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Résumé / Abstract

Cette thèse en théorie des modèles pure présente la première étude systématique
de la classe des théories NTP2 introduites par Shelah, avec un accent particulière
sur le cas NIP. Dans les premier et deuxième chapitres, nous développons la théorie
de la bifurcation sur des bases d’extension (par exemple, nous prouvons l’existence
de suites de Morley universelles, l’égalité de la bifurcation avec la division, un
théorème d’indépendance et d’égalité du type Lascar avec le type compact). Ceci
rend possible de considérer les résultats de Kim et Pillay sur des théories simples
comme un cas particulier, tout en fournissant une contrepartie manquante pour
le cas des théories NIP. Cela répond à des questions de Adler, Hrushovski et Pil-
lay. Dans le troisième chapitre, nous développons les rudiments de la théorie du
fardeau (une généralisation du calcul du poids), en particulier, nous montrons qu’il
est sous-multiplicatif, répondant à une question de Shelah. Nous étudions ensuite
les types simples et NIP en théories NTP2: nous montrons que les types simples
sont co-simples, caractérisés par le théorème de coindépendance, et que la bifur-
cation entre les réalisations d’un type simple et des éléments arbitraires satisfait
la symétrie complète; nous montrons qu’un type est NIP si et seulement si toutes
ses extensions ont un nombre borné d’extensions globales non-bifurquantes. Nous
prouvons aussi une préservation de type d’Ax-Kochen pour NTP2, montrant que,
par exemple, tout ultraproduit de p-adics est NTP2. Nous continuons à étudier
le cas particulier des théories NIP. Dans le chapitre 4, nous introduisons les défi-
nitions honnêtes et les utilisons pour donner une nouvelle preuve du théorème de
l’expansion de Shelah et un critère général pour la dépendance d’une paire élémen-
taire. Comme une application, nous montrons que le fait de nommer une petite
suite indiscernable préserve NIP. Dans le chapitre 5, nous combinons les définitions
honnêtes avec des résultats combinatoires plus profonds de la théorie de Vapnik-
Chervonenkis pour déduire que, dans théories NIP, des types sur ensembles finis
sont uniformément définissables. Cela confirme une conjecture de Laskowski pour
les théories NIP. Par ailleurs, nous donnons une nouvelle condition suffisante pour
une théorie d’une paire d’éliminer les quantificateurs en des quantificateurs sur le
prédicat et quelques exemples concernant la définissabilité de 1-types vs la définiss-
abilité de n-types sur les modèles. Le dernier chapitre concernes la classification des
taux de croissance du nombre des extensions non-bifurquantes. Nous avançons vers
la conjecture qu’il existe un nombre fini de possibilités différentes et développons
une technique générale pour la construction de théories avec un nombre prescrit
d’extensions non- bifurquantes que nous appelons la circularisation. En particulier,
nous répondons par la négative à une question d’Adler en donnant un exemple
d’une théorie qui a IP où le nombre des extensions non- bifurquantes de chaque
type est bornée. Par ailleurs, nous résolvons une question de Keisler sur le nombre
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6 RÉSUMÉ / ABSTRACT

de coupures de Dedekind dans les ordres linéaires: il est compatible avec ZFC que
dded κ < (ded κ)ω.

This thesis in pure model theory presents the first systematic study of the class
of NTP2 theories introduced by Shelah, with a special accent on the NIP case.

In the first and second chapters we develop the theory of forking over extension
bases (e.g. we prove existence of universal Morley sequences, equality of forking and
dividing, an independence theorem and equality of Lascar type and compact type)
thus making it possible to view the results of Kim and Pillay on simple theories as
a special case, but also providing a missing counterpart for the case of NIP theories.
This answers questions of Adler, Hrushovski and Pillay.

In the third chapter we develop the basics of the theory of burden (a general-
ization of the weight calculus), in particular we show that it is submultiplicative,
answering a question of Shelah. We then study simple and NIP types in NTP2 theo-
ries: we prove that simple types are co-simple, characterized by the co-independence
theorem, and forking between realizations of a simple type and arbitrary elements
satisfies full symmetry; we show that a type is NIP if and only if all of its exten-
sions have only boundedly many global non-forking extensions. We also prove an
Ax-Kochen type preservation of NTP2, thus showing that e.g. any ultraproduct of
p-adics is NTP2.

We go on to study the special case of NIP theories. In Chapter 4 we introduce
honest definitions and using them give a new proof of the Shelah expansion theorem
and a general criterion for dependence of an elementary pair. As an application
we show that naming a small indiscernible sequence preserves NIP. In Chapter 5,
we combine honest definitions with some deeper combinatorial results from the
Vapnik-Chervonenkis theory to deduce that in NIP theories, types over finite sets
are uniformly definable. This confirms a conjecture of Laskowski for NIP theories.
Besides, we give a new sufficient condition for a theory of a pair to eliminate quan-
tifiers down to the predicate (in particular answering a question of Baldwin and
Benedikt about naming an indiscernible sequence) and some examples concerning
definability of 1-types vs definability of n-types over models.

The last chapter is devoted to the study of non-forking spectra. To a countable
first-order theory we associate its non-forking spectrum — a function of two cardi-
nals kappa and lambda giving the supremum of the possible number of types over
a model of size lambda that do not fork over a sub-model of size kappa. This is a
natural generalization of the stability function of a theory. We make progress to-
wards classifying the non-forking spectra. Besides, we answer a question of Keisler
regarding the number of cuts a linear order may have. Namely, we show that it is
possible that ded κ < (ded κ)ω.
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Introduction

0.1. Introduction (français)

La théorie des modèles est une branche de la logique mathématique qui étudie
les structures, les algèbres de Boole des parties définissables par des formules du
premier ordre, et les espaces de types correspondants (c’est à dire les espaces
d’ultrafiltres d’ensembles définissables donnés par la dualité de Stone). L’objet
d’étude initial de la théorie des modèles était la logique du premier ordre elle-
même, mais elle a finalement évolué pour devenir l’étude des théories du premier
ordre complètes et leur classification (poétiquement la théorie des modèles est par-
fois appelée “la géographie des mathématiques apprivoisées”). Ces dernières années,
la théorie des modèles a trouvé de nombreuses applications profondes en algèbre,
géométrie algébrique, géométrie algébrique réelle, théorie des nombres et analyse
combinatoire.

Des recherches approfondies de Shelah [She90] et d’autres sur le programme de
classification des théories du premier ordre ont produit un vaste corpus de résultats
et de techniques pour analyser les types et les modèles dans les théories stables (par
exemple calcul de bifurcation, poids, orthogonalité, définissabilité, multiplicité, etc).
Cependant, ce n’est que relativement récemment qu’il est devenu évident que beau-
coup de ces outils pourraient être généralisés à des classes beaucoup plus grandes
de théories considérées par les théoriciens des modèles, ou même plus généralement,
pourraient être faites localement par rapport à un certain type dans une théorie
arbitraire (et donc le notion d’apprivoisé devient peu à peu sauvage). Cette ligne
de recherche, motivé à la fois par de nouveaux exemples algébriques importants et
développements de théorie des modèles pure, constitue la “théorie de néo-stabilité”,
et c’est le domaine dans lequel cette thèse contribue.

0.1.1. Histoire de le sujet. Habituellement, le théorème fondamental suiv-
ant de Morley de 1965 est considéré comme le début de la théorie des modèles
moderne.

Fact 0.1.1. Soit T une théorie de premier ordre dans un langage dénombrable.
Supposons que T a un modèle unique de taille κ (à isomorphisme près) pour un
certain κ > ℵ0. Alors T a un modèle unique de taille κ pour tous κ > ℵ0.

La preuve de Morley a introduit un certain nombre d’idées essentielles pour
les développements ultérieurs : la méthode fondamentale de l’analyse de l’espace
de types au moyen de le rang de Cantor-Bendixon et l’utilisation de la ω-stabilité.
Dans le même article Morley a posé l’hypothèse selon laquelle la fonction fT : κ→
|{M : M |= T, |M| = κ}| est non décroissante.

Dans un corps incroyable de travail [She90], Saharon Shelah a adopté une
approche radicale vers cette conjecture en visant à décrire toutes les possibilités pour
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10 INTRODUCTION

la fonction fT . L’idée philosophique principale était celle de lignes de démarcation :
on isole certaines configurations combinatoires de telle sorte que toute théorie qui
les "code" est mauvaise (on peut lui prouver un théorème de non-structure, par
exemple démontrer que fT est maximale), tandis que pour les théories qui ne les
codent pas on développe une théorie de structure avec une compréhension plus fine
des types.

Dans l’un des premiers résultats de ce programme Shelah démontré qu’on peut
limiter le domaine de consideration à des théories stables (théories avec les “ pe-
tits ” espaces de types, ou de façon équivalente les théories qui ne sont pas capable
de “coder” ordres linéaires, voir la section suivante). Le programme a culminé es-
sentiellement à isoler les conditions pour que les modèles puissent être classifiées
par des invariants cardinaux (généralisant la dimension des espaces vectoriels ou
de degré de transcendance des corps algébriquement clos) et le calcul du nombre
de modèles dans ces cas. Ces techniques ont permis à Shelah d’affirmer conjecture
de Morley, et les travaux suivant [HHL00] conduit à une description complète des
possibilités pour fT .

