c.

4. A sequence (ai : i < α) is strictly invariant over A if for all i < α, ai |̂ ist

A
a<i.

Fact 11.2 1. |̂ i
is a preindependence relation with extension, right-normality, anti-

reflexivity and algebraicity properties.

2. a |̂ i

A
b implies a |̂

A
b.

3. If a |̂ i

A
I and I is an A-indiscernible sequence, then I is Aa-indiscernible.

4. |̂ ist
is invariant, monotone and has the extension property.

Definition 11.3 A sequence (ai : i ∈ I) is strictly independent over A if for all (āi : i ∈ I)
where each āi is an A-indiscernible sequence, there is a mutually A-indiscernible sequence
(b̄i : i ∈ I) such that b̄i ≡A āi for all i ∈ I.

Remark 11.4 By propositions 9.9 and 9.11, if (ai : i < α) is a Morley sequence of real-
izations of a simple type over an extension base A, then (ai : i < α) is strictly independent.

Lemma 11.5 (Shelah’s lemma) Any strictly invariant sequence is strictly independent.

21



Proof: By compactness, it is enough to check this for a sequence (āi : i < n) where n < ω.
By Lemma 7.7 it is enough to obtain an array with almost mutually indiscernible rows.
The proof is by complete induction on n. Assume we have obtained an array (b̄i : i < n)
with almost mutually A-indiscernible rows and such that b̄i ≡Aai āi for all i < n. Since

an |̂ ist

A
a<n, we may assume that an |̂ ist

A
b̄<n. Hence b̄<n |̂ d

A
an and therefore there is

some b̄n ≡Aan ān which is Ab̄<n-indiscernible. If i < n, then b̄i is indiscernible over

Ab̄<ia<n and an |̂ i

Ab̄<ia<n
b̄i and therefore b̄i is Ab̄ia≤n-indiscernible. 2

Lemma 11.6 Let T be NTP2 and (ϕi(x, yi) : i < |T |+) a sequence of L(A)-formulas. If
(ai : i < |T |+) is a strictly A-independent sequence and each ϕi(x, ai) divides over A, then
{ϕi(x, ai) : i < |T |+} is inconsistent.

Proof: Choose for every i < |T |+ an A-indiscernible sequence āi = (aij : j < ω) starting
with ai0 = ai and such that {ϕi(x, aij) : j < ω} is inconsistent, hence ki-inconsistent for
some ki < ω. Some formula ϕi and some number ki occur jointly |T |+ times, so we may
assume ϕi = ϕ(x, y) and ki = k for all i. Since the sequence is strictly A-independent, we
may assume that the rows of the array (aij : i < |T |+, j < ω) are mutually A-indiscernible.
If we assume that {ϕ(x, ai) : i < |T |+} is consistent, then {ϕ(x, aif(i)) : i < |T |+} is
consistent for every f : |T |+ → ω. This shows that T has TP2. 2

Definition 11.7 An infinite sequence (ai : i ∈ I) is a witness of a over A if a ≡A ai for all
i and for every ϕ(x, y) ∈ L(A) such that ϕ(x, a) divides over A, for every infinite countable
J ⊆ I, {ϕ(x, ai) : i ∈ J} is inconsistent. If the sequence is A-indiscernible, this is equivalent
to {ϕ(x, ai) : i ∈ I) being inconsistent and in this case this coincides with the notion of
universal indiscernible sequence introduced earlier.

Proposition 11.8 Let T be NTP2. Any infinite strictly A-independent sequence is a wit-
ness over A.

Proof: Let (ai : i ∈ I) be strictly independent over A, and assume ai ≡A aj for all
i, j ∈ I. We can assume 0 ∈ I. Assume ϕ(x, y) ∈ L(A) and ϕ(x, a0) divides over A.
Choose some A-indiscernible sequence (a0j : j < ω) starting with a0 = a00 and such that
{ϕ(x, a0j) : j < ω} is inconsistent, hence k-inconsistent for some k < ω. For any other
i ∈ I choose (aij : j < ω) ≡A (a0j : j < ω) with ai0 = ai. Clearly {ϕ(x, aij) : j < ω} is
k-inconsistent. By strict A-independence, we may assume the rows of the array (aij : i ∈
I, j < ω) are mutually indiscernible over A. If (ai : i ∈ I) is not a witness for ϕ(x, y), then
{ϕ(x, ai0) : i ∈ J} is consistent for some (infinite) countable J ⊆ I. As in the proof of
Lemma 11.6, this contradicts NTP2 of T . 2

Corollary 11.9 In a NTP2 theory, if A is an extension base for |̂ ist
then forking over A

coincides with dividing over A.

Proof: Assume A is an extension base for |̂ ist
, ϕ(x, y) ∈ L, ϕ(x, b) ` ϕ1(x, a1) ∨ . . . ∨

ϕn(x, an) and each ϕi(x, ai) divides over A. We will show that ϕ(x, b) divides over A.
Let ā = ba1 . . . an and let (āi : i < ω) be a strictly A-invariant sequence starting with
ā0 = ā. Write āi = biai1 . . . a

i
n. Since (aij : i < ω) is a strictly A-invariant sequence, by

Proposition 11.8 it is a witness of aj over A and hence {ϕj(x, aij) : i < ω} is inconsistent.

We claim that {ϕ(x, bi) : i < ω} is inconsistent. Assume not and let c realize this type. For
some j, c realizes infinitely ϕj(x, a

i
j), a contradiction. 2

The previous result was exposed in Proposition 4.5 of [7] with a different proof. Propo-
sition 4.9 of [7] shows the same for the case that A is an extension base for |̂ .
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Fact 11.10 1. If T is NTP2, then A is an extension base for |̂ i
iff it is an extension

base for |̂ ist
.

2. If T is NIP, then A is an extension base for |̂ iff it is an extension base for |̂ ist
.

Proof: See Proposition 4.11 and Corollary 4.12 in [7]. 2

Proposition 11.11 The following are equivalent.

1. a |̂ ist

A
b.

2. For every c there is some c′ ≡Ab c such that a |̂ i

A
bc′ and bc′ |̂

A
a.

3. For every c there is some a′ ≡Ab a such that a′ |̂ i

A
bc and bc |̂

A
a′.

4. If p(x) = tp(a/Ab), the following is consistent:

p(x) ∪ {ϕ(x, c)↔ ϕ(x, c′) : c
Ls≡A c′, ϕ(x, y) ∈ L(A), c, c′ ∈ C} ∪ {¬ϕ(x, b, c) :

ϕ(x, y, z) ∈ L(A), c ∈ C and ϕ(a, y, z) forks over A}

Proof: By automorphism, 2 ⇔ 3.

1 ⇒ 3. Fix the global extension p(x) ⊇ tp(a/Ab) and take a′ |= p � Abc.

3 ⇒ 4. Consider a finite fragment π(x) of the partial type and let c be a tuple containing
all parameters of π(x). The tuple a′ given by 3 realizes π(x).

4 ⇒ 1. Extend the partial type to a complete global type. 2

Definition 11.12 Strict nonforking is defined in the same way as strict invariance except
that we require only the global extension p(x) ⊇ tp(a/Cb) does not fork over C instead of

requiring that is Lascar invariant over C. We write a |̂ snf

C
b for this. Note that |̂ snf

= |̂ ist

if T is NIP.

Remark 11.13 1. a |̂ ist

C
b implies a |̂ snf

C
b.

2. |̂ snf
has the extension property.

3. There is a characterization of a |̂ snf

A
b as in Proposition 11.11, exchanging |̂ ist

with

|̂ snf
and defining the set of formulas as

p(x)∪{¬ϕ(x, b, c) : ϕ(x, y, z) ∈ L(A), c ∈ C and ϕ(x, b, c) forks over A}∪{¬ϕ(x, b, c) :

ϕ(x, y, z) ∈ L(A), c ∈ C and ϕ(a, y, z) forks over A}

Lemma 11.14 a |̂ snf

A
b iff for each p(z) ∈ S(Ab) the following is consistent:

p(z) ∪ {¬ϕ(a, b, z) : ϕ(x, y, z) ∈ L(A) and ϕ(x, b, c) forks over A for some (all) c |= p}∪

{¬ϕ(a, b, z) : ϕ(x, y, z) ∈ L(A) and ϕ(a, y, z) forks over A}

Proposition 11.15 1. If (bi : i < α) is a witness of b = b0 over A and all bi have the

same type over Aa, then a |̂ d

A
b.
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2. Assume forking and dividing over A coincide. If ā = (ai : i < α) is a witness of

a = a0 over A, ā |̂
A
b, and all ai have the same type over Ab, then a |̂ snf

A
b.