0.1.2. Le paradis stable.
Soit T une complète théorie du premier ordre, et nous fixons un modèle monstre

M, très grand et saturée (un “domaine universel”). Pour un modèle M |= T , soit
S(M) l’espace des types sur M, c’est à dire le dual de Stone de l’algèbre booléenne
des parties définissables deM (i.e., l’ensemble d’ultrafiltres sur cette algèbre), avec
la base ouvert-fermé constitué d’ensembles de la forme [ϕ] = {p ∈ S (M) : ϕ ∈ p}.
C’est un espace compact et totalement discontinu.

Soit sT (κ) = sup {|S (M)| : M |= T, |M| = κ}. Notez que toujours sT (κ) ≥ κ.

Definition 0.1.2. T est stable si elle satisfait l’une des propriétés équivalentes
suivantes:

(1) Pour chaque cardinal κ, sT (κ) ≤ κℵ0 .
(2) Il existe un cardinal κ de telle sorte que sT (κ) = κ.
(3) Il n’existe pas de formule ϕ (x, y) et (ai)i∈ω (dans un certain modèle)

telle que ϕ (ai, aj) ⇔ i < j .

Des exemples de théories stables sont les suivants:
• modules,
• Les corps algébriquement clos,
• Les corps séparablement clos,
• Les corps différentiellement clos,
• Les groupes libres (Z. Sela [Sel]),
• Les graphes planaires (K. Podewski and M. Ziegler [PZ78]).

Shelah a développé un certain nombre de techniques d’analyse des types et des
modèles de théories stables (modèles prime, le poids, les types réguliers, ...). Une
notion clé est bifurcation.

Definition 0.1.3. (1) Une formuleϕ (x, a) divise sur A s’il y a une suite
(ai)i∈ω et k ∈ ω telle que:
• tp (ai/A) = tp (a/A),
• {ϕ (x, ai)}i∈ω et k-incompatible (c’est à dire l’intersection de tout k

éléments distincts est vide).
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(2) Une formuleϕ (x, a) bifurque sur A si elle appartient à l’idéal engendré
par les formules divisant sur A, i.e. il ya ϕi (x, ai) pour i < n ∈ ω telle
que
• ϕ (x, a) `

∨
i<nϕi (x, ai),

• ϕi (x, ai) divise sur A pour chaque i < n.

Le but de l’introduction de bifurcation en plus de la division, c’est que chaque
type partiel non-bifurquant s’étend à un type non-bifurquant global, sur chaque
ensemble de paramètres (par le théorème de l’Idéal Premier). L’idée est que une
extension non-bifurquante capture une “extension générique” d’un type (qui est
une généralisation profonde de la notion d’un point générique d’une variété). En
général la bifurcation n’est pas la même que la division.

Example 0.1.4. Considérons la théorie d’un ordre dense circulaire, c’est à dire
d’une relation ternaire R (x, y, z) qui contient chaque x, y, z qui sont des points
sur un cercle unité et y est entre x et z, dans le sens des aiguilles d’une montre.
La formule “x = x” ne divise pas sur ∅ (et en fait aucune formule ne divise sur
ses paramètres). D’autre part, x = x `

∨
i<3 R (ai, x, bi) pour certains choix de

(aibi)i<3, et il est facile de voir que R (ai, x, bi) divise pour chaque i < 3.

Dans les théories stables, bifurcation bénéficie d’un certain nombre de pro-
priétés merveilleuses qui peuvent être disposés dans les trois groupes suivants:
F1 Belle structure combinatoire de l’idéal de bifurcation : bifurcation est

égal à division, l’existence de suites de Morley universelles, la condition
de la chaîne, etc...

F2 Disons que a |̂
c
b lorsque tp (a/bc) ne bifurque pas sur c. Alors |̂ est

une relation d’indépendance agréable : invariante par automorphismes
de M, symétrique, transitive, ayant le caractère local, le caractère fini,
...

F3 Multiplicité : chaque type admet une extension non-bifurquent unique,
les types sont définissables, le théorème de relation d’équivalence finie,
...

Ces trois groupes de propriétés ont été quelque peu entrelacés dans le développement
initial de la stabilité. Les travaux sur les théories simples (voir la section suivante),
tout en ne distinguant pas entre les F1 and F2, a précisé leur indépendance à partir
de F3. Une grande partie de cette thèse est de démontrer que, en fait F1 peut
être développé de manière indépendante dans une classe beaucoup plus vaste de
théories.

En utilisant le combinaison de F1–F3, Shelah a développé des outils puissants
pour l’analyse des types et des modèles dans les théories stables, accomplissant son
objectif initial : compter le nombre de modèles d’une théorie de premier ordre.

D’autres travaux, notamment par Hrushovski (et en grande partie basés sur des
idées de Zilber autour des théories fortement minimales), ont conduit à l’analyse
raffinée et le développement de la théorie de la stabilité géométrique, et ont rendu
précise l’idée que la complexité de la bifurcation doit être en corrélation avec la
complexité des structures algébriques interprétables dans la théorie : trichotomie,
la configuration du groupe, etc. Ces développements constituent un pont technique
majeur reliant la théorie de modèles pur avec ses applications à la géométrie al-
gébrique et la théorie des nombres. Malheureusement, la plupart des théories ne
sont pas stables.
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0.1.3. Théories simples.
La classe des théories simples a été introduit par Shelah dans [She80] dans le

cadre de la caractérisation du spectre de saturation. Mais le renouveau d’intérêt
réel avait eu lieu 15 ans plus tard, provenant des travaux de Hrushovski sur corps
pseudo-finis et d’autres exemples de rang fini [Hru02], et d’un travail dans la
théorie de modèles pure de Kim et Pillay [Kim98, KP97, Kim01, Kim96].

Une théorie est simple si tous les types ne dévie pas sur un sous-ensemble
petit son domaine. De manière équivalente, si ce n’est pas possible d’encoder un
arbre d’une manière définissable (voir le chapitre 3 pour les définitions précises).
Exemples de théories simples sont:

• chaque théorie stable est simple,
• la théorie de la graphe aléatoire de Rado,
• les corps pseudo-finis,
• la théorie des corps algébriquement clos augmenté par un automorphisme

générique, ACFA.

Dans sa thèse [Kim96], Kim avait prouvé que bifurcation est égal à division,
et qu’elles donnent lieu à une relation d’indépendance transitive et symétrique,
récupérant ainsi complètement les propriétés de F1 et F2 dans le théories simples.

Concernant F3, bifurcation n’est plus décrit par définissabilité des types, et de
stationnarité échoue. Mais, dans le travail de Hrushovski sur le cas de rang fini,
il est devenu évident que dans la plupart des situations, on pourrait remplacer le
caractère unique de l’extensions non-bifurquent par la capacité de amalgamer deux
extensions dans une position suffisamment générale. Cela a conduit au théorème
suivant importante de Kim et Pillay.

Fact 0.1.5. [KP97] La théorème d’indépendance. Soit T une théorie simple
et M |= T . Soit p0 (x) un type complet sur M, p1 ∈ S (A) et p2 ∈ S (B) sont
extensions non-bifurquantes de p0, et A |̂

M
B. Alors il y a un certain type global

p (x) non-bifurquant sur M et telle que p1, p2 ⊆ p.

Nous avions formulé le théorème de l’indépendance sur un modèle, alors qu’en
fait, une analyse plus poussée montre que le seul obstacle de l’amalgamation est
caractérisée par l’action du groupe des automorphismes forts de Lascar. En fait,
l’existence d’une relation satisfaisant F2 et le théorème d’indépendance implique
que la théorie est simple et que cette relation est donnée par non-bifurcation.

Les travaux ultérieurs de nombreux de chercheurs a conduit à un développement
rapide du champ, parmi les résultats notables sont l’existence de bases canoniques
et la théorie de hyperimaginaries (et leur élimination dans les théories supersim-
ple), résultats sur la configuration de groupe, travail de Chatzidakis, Hrushovski
et Peterzil sur ACFA — culminant dans la théorie de simplicité géométrique, tri-
chotomie pour les ensembles de rang 1 au ACFA et de la preuve de Mordell-Lang
par Hrushovski.

0.1.4. NIP.
La classe des théories NIP (non propriété d’indépendance) a été introduit par

Shelah dans l’un des premiers articles sur le programme de la classification. Une
théorie est NIP si elle ne peut pas “coder le graphe aléatoire bipartite par une
formule”. Plus précisément:
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Definition 0.1.6. Une formuleϕ (x, y) a NIP si pour un certain n < ω il n’y
a pas (ai)i<n et (bs)s⊆n de telle sorte que ϕ (ai, bs) ⇔ i ∈ s. Une théorie est
NIP si elle implique que toute les formules sont NIP.

Il a été observé très tôt par Laskowski [Las92] que NIP est équivalente à la
finitude de dimension de Vapnik-Chervonenkis des familles ϕ-définissables pour
tous ϕ. Nous remarquons que, si une théorie est à la fois simple et NIP, alors elle
est stable.