3. Assume forking and dividing over A coincide. If ā = (ai : i < α) is an A-indiscernible

witness of a = a0 over A, ā |̂
A
b, and b |̂ i

A
ā, then a |̂ snf

A
b.

Proof: 1. Assume |= ϕ(a, b) and ϕ(x, b) divides over A. Then |= ϕ(a, bi) for all i < α,
contradicting inconsistency of an infinite subset of {ϕ(x, bi) : i < α}.

2. Let p(z) ∈ S(Ab). By Lemma 11.14, we must check the consistency of p(z) ∪
{¬ϕ(a, b, z) : ϕ(x, y, z) ∈ L(A) and ϕ(x, b, c) forks over A for some c |= p} ∪ {¬ϕ(a, b, z) :
ϕ(x, y, z) ∈ L(A) and ϕ(a, y, z) forks over A}. If it is inconsistent, then p(z) ` ϕ(a, b, z) ∨
ψ(a, b, z) where ϕ(x, y, z), ψ(x, y, z) ∈ L(A) and ϕ(x, b, c), ψ(a, y, z) fork (and divide) over
A and c |= p. Since ā is a witness, {ψ(ai, y, z) : i ∈ I} is inconsistent and so is {ψ(ai, b, z) :
i ∈ I} for some infinite countable I ⊆ α. To simplify notation, assume I = ω. Since
ai ≡Ab a, p(z) ` ϕ(ai, b, z) ∨ ψ(ai, b, z). By compactness p(z) `

∨n
i=0 ϕ(ai, b, z) for some

n < ω. Since ā |̂
A
b, there is some c′ |= p such that ā |̂

A
bc′. Then |= ϕ(ai, b, c

′) for some
i ≤ n. This shows that ϕ(x, b, c′) does not fork over A. Hence ϕ(x, b, c) does not fork over
A, a contradiction.

3. By 2, since b |̂ i

A
ā implies that ā is also indiscernible over Ab. 2

Proposition 11.16 If T is NTP2 and A is an extension base, then 1 ⇒ 2 ⇒ 3. If,
moreover, T is NIP they are all equivalent and equivalent to b |̂ ist

A
a.

1. a |̂ ist

A
b

2. (a, b) is a strictly A-independent sequence.

3. b |̂ snf

A
a

Proof: 1 ⇒ 2. By Shelah’s Lemma 11.5.

2 ⇒ 3. Since T is NTP2, A is an extension base for |̂ ist
and we can find strictly

A-invariant A-indiscernible infinite sequences ā, b̄ starting with a and with b respectively.
Since (a, b) is strictly A-independent, we may assume that ā is Ab̄-indiscernible and b̄
is Aā-indiscernible. By Proposition 11.8 ā and b̄ are witnesses over A. By item 1 of
Proposition 11.15, b̄ |̂ d

A
a. Since forking and dividing over A coincide, b̄ |̂

A
a. By item 2

of Proposition 11.15, b |̂ snf

A
a.

If T is NIP then |̂ ist
= |̂ snf

and hence b |̂ snf

A
a⇒ b |̂ ist

A
a⇒ b |̂ snf

A
a⇒ a |̂ snf

A
b. 2

12 Resilient theories

Based on [4] and [12].

Definition 12.1 Let SEMx (A) = {tp(ā/A) : ā is an A-indiscernible ω-sequence }. The
length of the tuples ai in all the sequences ā is the length of x. For p ∈ SEM (A), let cldiv(p) =
{ϕ(x, y) ∈ L(A) : for some (all) (ai : i < ω) |= p, {ϕ(ai, y) : i < ω} is consistent }. For
p, q ∈ SEM (A) we define

1. p ∼div q iff cldiv(p) = cldiv(q)
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2. p ≤div q iff cldiv(p) ⊇ cldiv(q).

Definition 12.2 Let p(x) ∈ Sx(M), where A ⊆M . The class of p over A in the fundamen-
tal order is defined as clfund

A (p) = {ϕ(x, y) ∈ L(A) : ϕ(x,m) ∈ p for some tuple m ∈ M}.
For p(x) ∈ Sx(M), q(x) ∈ Sx(N), where A ⊆M ∩N we define the fundamental order over
A by

1. p
fund∼ A q iff clfund

A (p) = clfund
A (q)

2. p
fund

≤ A q iff clfund
A (p) ⊇ clfund

A (q).

Ox(A) is the class of all types p(x) over models M ⊇ A modulo
fund∼ A. We endow Ox(A)

with the induced partial order
fund

≤ A.

Fact 12.3 Let T be stable, A ⊆ M ∩ N , p(x) ∈ S(M) and q(x) ∈ S(N). Then p
fund∼ A q

iff (M,dp) ≡A (N, dq), where (M,dp) is the expansion of M obtained after adding for each
ϕ(x;x1, . . . , xn) ∈ L(A) some n-ary relation symbol Rϕ for the relation {(a1, . . . , an) ∈
Mn : ϕ(x; a1, . . . , an) ∈ p} (and similarly for N and q).

Proposition 12.4 Let T be stable.

1. (SEMx (A)/ ∼div,≤div) ∼= (Ox(A),
fund

≤ A).

2. For any p, q ∈ SEMx (A): p ∼div q iff p = q.

Proof: Without loss of generality, A = ∅.
1. Let p(x) ∈ Sx(M). Choose a Morley sequence ā = (ai : i < ω) in p(x) over M and

let P = tp(ā) ∈ SEMx . We claim that ϕ(x, y) ∈ clfund(p) iff ϕ(a0, y) does not fork over
M iff ϕ(x, y) ∈ cldiv(P ). On the one hand, any Morley sequence in a stable theory is a
witness and therefore ϕ(a0, y) does not fork over M iff {ϕ(ai, y) : i < ω} is consistent. On
the other hand, it is straightforward that if ϕ(x, y) ∈ clfund(p) then |= ϕ(a0, b) for some
b ∈ M and therefore ϕ(a0, y) does not fork over M . Finally, if ϕ(a0, y) does not fork over
M , then |= ϕ(a0, b) for some b |̂

M
a0. If p is the global nonforking extension of p then

ϕ(x, y) ∈ clfund(p) and since p is the heir of p, clfund(p) = clfund(p).

It follows that clfund(p) = cldiv(P ) and hence the mapping p 7→ P induces an embedding

of (Ox,
fund

≤ ) into (SEMx / ∼div,≤div). We check that it is onto. Let ā = (ai : i < ω) realize
P ∈ SEMx and extend it to an indiscernible sequence (ai : i < ω + ω). Let ā′ = (ai : ω ≤
i < ω + ω) and choose a model M containing ā and such that M |̂

ā
ā′. By Erdös-Rado

we can assume that ā′ is M -indiscernible. It follows that ā′ is a Morley sequence over M
in p(x) = tp(aω/M). Clearly, p goes to P in the embedding.

2. Let P,Q ∈ SEMx and assume P ∼div Q. Choose p(x) ∈ S(M), q(x) ∈ S(N) such
that p 7→ P and q 7→ Q in the isomorphism. By Fact 12.3 there are global types p(x) and
q(x) extending p(x) and q(x) respectively with clfund(p) = clfund(p), clfund(q) = clfund(q)
and some isomorphism f : (C, dp) ∼= (C, dq). Notice that pf = q. There is a one-to-
one correspondence between global types non forking over a model and types (over ∅) of
Morley sequences over the model constructed with the global type. This correspondence is
preserved by automorphisms. Hence P f = Q. But P f = P since they are types over the
empty set. Hence, P = Q. 2
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Definition 12.5 For p, q ∈ SEMx (A) we define: p ≤# q iff there is some array (aij : i, j < ω)
such that each row (aij : j < ω) realizes p and each vertical path (aif(i) : i < ω) realizes q.

Proposition 12.6 Let p, q ∈ SEMx (A).

1. If p ≤div q, then p ≤# q.

2. T is NTP2 iff if p ≤# q, then p ≤div q.

Proof: Without loss of generality, A = ∅.
1. Assume p ≤div q. We will inductively construct (aij : i < n, j < ω) such that each

row āi = (aij : j < ω) realizes p and there is some b̄ |= q such that for each i0, . . . , in−1 < ω,
(a0i0 , . . . , an−1in−1

)ab̄ is indiscernible. In the case n = 0 we have not constructed yet any
row and it suffices take as b̄ any realization of q. Now, in the general case, choose some
ω-sequence c̄ such that b̄ac̄ is indiscernible. We define

r(x̄0, . . . , x̄n−1, y, z̄) =
⋃
i<n

p(x̄i)∪ q(z̄)∪
⋃

i0,...,in−1<ω

(x0i0 , . . . , xn−1in−1
, y)az̄ is indiscernible

We know that
⋃
i<ω r(x̄0, . . . , x̄n−1, yi, z̄) ∪ q(ȳ) is consistent (where ȳ = (yi : i < ω)) since

ā0, . . . , ā
a
n−1b̄

ac̄ realizes it. Since p ≤div q, it follows that
⋃
i<ω r(x̄0, . . . , x̄n−1, yi, z̄) ∪ p(ȳ)

is consistent and this is what we need for the inductive construction.