Des exemples de théories NIP sont:
• les théories stables,
• les ordres linéaires et les arbres,
• les groupes abéliens ordonnée (Gurevich-Schmitt),
• les théories o-minimales,
• les corps valués algébriquement clos (et en fait tout les théories c-minimales),
• Qp.

Il existait bien certaines résultats sur NIP dans les années 80, et elles connaissent
actuellement un renouveau d’intérêt. La motivation est double : le travail sur
l’exemple particulier de corps valués algébriquement clos (élimination des imagi-
naires et la domination stable dans ACVF par Haskell, Hrushovski et Macpher-
son [HHM08], Hrushovski-Loeser sur les types génériquement stables et des es-
paces de Berkovich, Hrushovski-Peterzil-Pillay sur la conjecture de Pillay pour
groupes o-minimal [HPP08]), et les développements de caractère purement modèle
théorique (travail de Shelah: théorème sur les ensembles extérieurement définiss-
ables [She04, ?], la conjecture de paire générique et le comptage de types à au-
tomorphisme près [Sheb, Shea, Shec], les travaux sur le dp-rang et notions de
dp-minimalité, les mesures, ...).

Les théories NIP ont de nombreuses propriétés combinatoires caractéristiques
aux théories stables, mais il s’manifeste est un phénomène essentiellement nouveau
— la présence des ensembles extérieurement définissables qui ne sont pas intérieure-
ment définissables. Il semble inévitable pour le développement futur de saisir un
certain contrôle sur leur structure. Et qu’est peut-on dire de la bifurcation dans les
théories NIP ? D’une part, F2 échoue complètement — la non-bifurcation n’est pas
symétrique, ni transitive, déjà dans un ordre dense. Cependant, il s’avère qu’un
type global ne dévie pas sur un modèle si et seulement si il est invariant par tous
les automorphismes fixant ce modèle. Cela implique que chaque type a un nombre
bornée d’extensions non-bifurquantes et laisse d’espoir pour de meilleurs résultats
à l’égard F3. Effectivement, nous faisons du progrès dans ces deux directions dans
les chapitres 4,5. En ce qui concerne F1, nous en discutons dans la section suivante.

0.1.5. NTP2. Enfin, nous arrivons à la question centrale de cette thèse — la
classe des théories sans la propriété d’arbre du deuxième type, ou théories NTP2.
Il a été introduit par Shelah implicitement dans [She90] et explicitement dans
[She80], comme une généralisation de la simplicité.

Definition 0.1.7. On dit que ϕ (x, y) a TP2 s’il ya (aij)i,j∈ω et k ∈ ω de
telle sorte que:

(1) {ϕ (x, aij)}j∈ω est k-incompatible pour chaque i ∈ ω.
(2)
{
ϕ
(
x, aif(i)

)}
i∈ω est compatible pour tous f : ω→ ω.



14 INTRODUCTION

Une théorie est NTP2 si aucune formule a TP2.
La classe de théories NTP2 est une généralisation naturelle des théories simples

et des théories NIP. D’autres exemples de théories NTP2 sont les suivantes:

• Expansion d’une théorie NTP2 géométrique par un prédicat générique
reste NTP2. “Géométrique” signifie que la clôture algébrique satisfait
échange et que le quantificateur ∃∞ est éliminé. “Générique” est dans le
sens de [CP98]. Par exemple, l’expansion d’une théorie o-minimale par
l’ajout d’un graphe aléatoire est NTP2 (voir le chapitre 3).

• Les ultraproduits de p-adics sont NTP2. Plus généralement, un corp
valués hensélien de caractéristique 0 est NTP2 si et seulement si son corp
residuel est NTP2 (voir le chapitre 3).

• Certains corps valués augmentés d’un automorphism σ-hensélien. E.g.
automorphisme de Frobenius non-standard sur un corp valué algébrique-
ment clos de caractéristique 0 ([CH]).

Cette thèse contient la première étude systématique de la classe de théories
NTP2. Une grande partie de cette étude est consacrée au développement du
calcul de bifurcation dans le cadre de théories NTP2 (nous parvenons à démon-
strer F1 complètement et offrir une théorème d’indépendance faible pour F3), à
la compréhension des types particuliers sur théories NTP2 (avec un accent sur les
types simples et NIP) et à la fourniture de nouveaux exemples. Des résultats sup-
plémentaires sur les groupes et les corps (type-)définissables dans des structures
avec théories NTP2 qui n’ont pas trouvé leur place dans ce texte seront disponible
en [CH] et [CKS].

0.1.6. Résumé des résultats. Les chapitres 1 et 2 sont consacrés au développe-
ment de la théorie de la bifurcation dans les théories NTP2 : nous démontrons
qu’une grande partie du calcul de la bifurcation peut être développée dans le con-
texte général des théories NTP2 sur des bases d’extension (la coïncidence de la
bifurcation et de la division, l’existence d’extensions strictement invariantes, la con-
dition de chaîne, le théorème d’indépendance, etc), généralisant le travail de Kim
et Pillay sur les théories simples et répondant à une question de Pillay, qui a été
ouverte même dans le cas des théories NIP, ainsi qu’à des questions d’Adler et de
Hrushovski au sujet du nombre d’extensions non-bifurquantes et la condition de
chaîne de la non-bifurcation. Le chapitre 1 est un travail en commun avec Itay Ka-
plan (et est publié comme “Forking and dividing in NTP2 theories” dans le Journal
of Symbolic Logic [CK12]) et le chapitre 2 est un travail conjoint avec Itaï Ben
Yaacov (et est en circulation comme un preprint “An independence theorem for
NTP2 theories”).

Chapitre 3 (soumis à les Annals of Pure and Applies Logic comme “Theories
without the tree property of the second kind” ) développe les bases de la théorie
du fardeau, une notion généralisée de poids (par exemple, nous démontrons qu’il
est sous-multiplicative, répondant à une question de Shelah [She90]). Par ailleurs,
nous étudions les types simples et NIP dans les théories NTP2 et les effets que ces
hypothèses ont pour le calcul du fardeau.

Pour les types simples nous établissons une symétrie complète de la bifurcation
entre les réalisations du type et des éléments arbitraires, répondant ainsi à une
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question de Casanovas dans le cas de théories NTP2. Pour les types NIP, nous dé-
montrons que leur dp-rang (de façon équivalente, le fardeau) est toujours témoigné
par des suites mutuellement indiscernables de réalisations du type. Enfin, nous
donnons des exemples nouveaux de théories NTP2 : toute expansion d’une théorie
géométrique NTP2 par un prédicat générique est NTP2 ; tous les corps hensélien
value de caractéristique 0 est NTP2 en supposant que le corps résiduel est NTP2.

Le chapitre 4 (à paraître dans le Israel Journal of Mathematics comme “Exter-
nally definable sets and dependent pairs”) et le chapitre 5 (soumis à Transactions
of AMS) sont un travail en commun avec Pierre Simon, et sont dédiés à l’étude de
l’ensembles extérieurement définissables dans les théories NIP.

Dans le chapitre 4, nous introduisons les définitions honnêtes et les utilisons
pour donner une nouvelle preuve du théorème de l’expansion Shelah et un critère
général de la dépendance d’une paire élémentaire. Comme application nous répon-
dons à une question de Baldwin et de Benedikt [BB00] sur le nommage d’une suite
indiscernable, et montrons que le résultat recouvre la grande majorité des résultats
existants sur les paires dépendantes. Nous montrons aussi que les ensembles ex-
térieurement définissables dans les théories NIP qui sont suffisamment grands ont
des sous-ensembles intérieurement définissables.

Dans le chapitre 5, nous combinons les définitions honnêtes avec des résultats
combinatoires plus profonds de la théorie de Vapnik-Chervonenkis pour déduire que,
dans théories NIP, des types sur ensembles finis sont uniformément définissable.
Cela confirme une conjecture de Laskowski pour les théories NIP. Par ailleurs, nous
donnons une nouvelle condition suffisante pour une théorie d’une paire d’éliminer
les quantificateurs en des quantificateurs sur le prédicat et quelques exemples con-
cernant la définissabilité de 1-types vs la définissabilité de n-types sur les modèles.
Nous montrons aussi des résultats sur la couverture des familles non-bifurquent par
types invariants.

Le dernier chapitre (travail en commune avec Itay Kaplan et Saharon Shelah,
soumis à Transactions of AMS comme “On non-forking spectra”) concernes la clas-
sification des taux de croissance du nombre des extensions non-bifurquantes. Nous
avançons vers la conjecture que il existe nombre fini de possibilités différentes et
développons une technique générale pour la construction de théories avec un nom-
bre prescrit d’extensions non-bifurquantes que nous appelons la circularisation. En
particulier, nous répondons par la négative à une question d’Adler en donnant un
exemple d’une théorie qui a IP où le nombre des extensions non-bifurquantes de
chaque type est bornée. Par ailleurs, nous résolvons une question de Keisler sur le
nombre de coupures de Dedekind dans les ordres linéaires: il est compatible avec
ZFC que dedκ < (ded κ)ℵ0 .