2. From left to right. Assume p ≤# q but not p ≤div q. Let (aij : i, j < ω) be an array

where all rows satisfy p and all vertical paths satisfy q. If ϕ(x, y) ∈ cldiv(q) r cldiv(p), then
{ϕ(aif(i), y) : i < ω} is consistent for each f : ω → ω and for some k < ω {ϕ(aij , y) : j < ω}
is k-inconsistent for all i < ω. This shows that T is TP2. The other direction is similar:
if T is TP2 there is an indiscernible array (aij : i, j < ω), some k < ω and some formula
ϕ(x, y) ∈ L witnessing it. If p is the type of a row and q is the type of a column, then
p ≤# q but not p ≤div q. 2

Definition 12.7 For p, q ∈ SEMx (A) we define: p ≤+ q iff there are ā = (ai : i ∈ Z) |= q
and b̄ = (bi : i ∈ Z) |= p such that a0 = b0 and b̄ is indiscernible over A(ai : i 6= 0).

Remark 12.8 p ≤# q implies p ≤+ q.

Definition 12.9 T is resilient if there are no indiscernible sequences ā = (ai : i ∈ Z) and
b̄ = (bi : i ∈ Z) and a formula ϕ(x, y) ∈ L such that

1. a0 = b0

2. b̄ is indiscernible over (ai : i 6= 0)

3. {ϕ(x, ai) : i ∈ Z} is consistent.

4. {ϕ(x, bi) : i ∈ Z} is inconsistent.

Remark 12.10 If T is resilient, T (A) is resilient.

Proof: Add the extra parameters of the formula to each element in the sequences ā and
b̄. 2

Proposition 12.11 The following are equivalent:
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1. T is resilient.

2. If p ≤+ q, then p ≤div q.

3. If ā = (ai : i ∈ Z) is indiscernible, ϕ(x, y) ∈ L, and ϕ(x, a0) divides over (ai : i 6= 0),
then {ϕ(x, ai) : i ∈ Z} is inconsistent.

4. There is no array (aij : i, j < ω), number k < ω and formula ϕ(x, y) ∈ L such that
{ϕ(x, ai0) : i < ω} is consistent, {ϕ(x, aij) : j < ω} is k-inconsistent for each i < ω
and each row āi = (aij : j < ω) is indiscernible over (aj0 : j 6= i).

5. There is a cardinal κ such that for each sequence (ai : i < κ) of finite tuples ai, for

each finite tuple b there is some i < κ such that b |̂ d

(aj :j 6=i)
ai.

Proof: 1 ⇔ 2 is clear.

1 ⇔ 3. Assume ϕ(x, a0) divides over ā6=0 = (ai : i 6= 0) and let b̄ = (bi : i ∈ Z) be an
ā6=0 -indiscernible sequence with a0 = b0 witnessing it. This means that {ϕ(x, bi) : i ∈ Z}
is inconsistent. By 1, {ϕ(x, ai) : i ∈ Z} is inconsistent. This proves 1 ⇒ 3. The other
direction is immediate.

1 ⇔ 4. Let ā = (ai : i ∈ Z) and b̄ = (bi : i ∈ Z) and ϕ(x, y) ∈ L witness that T is not
resilient. Put a0j = bj . For i > 0 choose an automorphism fi sending a−i, . . . , a−1, a0(al :
l > i) to (al : l ≥ 0) and put aij = fj(a0j). Since b̄ is indiscernible over a−i, . . . , a−1(al :
l > i), it follows that (aij : j ≥ 0) is indiscernible over (aj : 0 ≤ j, j 6= i). The array
(aij : i, j ≥ 0) with the formula ϕ(x, y) provides a counterexample to 4. This proves 4 ⇒
1. The other direction is immediate.