0.2. Introduction (English)

Model theory is a branch of mathematical logic studying structures, Boolean
algebras of subsets definable by means of first order formulas, and the correspond-
ing spaces of types (that is, the spaces of ultrafilters of definable sets given by the
Stone duality). While the early focus of model theory was on the first-order logic
itself, it had eventually moved on to become the study of complete first-order theo-
ries and their classification (somewhat poetically model theory is sometimes called
“the geography of tame mathematics”). In recent years model theory had found
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numerous (and deep) applications to algebra, algebraic geometry and real algebraic
geometry, number theory and combinatorics.

Extensive research of Shelah [She90] and others on the classification program
for first-order theories had produced a large and coherent body of results and tech-
niques for analyzing types and models in stable theories (e.g. forking-calculus,
weight and orthogonality, definability and multiplicity, etc). However, only rela-
tively recently it became apparent that many of these tools could be generalized to
considerably larger classes of theories considered by model theorists, or even more
generally, could be done locally with respect to a certain type in an arbitrary the-
ory (thus the model theoretic notion of “tame” is gradually becoming wilder). This
line of research, motivated both by new important algebraic examples and purely
model theoretic developments, constitutes the so-called “neo-stability theory”, and
it is the field to which this thesis contributes.

0.2.1. History of the subject. Usually the following fundamental theorem
of Morley from 1965 is considered as the beginning of modern model theory.

Fact 0.2.1. Let T be a first-order theory in a countable language. Assume that
T has a unique model of size κ (up to isomorphism) for some κ > ℵ0. Then T has
a unique model of size κ for all κ > ℵ0.

Morley’s proof had introduced a number of ideas essential for the later devel-
opments: the fundamental method of analyzing the space of types by means of the
Cantor-Bendixon rank and the use of ω-stability. In the same paper Morley posed
the conjecture that the function fT : κ→ |{M : M |= T, |M| = κ}| is non-decreasing.

In an amazing body of work [She90], Saharon Shelah took a radical approach
to this conjecture by aiming to describe all the possibilities for the function fT . The
main philosophical idea was that of dividing lines, namely one isolates certain com-
binatorial pattern such that any theory “encoding” it is bad (namely one can prove
a strong non-structure theorem e.g. demonstrating that fT is maximal), while for
theories not able to encode it one develops a structure theory with a finer under-
standing of types. In one of the early results of this program Shelah demonstrated
that the domain of consideration can be restricted to stable theories (theories with
“small” spaces of types, or equivalently theories which are not able to “encode” linear
orders, see the next section). The programme essentially culminated in isolating
the conditions for models to be classifiable by cardinal invariants (generalizing the
dimension of vector spaces or transcendence degree of algebraically closed fields)
and computing the number of models in these cases. These techniques allowed
Shelah to affirm Morley’s conjecture, and further work [HHL00] led to a complete
description of possibilities for fT .

0.2.2. Stable paradise.
Let T be a complete first-order theory, and we fix a very large saturated monster

model M (a “universal domain”). For a model M |= T , let S(M), the space of types
over M, be the Stone dual of the Boolean algebra of definable subsets of M. I.e.
the set of ultrafilters on it, with the clopen basis consisting of sets of the form
[ϕ] = {p ∈ S (M) : ϕ ∈ p}. It is a totally disconnected compact Hausdorff space.

Let sT (κ) = sup {|S (M)| : M |= T, |M| = κ}. Note that always sT (κ) ≥ κ.

Definition 0.2.2. T is called stable if it satisfies any of the following equivalent
properties:
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(1) For every cardinal κ, sT (κ) ≤ κℵ0 .
(2) There is some cardinal κ such that sT (κ) = κ.
(3) There is no formula ϕ (x, y) and (ai)i∈ω (in some model) such that

ϕ (ai, aj) ⇔ i < j .

Examples of stable theories are:
• modules,
• algebraically closed fields,
• separably closed fields,
• differentially closed fields,
• free groups (a deep result of Z. Sela [Sel]),
• planar graphs (K. Podewski and M. Ziegler [PZ78]).

Shelah had developed a number of techniques for analyzing types and models of
stable theories (prime models, weight, regular types, ...). A key notion introduced
was that of forking.

Definition 0.2.3. (1) A formula ϕ (x, a) divides over A if there is a se-
quence (ai)i∈ω and k ∈ ω such that:
• tp (ai/A) = tp (a/A),
• {ϕ (x, ai)}i∈ω is k-inconsistent (i.e. the intersection of any k distinct

elements is empty).
(2) A formula ϕ (x, a) forks over A if it belong to the ideal generated by the

formulas dividing over A, i.e. there are ϕi (x, ai) for i < n ∈ ω such that
• ϕ (x, a) `

∨
i<nϕi (x, ai),

• ϕi (x, ai) divides over A for each i < n.

The purpose of introducing forking in addition to dividing is that every partial
non-forking type extends to a complete non-forking type over possibly a larger set of
parameters (by the Prime Ideal Theorem). The idea is that a non-forking extension
captures a “generic extension” of a type (which is a far-reaching generalization of
the concept of a generic point of a variety). In general forking is not the same as
dividing.

Example 0.2.4. Consider the theory of a dense circular order, i.e. of a ternary
relation R (x, y, z) which holds whenever x, y, z are points on a unit circle and y
is between x and z taken clock-wise. The formula “x = x” does not divide over ∅
(and in fact no formula divides over its parameters). On the other hand, x = x `∨
i<3 R (ai, x, bi) for some choice of (aibi)i<3 and it is easy to see that R (ai, x, bi)

divides for each i < 3.

In stable theories, forking enjoys a number of wonderful properties which can
be arranged into the following three groups:
F1 Nice combinatorial structure of the forking ideal: forking equals divid-

ing, existence of universal Morley sequences, chain condition, ...
F2 Let a |̂

c
b denote that tp (a/bc) does not fork over c. Then |̂ is

a nice independence relation: invariant under automorphisms of M,
symmetric, transitive, finite character, ...

F3 Multiplicity: every type has a unique non-forking extension, types are
definable, finite equivalence relation theorem, ...

This three groups of properties were somewhat interwined in the original develop-
ment of stability. Work on simple theories (see the next section), while still not
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distinguishing between F1 and F2, clarified their independence from F3. A large
part of this thesis is devoted to demonstrating that in fact F1 can be developed
independently in a much larger class of theories.

Using the combination of F1–F3, Shelah had developed powerful tools for ana-
lyzing types and models in stable theories, fulfilling his original purpose: to count
the number of models a first-order theory may have.

Further work, notably by Hrushovski (and largely based on Zilber’s ideas
around strongly minimal theories), led to the refined analysis and development of
the so-called geometric stability theory, making precise the idea that the complexity
of forking should be interrelated with the complexity of algebraic structures inter-
pretable in the theory: trichotomy, group configuration, etc. These developments
form a major technical bridge connecting pure model theory with its applications
to algebraic geometry and number theory. Unfortunately, most theories are not
stable.

0.2.3. Simple theories.
The class of simple theories was introduced by Shelah in [She80] in connection

to characterizing the saturation spectrum. However, the real revival of interest
had occurred 15 years later stemming from the Hrushovski’s work on pseudo-finite
fields and other finite rank examples [Hru02] and a purely model-theoretical work
of Kim and Pillay [Kim98, KP97, Kim01, Kim96].

A theory is simple if every type does not fork over some small subset of its
domain. Equivalently if it is not possible to encode a tree in a definable way (see
Chapter 3 for precise definitions). Examples of simple theories are:

• every stable theory is simple,
• the theory of the random Rado graph,
• pseudo-finite fields,
• the theory of algebraically closed fields expanded by a generic automor-

phism, ACFA.

In his thesis [Kim96], Kim had proved that forking equals dividing, and that it gives
rise to a symmetric transitive independence relation, thus recovering completely the
properties in F1 and F2 in the context of simple theories.

Concerning F3, forking is no longer described by definability of types, and
stationarity fails badly. However, in the work of Hrushovski on the finite rank case
it became apparent that in most situations one could replace the uniqueness of non-
forking extensions by the ability to amalgamate any two of them in a sufficiently
general position. This led to the following important theorem of Kim and Pillay.

Fact 0.2.5. [KP97]The independence theorem. Let T be a simple theory and
M |= T . Let p0 (x) be a complete type over M, p1 ∈ S (A) and p2 ∈ S (B) be
non-forking extensions of p0, and A |̂

M
B. Then there is some global type p (x)

non-forking over M and such that p1, p2 ⊆ p.

We had stated the independence theorem over a model, while in fact further
analysis demonstrates that the only obstacle to amalgamation is characterized by
the action of the Lascar group of strong automorphisms. In fact, existence of a
relation satisfying F2 and the independence theorem implies that the theory is
simple and that this relation is given by non-forking.



0.2. INTRODUCTION (ENGLISH) 19

Subsequent work of numerous researchers led to a rapid development of the
field, among notable results are existence of canonical bases and the theory of hy-
perimaginaries (and their elimination in supersimple theories), results on group
configuration, work of Chatzidakis, Hrushovski and Peterzil on ACFA — culminat-
ing in geometric simplicity theory, trichotomy for sets of rank 1 in ACFA and the
proof of Mordell-Lang by Hrushovski.

0.2.4. NIP.
The class of NIP theories (No Independence Property, also called dependent)

was introduced by Shelah in one of the earliest papers on classification programme.
A theory is NIP if it cannot “encode the random bipartite graph by a formula”.
More precisely:

Definition 0.2.6. A formula ϕ (x, y) has NIP if for some n < ω there are no
(ai)i<n and (bs)s⊆n such that ϕ (ai, bs) ⇔ i ∈ s. A theory is NIP if it implies
that every formula is NIP.

It was observed early on by Laskowski [Las92] that NIP is equivalent to the
finite Vapnik-Chervonenkis dimension of families of ϕ-definable sets for all ϕ. We
remark that if a theory is both simple and NIP, then it is stable.

Examples of NIP theories are:

• stable theories,
• linear orders and trees,
• ordered abelian groups (Gurevich-Schmitt),
• any o-minimal theory,
• algebraically closed valued fields (and in fact any c-minimal theory),
• Qp.

While there were some results on NIP in the 80’s, it is currently experiencing a
revival of interest. The motivation is again two-fold and stems both from the
work on particular example of algebraically closed valued fields (elimination of
imaginaries and stable domination inACVF by Haskell, Hrushovski and Macpherson
[HHM08], Hrushovski-Loeser on generically stable types and Berkovich spaces ,
Hrushovski-Peterzil-Pillay on Pillay’s o-minimal group conjecture [HPP08]) and
the purely model theoretic developments (Shelah’s work: theorem on externally
definable sets [She04, ?], the generic pair conjecture and the recounting of types
up to automorphism [Sheb, Shea, Shec], work on dp-rank and related notions of
dp-minimality, measures...).

NIP theories have many of the combinatorial properties characteristic to stable
theories, however there is an essentially new phenomenon — presence of externally
definable sets which are not internally definable. It seems unavoidable for the
further development to grasp some control over their structure. What about forking
in NIP theories? On the one hand, F2 fails badly — forking is neither symmetric nor
transitive, already in a dense linear order. However it turns out that a global type
does not fork over a model if and only if it is invariant under all automorphisms
fixing this model. It follows that every type has boundedly many non-forking
extensions and leaves some hope for better results towards F3. Indeed, we make
some progress towards both of these directions in Chapters 4,5. As for F1, we
discuss it in the next section.
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0.2.5. NTP2. Finally, we arrive to the central topic of this thesis — the class
of theories without the tree property of the second kind, or NTP2 theories. It
was introduced by Shelah implicitly in [She90] and explicitly in [She80], as a
generalization of simplicity.

Definition 0.2.7. We say that ϕ (x, y) has TP2 if there are (aij)i,j∈ω and
k ∈ ω such that:

(1) {ϕ (x, aij)}j∈ω is k-inconsistent for every i ∈ ω.
(2)
{
ϕ
(
x, aif(i)

)}
i∈ω is consistent for every f : ω→ ω.

A theory is called NTP2 if no formula has TP2.
The class of NTP2 theories is a natural generalization of both simple and NIP

theories. Further examples of NTP2 theories are:
• Expansion of a geometric NTP2 theory by a generic predicate remains

NTP2. Geometric means that algebraic closure satisfies exchange and
that the quantifier ∃∞ is eliminated. Generic is in the sense of [CP98].
For example, an expansion of an o-minimal theory by adding a random
graph is NTP2 (see Chapter 3).
• Ultraproducts of p-adics are NTP2, and more generally henselian valued

fields of characteristic 0 with NTP2 residue fields (see Chapter 3).
• Certain σ-henselian valued difference fields, e.g. non-standard Frobenius

automorphism on an algebraically closed field of characteristic 0 ([CH]).
Further results on groups and fields (type-) definable in structures with NTP2
theories which have not found their place in this text will be available in [CH] and
[CKS].

This thesis contains the first systematic study of the class of NTP2 theories.
Large part of it is devoted to developing forking calculus in the setting of NTP2
theories (we succeed with recovering F1 fully and provide a weak independence
theorem for F3), understanding special kinds of types in NTP2 theories (with focus
on simple and NIP types) and providing new examples.

0.2.6. Overview of results. First a very quick overview of the thesis.
Chapters 1 and 2 are devoted to developing the theory of forking in NTP2

theories: we demonstrate that a large part of the forking calculus can be developed
in the general context of NTP2 theories (e.g. forking=dividing, existence of strictly
invariant extensions, chain condition, weak independence theorem, etc) thus gen-
eralizing the work of Kim and Pillay on simple theories and answering a question
of Pillay which was open even in the case of NIP theories, along with questions of
Adler and Hrushovski around the number of non-forking extensions and the chain
condition of non-forking. Chapter 1 is a joint work with Itay Kaplan (and is pub-
lished as “Forking and dividing in NTP2 theories” in the Journal of Symbolic Logic
[CK12]) and Chapter 2 is a joint work with Itai Ben Yaacov (and is in circulation
as a preprint “A weak independence theorem for NTP2 theories”).

Chapter 3 (submitted to the Annals of Pure and Applies Logic as “Theories
without the tree property of the second kind”) develops the basics of the theory
of burden, a generalized notion of weight (e.g. we demonstrate that it is sub-
multiplicative, answering a question of Shelah from [She90]). Besides, we study
simple and NIP types in NTP2 theories and the effect these assumptions have
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for burden calculus. For simple types we establish full symmetry of forking be-
tween realizations of the type and arbitrary elements, thus answering a question
of Casanovas in the case of NTP2 theories. For NIP types, we demonstrate that
their dp-rank (equivalently, burden) is always witnessed by mutually indiscernible
sequences of realizations of the type. Finally, we give new examples of NTP2 the-
ories: any expansion of a geometric NTP2 theory by a generic predicate is NTP2;
any henselian valued field of characteristic 0 is NTP2 assuming that the residue
field is NTP2. So in particular any ultraproduct of p-adics is NTP2.

Chapters 4 (to appear in the Israel Journal of Mathematics as “Externally de-
finable sets and dependent pairs”) and Chapter 5 (submitted to the Transactions of
AMS) are a joint work with Pierre Simon and are devoted to the study of externally
definable sets in NIP theories. In Chapter 4 we introduce honest definitions and us-
ing them give a new proof of the Shelah expansion theorem and a general criterion
for dependence of an elementary pair. As an application we answer a question of
Baldwin and Benedikt [BB00] about naming an indiscernible sequence. In Chapter
5, we combine honest definitions with some deeper combinatorial results from the
Vapnik-Chervonenkis theory to deduce that in NIP theories, types over finite sets
are uniformly definable. This confirms a conjecture of Laskowski for NIP theories.
Besides, we give a new sufficient condition for a theory of a pair to eliminate quan-
tifiers down to the predicate and some examples concerning definability of 1-types
vs definability of n-types over models.

The final chapter (joint work with Itay Kaplan and Saharon Shelah, submitted
as “On non-forking spectra” to the Transactions of AMS) is devoted to the classifi-
cation of possible growth rates of the number of non-forking extensions. We make
progress towards the conjecture that there could be only finitely many different
possibilities for it and develop a general technique for constructing theories with a
prescribed number of non-forking extension which we call circularization. In par-
ticular we answer negatively a question of Adler by giving an example of a theory
which has IP yet every type has only boundedly many non-forking extensions. Be-
sides, we resolve a question of Keisler on the number of Dedekind cuts in linear
orders: it is consistent with ZFC that dedκ < (ded κ)ℵ0 .

In the following sections we give a more detailed overview of each chapter, along
with the statements of main theorems.

0.2.7. Forking and dividing in NTP2 theories (joint work with Itay
Kaplan). In this chapter we develop the basics of forking and dividing in NTP2
theories. It is easy to see that the theory in Example 0.2.4 is NIP. Thus, forking is
not the same as dividing in general.

Problem 0.2.8. (Pillay) Is forking = dividing over models in NIP theories?

Working on this question, to our own surprise it eventually became clear that
going to a larger class of NTP2 theories clarifies the situation.

Definition 0.2.9. We say that a set A is an extension base if every p (x) ∈
S (A) does not fork over A.

E.g. every model in every theory is an extension base. In simple, o-minimal or
c-minimal theories, every set is an extension base.
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Theorem 0.2.10. Let T be NTP2 and A an extension base. Then ϕ (x, a)
divides over A if and only if it forks over A.

While it is not true that every indiscernible sequence witnesses dividing, in a
simple theory every Morley sequence does, and in fact this property characterizes
simplicity [Kim01].

Definition 0.2.11. (1) A global type p (x) is strictly invariant over A if
it is invariant over A and for every B ⊇ A and a |= p|B, tp (B/aA) does
not fork over A.

(2) We say that ā = (ai)i∈ω is a strict Morley sequence over A if tp (ai/a<iA)
extends to a global strictly invariant type, for each i ∈ ω. In particular ā
is indiscernible.