4 ⇒ 5. Choose κ large enough and assume (ai : i < κ) and b provide a counterexample

to 5 for κ. Let i < κ. Since b 6 |̂ d

(aj :j 6=i)
ai, for some formula ϕi(x; y, y1, . . . , yni) ∈ L and

some j1 < . . . < jni different from i, |= ϕi(b; ai, aj1 , . . . , ajni ) and ϕi(x; ai, aj1 , . . . , ajni )
divides over (aj : j 6= i). By choice of κ, we can assume that all these formulas are the same
ϕ(x; y, y1, . . . , yn). Put a′i = ai, aj1 , . . . , ajn and choose a (aj : j 6= i)-indiscernible sequence
(a′ij : j < ω) starting with a′i0 = a′i and witnessing that ϕ(x; a′i) divides over (aj : j 6= i).

5 ⇒ 4. Let κ be as in 5 and assume (by compactness) that the array (aij : i < κ, j < ω)
and the formula ϕ(x, y) ∈ L contradict 4. Choose b |= {ϕ(x, ai0) : i < κ}. Let i < κ. Note
that {ϕ(x, aij) : j < ω} is inconsistent and (aij : j < ω) is indiscernible over {al0 : l 6= i}.
This shows that ϕ(x, ai0) divides over {al0 : l 6= i}. Since |= ϕ(b, ai0), it follows that

b 6 |̂ d

(al0:l 6=i) ai, in contradiction with 5.

2

Proposition 12.12 1. NIP theories are resilient.

2. Simple theories are resilient.

3. Resilient theories are NTP2.

Proof: 1. Let T be NIP but not resilient. Witness the nonresilience of T by ā = (ai :
i ∈ Z), b̄ = (bi : i ∈ Z) and some formula ϕ(x, y). By NIP there is maximal k < ω for
which {¬ϕ(x, ai) : i = 1, 3 . . . , 2k + 1} ∪ {ϕ(x, ai) : i ∈ Z r {1, 3, . . . , 2k + 1}} is consistent.
By indiscernibility {¬ϕ(x, ai) : i = 2, 4 . . . , 2k + 2} ∪ {ϕ(x, ai) : i ∈ Z r {2, 4, . . . , 2k + 2}}
is also consistent and we can realize it by some d. Since {ϕ(x, bi) : i ∈ Z} is inconsistent,
|= ¬ϕ(d, bi) for some i ∈ Z. By indiscernibility of b̄ over (aj : j 6= 0), {¬ϕ(x, ai) : i =

27



0, 2 . . . , 2k + 2} ∪ {ϕ(x, ai) : i ∈ Z r {0, 2, . . . , 2k + 2}} is consistent. This contradicts the
maximality of k.

2. We use item 5 of Proposition 12.11. Let κ = |T |+ and assume (ai : i < κ) is a
sequence of finite tuples and b is finite. By simplicity there is some I ⊆ κ of cardinality
≤ |T | such that b |̂ d

(ai:i∈I)
(ai : i < κ). Choose i < κ, i 6∈ I. Then b |̂ d

(aj :j 6=i)
ai.

3. Assume T is TP2, witnessed by some array (aij : i, j < ω) and some formula ϕ(x, y).
As shown in section 5, we may assume that the array is very indiscernible. By item 4 of
Proposition 12.11, T is not resilient. 2

Proposition 12.13 Let T be resilient, A an extension base, and ā = (ai : i < ω) an
A-indiscernible sequence. Then ā is a witness over A iff ā 6=i |̂ A ai for every i < ω.

Proof: Since T is NTP2 and A is an extension base, forking over A and dividing over A
coincide.

⇒. Note that we can assume ā = (ai : i ∈ Q). Suppose |= ϕ(aj1 , . . . , ajn ; ai) for some
j1 < . . . < jl < i < jl+1 < . . . < jn and some formula ϕ(x1, . . . , xn;x) ∈ L(A). Let I be
the interval (jl, jl+1). By indiscernibility, |= ϕ(aj1 , . . . , ajn ; aq) for all q ∈ I and therefore
{ϕ(x1, . . . , xn; aq) : q ∈ Q} is consistent. Since ā is a witness, ϕ(x1, . . . , xn; ai) does not
divide (and does not fork) over A. Hence ā 6=i |̂ A ai.
⇐. We can assume ā = (ai : i ∈ Z). Let ϕ(x, y) ∈ L(A) and assume ϕ(x, a0) divides

over A. Since ā 6=0 |̂ A a0, ϕ(x, a0) divides over Aā6=0. Since T (A) is resilient, by item 3 of
Proposition 12.11, {ϕ(x, ai) : i ∈ Z} is inconsistent. Hence ā is a witness over A. 2

13 Weight

Section finished on April 16, 2014. Based on [1]. For more information on weight, see [13]
and [15].