It turns out that the notion of strict Morley sequence is the right one for
generalizing Kim’s lemma to NTP2.

Theorem 0.2.12. Assume that ϕ (x, a) divides over M and that (ai)i∈ω is a
strict Morley sequence in tp (a/M). Then {ϕ (x, ai)}i∈ω is inconsistent.

The only remaining (and the main technical) difficulty is to establish (using
the so-called Broom lemma):

Theorem 0.2.13. For every M |= T , every p (x) ∈ S (M) has a global strictly
invariant extension.

As an application we give a positive answer to a question of Adler in the case
of NTP2 theories:

Theorem 0.2.14. T is NIP if and only if it is NTP2 and every type has only
boundedly many non-forking extensions.

In the last section we give examples demonstrating optimality of the results.

0.2.8. A weak independence theorem for NTP2 theories (joint work
with Itai Ben Yaacov). In this chapter we continue the development of the
theory of forking calculus in NTP2.

We begin by considering a multi-dimensional generalization of dividing, the
so-called array-dividing.

Definition 0.2.15. (1) We say that (aij)i,j∈κ is an indiscernible array

overA if both
(
(aij)j∈κ

)
i∈κ

and
(
(aij)i∈κ

)
j∈κ are indiscernible sequences.

(2) Let us say that a formula ϕ (x, a) array-divides over A if there is an A-
indiscernible array (aij)i,j∈κ such that a00 ≡A a and {ϕ (x, aij)}i,j∈κ is
inconsistent.

Theorem 0.2.16. Let T be NTP2 and A an arbitrary set. Then φ (x, a) divides
over A if and only if it array-divides over A.

Definition 0.2.17. We will say that forking in T satisfies the chain condition
over A if: for any I = (ai)i∈ω indiscernible over A, assume that φ(x, a0) does not
fork over A. Then φ(x, a0)∧ φ(x, a1) does not fork over A.

This condition can be understood as saying that the forking ideal (in the
Boolean algebra of definable sets) is “generically” prime (or equivalently that there
are no anti-chains of non-forking formulas of unbounded size, hence the name).
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Problem 0.2.18. Adler / Hrushovski: what is the relation between NTP2 and
the chain condition?

On the one hand, combining the equivalence of dividing and array-dividing
with the results of the previous chapter on strict invariance we get:

Theorem 0.2.19. Let T be NTP2 and A an extension base. Then T satisfies
the chain condition over A.

On the other hand, we give an example of a theory with TP2 satisfying the
chain condition (in fact, we use one of the examples constructed in the last chapter
of the thesis).

In his work on approximate subgroups [Hru12], Hrushovski had found a re-
formulation of the Independence theorem for simple theories with respect to an
invariant S1-ideal for type with a global invariant extension.

Using the chain condition we prove a version of this theorem for forking over
an arbitrary extension base in an NTP2 theory.

Theorem 0.2.20. The Weak Independence Theorem. Let T be NTP2 and A an
extension base. Assume that c |̂

A
ab, a |̂

A
bb ′ and b ≡Lstp

A b ′. Then there is c ′

such that c ′ |̂
A
ab ′, c ′a ≡A ca, c ′b ′ ≡A cb.

The usual independence theorem for simple theories easily follows from this
one using symmetry of forking. As an application we deduce that Lascar strong
type equals Kim-Pillay strong type over an extension base in an NTP2 theory. It
also follows that the stabilizer theorem of Hrushovski holds over models in NTP2
theories.

In the last part of the chapter we discuss several possible generalizations of the
notion of fundamental order to the class of NTP2 theories, connections to existence
of universal Morley sequences and some related conjectures.

The conclusion is that a large part of the forking calculus of simple theories, up
to the independence theorem (recovering fully F1 and the corresponding counterpart
of F3), can be redeveloped in a much larger class of NTP2 theories when properly
formulated (and giving the results for simple theories as easy special cases).

0.2.9. Burden, simple and NIP types, examples. In this chapter we
continue investigating the class of NTP2 theories. We begin by considering the
notion of burden introduced by Adler (which is in fact a localization of Shelah’s
cardinal invariant κinp with respect to a type). It generalizes both weight in simple
theories and dp-rank in NIP theories. A theory is NTP2 if and only if every type
has bounded burden.

We show that burden is sub-multiplicative, in any theory. More precisely,

Theorem 0.2.21. If bdn (a) < κ and bdn (b/a) < λ, then bdn (ab) < κ× λ.

This answers a question of Shelah from [She90]. In particular, it follows that if
a theory has TP2, then already some formula ϕ (x, y) has TP2 with x a singleton.

We elaborate on this topic and give an equivalent way of computing burden of
a type as the supremum of lengths of strictly invariant sequences such that some
realization of the type forks with all of its elements. Using it we show that in fact
NTP2 is characterized by the generalized Kim’s lemma from the previous section,
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and that any theory in which dividing of a type is always witnessed by an instance
of a dependent formula has to be NTP2.

We continue with the analysis of two extremal kinds of types in NTP2 theories
— simple and NIP types.

• NIP types: Combining the results of the previous chapters on forking
localized to an NTP2 type with honest definitions from Chapter 4 we prove
that dp-rank of a type in arbitrary theory is always witnessed by mutually
indiscernible sequences of its realizations, after adding some parameters.
So the dp-rank of a 1-type in any theory is always witnessed by sequences
of singletons. We also observe that in an NTP2 theory, a type is NIP if and
only if every extension of it has only boundedly many global non-forking
extensions (parallel to the characterization of stable types as those types
every completion of which has a unique non-forking extension).

• Simple types are defined as those type for which every completion satisfies
the local character. While it is more or less immediate that on the set of
realizations of a simple type forking satisfies all the properties of forking
in simple theories, the interaction between the realizations of a simple
type and arbitrary tuples seems more intricate as a simple type need
not be stably embedded. We establish full symmetry of forking between
realizations of a simple type and arbitrary elements, answering a question
of Casanovas in the case of NTP2 theories (showing that simple types
are co-simple). Then we show that simple types are characterized as
those satisfying the co-independence theorem and that co-simple stably
embedded types are simple (so in particular a theory is simple if and only
if it is NTP2 and satisfies the independence theorem).

In the final section of this chapter we give some new examples of NTP2 theories.
Most importantly we show:

Theorem 0.2.22. Let K̄ = (K, Γ, k) be a henselian valued field in the Denef-Pas
language. Assume that k is NTP2, then K̄ is NTP2.

In particular, any ultraproduct of p-adics is NTP2 (actually strong of finite
burden), while it is neither simple nor NIP even in the pure field language. We also
demonstrate that adding a generic predicate to a geometric NTP2 theory, in the
sense of Chatzidakis and Pillay [CP98], preserves NTP2.

0.2.10. Externally definable sets and dependent pairs (joint work
with Pierre Simon). In the following two chapters we concentrate on the special
case of NIP theories (or often NIP types in an arbitrary theory, without explicitly
stressing it), trying to recover some elements of the definability of types from stable
theories in this larger context.

Let M be a model of a theory T . An externally definable subset of Mk is an
X ⊆Mk that is equal to φ(Mk, d) for some formula φ and d in some N �M. In
a stable theory, by definability of types, any externally definable set coincides with
some M-definable set. By contrast, in a random graph for example, any subset in
dimension 1 is externally definable.

Assume now that T is NIP. A theorem of Shelah ([Shed]), generalizing a result
of Poizat and Baisalov in the o-minimal case ([BP98]), states that the projection
of an externally definable set is again externally definable. His proof does not give
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any information on the formula defining the projection. A slightly clarified account
is given by Pillay in [Pil07].

In section 1, we show how this result follows from a stronger one: existence of
honest definitions. An honest definition of an externally definable set is a formula
φ(x, d) whose trace onM is X and which implies allM-definable subsets containing
X. Then the projection of X can be obtained simply by taking the trace of the
projection of φ(x, d).

Combining this notion with an idea from [Gui11], we can adapt honest def-
initions to make sense over any subset A instead of a model M. We obtain a
property of weak stable-embeddedness of sets in NIP structures. Namely, consider
a pair (M,A), where we have added a unary predicate P(x) for the set A. Take
c ∈ M and φ(x, c) a formula. We consider φ(A, c). If A is stably embedded,
then this set is A-definable. Guingona shows that in an NIP theory, this set
is externally A-definable, i.e., coincides with ψ(A,d) for some ψ(x, y) ∈ L and
d ∈ A ′ where (M ′, A ′) � (M,A). We strengthen this by showing that one can
find such a φ(x, d) with the additional property that ψ(x, d) never lies, namely
(M ′, A ′) |= ψ(x, d)→ φ(x, c). In particular, the projection of ψ(x, d) has the same
trace on A as the projection of φ(x, c).

In the second part of the chapter we try to understand when dependence of a
theory is preserved after naming a new subset by a predicate. We provide a quite
general sufficient condition for dependence of the pair, in terms of the structure
induced on the predicate and the restriction of quantification to the named set.

This question was studied for stable theories by a number of people (see [CZ01]
and [BB04] for the most general results). In the last few years there has been a large
number of papers proving dependence of some pair-like structures, e.g. [BDO11],
[GH11], [Box11], etc. However, our approach differs in an important way from
the previous ones, in that we work in a general NIP context and do not make
any assumption of minimality of the structure (by asking for example that the
algebraic closure controls relations between points). In particular, in the case of
pairs of models, we obtain

Theorem 0.2.23. If M is NIP, N � M and (N,M) is bounded (i.e. every
formula is equivalent to one in which quantification is restricted to the predicate),
then (N,M) is NIP.

Those results seem to apply to most, if not all, of the pairs known to be depen-
dent. It also covers some new cases, in particular answering a question of Baldwin
and Benedikt [BB00] we establish:

Theorem 0.2.24. Let M be NIP and assume that I is a small indiscernible
sequence. Then (M, I) is NIP.

0.2.11. Externally definable sets and dependent pairs II (joint work
with Pierre Simon).

In this chapter we continue the investigation of externally definable sets in NIP
theories.

As it was established in the previous chapter, every externally definable set
X = φ(x, b) ∩ A has an honest definition, which can be seen as the existence
of a uniform family of internally definable subsets approximating X. Formally,
there is θ(x, z) such that for any finite A0 ⊆ X there is some c ∈ A satisfying
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A0 ⊆ θ(A, c) ⊆ A. The first section of this chapter is devoted to establishing
existence of uniform honest definitions. By uniform we mean that θ(x, z) can be
chosen depending just on φ(x, y) and not on A or b. We achieve this assuming
that the whole theory is NIP, combining careful use of compactness with a strong
combinatorial result of Alon-Kleitman [AK92] and Matousek [Mat04]: the (p, k)-
theorem.

Recall the following classical fact characterizing stability of a formula.

Fact 0.2.25. The following are equivalent:
(1) φ(x, y) is stable.
(2) There is θ(x, z) such that for any A and a, there is b ∈ A satisfying

φ(A,a) = θ(A, b).
(3) There are m,n ∈ ω such that |Sφ(A)| ≤ m · |A|n for any set A.

Definition 0.2.26. We say that φ(x, y) has UDTFS (Uniform Definability of
Types over Finite Sets) if there is θ(x, z) such that for every finite A and a there
is b ∈ A such that φ(A,a) = θ(A, b). We say that T satisfies UDTFS if every
formula does.

If φ(x, y) has UDTFS, then it is NIP, thus naturally leading to the following
conjecture

Problem 0.2.27. [Laskowski] Assume that φ(x, y) is NIP, then it satisfies
UDTFS.

It was proved for weakly o-minimal theories in [JL10] and for dp-minimal the-
ories in [Gui10]. As an immediate corollary of the uniformity of honest definitions
we prove the conjecture assuming that the whole theory is NIP,

Theorem 0.2.28. Let T be NIP. Then it satisfies UDTFS.

In the next section we consider an implication of the (p, k)-theorem for forking
in NIP theories. Combined with the results on forking and dividing from the first
chapter, we deduce the following

Theorem 0.2.29. Working over a modelM, let {φ(x, a) : a |= q(y)} be a family
of non-forking instances of φ(x, y), where the parameter a ranges over the set of
solutions of a partial type q. Then there are finitely many global M-invariant types
such that each φ(x, a) from the family belongs to one of them.

In Section 3 we return to the question of naming subsets with a new predicate.
In the previous section we gave a general condition for the expansion to be NIP:
it is enough that the theory of the pair is bounded, i.e. eliminates quantifiers down
to the predicate, and the induced structure on the predicate is NIP. Here, we
try to complement the picture by providing a general sufficient condition for the
boundedness of the pair. In the stable case the situation is quite neatly resolved
using the notion of nfcp. However nfcp implies stability, so one has to come up
with some generalization of it that is useful in unstable NIP theories. Towards
this purpose we introduce dnfcp, i.e. no finite cover property for definable sets of
parameters, and its relative version with respect to a set. We also introduce dnfcp’
– a weakening of dnfcp with separated variables. Using it, we succeed in the distal,
stably embedded, case: if one names a subset ofM which is small, uniformly stably
embedded and the induced structure satisfies dnfcp’, then the pair is bounded.
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In section 4 we look at the special case of naming an indiscernible sequence.
On the one hand, we complement the result in the previous chapter by showing
that naming a small indiscernible sequence of arbitrary order type is bounded and
preserves NIP. On the other hand, naming a large indiscernible sequence does not.

In the last section we consider models over which all types are definable. While
in general even o-minimal theories may not have such models, many interesting NIP
theories do (RCF, ACVF, Th(Qp), Presburger arithmetic...). In practice, it is often
much easier to check definability of 1 types, as opposed to n-types, so it is natural
to ask whether one implies the other. Unfortunately, this is not true – we give an
NIP counter-example. Can anything be said on the positive side? Pillay [Pil11]
had established: let M be NIP, A ⊆ M be definable with rosy induced structure.
Then if it is 1-stably embedded, it is stably embedded. We observe that Pillay’s
results holds when the definable set A is replaced with a model, assuming that
it is uniformly 1-stably embedded. This provides a generalization of the classical
theorem of Marker and Steinhorn about definability of types over models in o-
minimal theories. We also remark that in NIP theories, there are arbitrary large
models with “few” types over them (i.e. such that |S(M)| ≤ |M|

|T |).

0.2.12. On the number of non-forking extensions (joint with Itay
Kaplan and Saharon Shelah).

The final chapter is devoted to the question of how many non-forking extension
can a type have, in an arbitrary theory. More precisely, we consider the following
function.

Definition 0.2.30. For a complete countable first-order theory T and cardinals
κ ≤ λ, we let

fT (κ, λ) = sup
{
Snf(N,M) |M � N |= T, |M| ≤ κ, |N| ≤ λ

}
,

where Snf (A,B) = {p ∈ S1(A) |p does not fork over B }.

This is a generalization of the classical question “how many types can a the-
ory have?”. Recall that the stability function of a theory is defined as fT (κ) =
sup {S (M) |M |= T, |M| = κ }. It is easy to see that fT (κ, κ) = fT (κ). This function
has been studied extensively by Keisler and Shelah, and the following fundamental
result was proved:

Fact 0.2.31. For any complete countable first-order theory T , fT is one of the
following: κ, κ+ 2ℵ0 , κℵ0 , ded (κ), ded (κ)ℵ0 , 2κ.

Where ded (κ) is the supremum of the number of cuts that a linear order of size
κ may have. While this result is unconditional, in some models of ZFC, some of
these functions may coincide. Namely, if GCH holds, ded (κ) = ded (κ)ℵ0 = 2κ. By
a result of Mitchell [Mit73], it was known that for any cardinal κ with cof κ > ℵ0
consistently ded (κ) < 2κ. In 1976, Keisler [Kei76, Problem 2] asked:

Problem 0.2.32. Is ded (κ) < ded (κ)ℵ0 consistent with ZFC?
We give a positive answer.

However, the main aim of this chapter is to classify the possibilities of fT (κ, λ).
The philosophy of “dividing lines” suggests that the possible non-forking spectra
are quite far from being arbitrary, and that there should be finitely many possible
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functions, distinguished by the lack (or presence) of certain combinatorial config-
urations. We work towards justifying this philosophy and arrive at the following
picture.

Theorem 0.2.33. Let T be a countable complete first-order theory. Then for
λ � κ, fT (κ, λ) can be one of the following, in increasing order (meaning that we
have an example for each item in the list except for (13), and “???” means that we
don’t know if there is anything between the previous and the next item, while the
lack of “???” means that there is nothing in between):

(1) κ
(2) κ+ 2ℵ0
(3) κℵ0
(4) ded κ
(5) ???
(6) (ded κ)ℵ0

(7) 22
κ

(8) λ
(9) λℵ0

(10) ???
(11) λ<iℵ1

(κ)

(12) ded λ

(13) ???
(14) (ded λ)ℵ0

(15) ???
(16) 2λ

In particular, we note that the existence of an example of fT (κ, λ) = 22
κ

answers negatively a question of Adler [Adl08, Section 6] whether NIP is equivalent
to bounded non-forking in general (compare with Theorem 0.2.14).

The restriction λ � κ is in order to make the statement clearer. It can be
taken to be λ ≥ iℵ1 (κ). In fact we can say more about smaller λ in some cases.
In the class of NTP2 theories, we have a much nicer picture, meaning that there is
a gap between (6) and (20).

In the first part of the chapter, we prove that the non-forking spectra cannot
take values which are not listed in the Main Theorem. The proofs here combine
techniques from generalized stability theory (including results on stable and NIP
theories, splitting and tree combinatorics) with a two cardinal theorem for Lω1,ω.

The second part of the chapter is devoted to examples.
We introduce a general construction which we call circularization. Roughly

speaking, the idea is the following: modulo some technical assumptions, we start
with an arbitrary theory T0 in a finite relational language and an (essentially)
arbitrary prescribed set of formulas F. We expand T by putting a circular order on
the set of solutions of each formula in F, iterate the construction and take the limit.
The point is that in the limit all the formulas in F are forced to fork, and we have
gained some control on the set of non-forking types. This construction turns out
to be quite flexible: by choosing the appropriate initial data, we can find a wide
range of examples of non-forking spectra previously unknown.