Definition 13.1 The preweight of a type p(x) ∈ S(A) is the supremum of all cardinals κ for
which there is an A-independent sequence (ai : i < κ) such that for some a |= p, a 6 |̂

A
ai for

all i < κ. The weight of p(x) is the supremum of preweights of all its nonforking extensions.
The preweight of p is pwt(p) and wt(p) is its weight. If p(x) = tp(a/A) we can also write
pwt(p) = pwt(a/A) and wt(p) = wt(a/A).

Lemma 13.2 If π(x) is a partial type over A, then bdn(π(x)) = sup{bdn(p(x)) : π(x) ⊆
p(x) ∈ S(A)}.

Proof: Given an array (aij : i < κ, j < ω) witnessing that bdn(π) ≥ κ, we may assume
that the rows are mutually indiscernible over A. Hence if we choose some completion
p(x) ∈ S(A) of π(x) which is consistent with the first vertical path, it is consistent with
every path in the array. Consequently, the array witnesses that some completion of π(x)
over A has burden ≥ κ. 2

Proposition 13.3 Let T be simple. Let p(x) ∈ S(A), a |= p, (ai : i < κ) A-independent
and assume a 6 |̂

A
ai for all i < κ. There is an array (aij : i < κ, j < ω) with ai = ai0

witnessing that bdn(p) ≥ κ. Hence, bdn(p) ≥ sup{pwt(q) : p ⊆ q}.

Proof: We inductively construct Morley sequences Ii = (aij : j < ω) in tp(ai/Aa>iI<i)
and in tp(ai/A) (i.e., A-independent) with ai = ai0 and such that a≥i |̂ A I<i. Assume Ij
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has been constructed for all j < i. Notice that ai |̂ A a>iI<i and choose Ii = (aij : j < ω)
(see, for instance, Lemma 5.11 in [8]) as a Morley sequence in tp(ai/Aa>iI<i) and in
tp(ai/A) starting with ai = ai0. It follows that Ii |̂ A a>iI<i and hence Ii |̂ AI<i a>i. By

the inductive hypothesis I<i |̂ A a>i and therefore I≤i |̂ A a>i.
For each i < κ, since a 6 |̂

A
ai there is some ϕi(x, yi) ∈ L(A) and some ki < ω such

that ϕi(x, ai) divides over A with respect to ki. Adding some parameters of A to each ai
if necessary, we may assume that ϕi(x, yi) ∈ L. Since Ii is a Morley sequence in tp(ai0/A),
{ϕi(x, ai,j) : j < ω} is ki-inconsistent.

Since each Ii is indiscernible over Aa>iI<i, the rows of the array (aij : i < κ, j < ω) are
almost mutually indiscernible over A and hence for every f : κ→ ω, p(x) ∪ {ϕi(x, ai,f(i)) :
i < κ} is consistent.

This shows that bdn(p) ≥ pwt(p). The rest follows from Lemma 13.2. 2

Proposition 13.4 Let T be simple. Assume that the array (aij : i < κ, j < ω) witnesses
that bdn(a/A) ≥ κ. Then for some set C ⊇ A such that a |̂

A
C, some sequence (bi : i < κ)

witnesses that pwt(a/C) ≥ κ. Hence, for any p(x) ∈ S(A), wt(p) ≥ bdn(p).

Proof: We may assume that the rows of the array are mutually indiscernible over A and
we may extend the rows to the order type ω + ω∗ preserving mutual indiscernibility over
A. Let C = A ∪ {aij : i < κ, j ∈ ω∗}. We may assume that a |̂

A
C. For each i < κ

there is some ϕi(x, yi) ∈ L and some ki such that {ϕi(x, ai,j) : j < ω} is ki-inconsistent.
By indiscernibility over C, ϕi(x, ai0) divides over C. Hence a 6 |̂

C
ai0 for every i < κ. Now

we show that (ai0 : i < κ) is C-independent: by choice of the order type ω∗ and mutual
indiscernibility over C, tp(ai0/C(aj0 : j < i)) is finitely satisfiable in C and therefore
ai0 |̂ C(aj0 : j < i). 2

Corollary 13.5 If T is simple and p(x) ∈ S(A), then

bdn(p) = wt(p) = sup{pwt(q) : p ⊆ q}.

Proof: By propositions 13.3 and 13.4. 2
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