CHAPTER 1

Forking and dividing in NTP2 theories

This chapter is a joint work with Itay Kaplan and is published as “Forking and
dividing in NTP2 theories”, J. Symbolic Logic, 77(1):1–20, 2012 [CK12].

We prove that in theories without the tree property of the second kind (which
include dependent and simple theories) forking and dividing over models are the
same, and in fact over any extension base. As an application we show that depen-
dence is equivalent to bounded non-forking assuming NTP2.

1.1. Introduction

Background.
The study of forking in the dependent (NIP) setting was initiated by Shelah in full
generality [She09] and by Dolich in the case of nice o-minimal theories [Dol04a].
Further results appear in [Adl08], [HP11], [OU11] and [Sta]. The main trouble is
that apparently non-forking independence outside of the simple context no longer
corresponds to a notion of dimension in any possible way. Moreover it is neither
symmetric nor transitive (at least in the classical sense). However in dependent the-
ories it corresponds to invariance of types, which is undoubtedly a very important
concept, and it is a meaningful combinatorial tool.

Main results.
The crucial property of forking in simple theories is that it equals dividing (thus
the useful concept – forking – becomes somewhat more understandable in real-life
situations). It is known that there are dependent theories in which forking does
not equal dividing in general (for example in circular order over the empty set, see
section 1.5). However there is a natural restatement of the question due to Anand
Pillay: whether forking and dividing are equal over models? After failing to find a
counter-example we decided to prove it instead. And so the main theorem of the
paper is:

Theorem 1.1.1. Let T be an NTP2 theory (a class which includes dependent
and simple theories). Then forking and dividing over models are the same – a
formula ϕ (x, a) forks over a model M if and only if it divides over it.

In fact, a more general result is attained. Namely that:

Theorem 1.1.2. Let T be NTP2. Then for a set A, the following are equivalent:

(1) A is an extension base for |̂
f (non-forking) (see definition 1.2.7).

(2) |̂
f has left extension over A (see definition 1.2.4).

(3) Forking equals dividing over A (i.e. a formula ϕ (x, b) divides over A iff
if forks over A).

29
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So theorem 1.1.1 is a corollary of 1.1.2 (types over models are finitely satisfiable,
so (1) is true), and of course:

Corollary 1.1.3. If T is NTP2 and all sets are extension bases for non-
forking, then forking equals dividing. (This class contains simple theories, o-minimal
and c-minimal theories).

The idea of the proof.
The idea is to generalize the proof of the theorem in simple theories. There, “Kim’s

lemma” was the main tool. The lemma says, that in a simple theory, if ϕ (x, a)
divides over A, then every Morley Sequence over A (i.e. an indiscernible sequence
〈ai |i < ω 〉 such that for all i < ω, tp (ai/Aa0 . . . ai−1) does not fork over A and
ai ≡A a) witnesses this. As there is no problem to construct Morley sequences over
any set, one shows that forking equals dividing by constructing a Morley sequence
that starts with the parameters of the formulas witnessing forking.
To prove the parallel result in the NTP2 context, we find a new notion of inde-
pendence, |̂

ist such that every |̂
ist-Morley sequence witnesses dividing. Then

we show that this notion satisfies “existence over a model”, i.e. that for every a,
a |̂

ist
M
M. For this we shall need the so-called “broom lemma”. Essentially it says

that if a formula is covered by finitely many formulas arranged in a "nice position",
then we can throw away the dividing ones, by passing to an intersection of finitely
many conjugates.

Applications.
We give some corollaries, among them that in dependent theories forking is type
definable, has left extension over models (answering a question of Itai Ben Yaacov),
and that if p is a global ϕ type which is invariant over a model, then it can be
extended to a global type invariant over the same model (strengthening a result
that appears in [HP11]).
Hans Adler asked in [Adl08] whether NIP is equivalent to boundedness of non-
forking. In section 1.4 we show that assuming NTP2, this is indeed the case. This
generalizes a well-known analogous result describing the subclass of stable theories
inside the class of simple theories. Finally in section 1.5 we present 2 examples that
show that the NTP2 assumption is needed, and explain why we work over models.
These are variants of an example due to Martin Ziegler of a theory in which forking
does not equal dividing over models.

Further remarks.
In Chapter 6, we give an example of a theory with IP, such that forking is bounded
(moreover, a global type does not fork over a set iff it is finitely satisfiable in this
set). This, together with the result appearing in section 1.4, completely solves
Adler’s question from [Adl08] mentioned above.
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1.2. Preliminaries

Notation.
Notations are standard.

As usual, T is a first order theory; C is the monster model (a big saturated model);
all sets are subsets of C of size smaller than |C| and all models are elementary sub-
structures of C.
We shall not always distinguish between sets and sequences, i.e. a can be a single-
ton, a set, an n-tuple or a sequence of any length of members of C.
The variables x, y are singletons or finite sequences.
For sets A,B we write AB for the union, and for an element (or a sequence) a,
we write Aa for A ∪ {a} (or A ∪ im (a)). In some contexts, ab will denote the
concatenation of the sequences a and b (for instance when we write ab ≡ cd).
For us, I, J denote infinite sequences.
A global type is a type over C.

Preliminaries on dependent theories.
Let us recall:

Definition 1.2.1. A theory T has the independence property if there is a for-
mula φ(x, y) and tuples {ai |i < ω }, {bu |u ⊆ ω } (in C) such that φ(ai, bu) if and
only if i ∈ u. T is dependent iff it does not have the independence property (also
known as NIP).

Definition 1.2.2. The alternation rank of a formula: alt (ϕ (x, y)) =

= max {n < ω |∃ 〈ai |i < ω 〉 indiscernible, ∃b : ϕ (ai, b)↔ ¬ϕ (ai+1, b) for i < n− 1 }

Fact 1.2.3. T is dependent iff every formula has finite alternation rank.

To the best of our knowledge, this fact first appeared in [Poi81], and is an easy
exercise in the definition.

Pre-independence relations, dividing and forking.
To make the presentation clearer, we chose to follow the style of Adler in [Adl05],
and define an abstract notion of independence. By a pre-independence relation we
shall mean a ternary relation |̂ on sets which satisfies one or more of the properties
below. For a more general definition of a pre-independence relation see e.g. [Adl08,
Section 5]. Note that since normally our relation is not symmetric many properties
can be formulated both on the left side and on the right side.

Definition 1.2.4. A pre-independence relation |̂ is an invariant ternary re-
lation on sets. We write a |̂

A
b for: a is |̂ -independent from b over A. The

following are the properties we consider for a pre-independence relation:
(1) Monotonicity: If aa ′ |̂

A
bb ′ then a |̂

A
b.

(2) Base monotonicity: If a |̂
A
bc then a |̂

Ab
c.

(3) Transitivity on the left (over A): a |̂
Ab
c and b |̂

A
c implies ab |̂

A
c.

(4) Right extension (over A): if a |̂
A
b then for all c there is c ′ ≡Ab c such

that a |̂
A
bc ′.
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(5) Left extension (over A): if a |̂
A
b then for all c there is c ′ ≡Aa c such

that ac ′ |̂
A
b.

Remark 1.2.5. We shall not discuss independence relations, but for complete-
ness we mention that an independence relation is a pre-independence relation that
satisfies (1) – (3) and symmetry (i.e. a |̂

A
b iff b |̂

A
a).

Definition 1.2.6. We say that a pre-independence relation is standard if it
satisfies (1) – (4) from definition 1.2.4.

Definition 1.2.7. We say that A is an extension base for a pre-independence
relation |̂ if for all a, a |̂

A
A.

Now let us recall the definition of forking and dividing.

Definition 1.2.8. (dividing) Let A be be a set, and a a tuple. We say that the
formula ϕ (x, a) divides over A iff there is a number k < ω and tuples {ai |i < ω }

such that
(1) tp (ai/A) = tp (a/A).
(2) The set {ϕ (x, ai) |i < ω } is k-inconsistent (i.e. every subset of size k is

not consistent).
In this case, we say that a formula k-divides.

Remark 1.2.9. From Ramsey and compactness it follows that ϕ (x, a) divides
over A iff there is an indiscernible sequence over A, 〈ai |i < ω 〉 such that a0 = a
and {ϕ (x, ai) |i < ω } is inconsistent.

Definition 1.2.10. We say that a type p divides over A iff there is a finite
conjunction of formulas from p which divides over A. The notation a |̂

d

A
b means

tp (a/Ab) does not divide over A.

Fact 1.2.11. (see [She80, 1.4]) The following are equivalent for every T :
(1) a |̂

d

A
b.

(2) For every indiscernible sequence I over A such that b ∈ I, there is an
indiscernible sequence I ′ such that I ′ ≡Ab I and I ′ is indiscernible over
Aa.

(3) For every indiscernible sequence I over A such that b ∈ I, there is a ′ such
that a ′ ≡Ab a and I is indiscernible over Aa ′.

Definition 1.2.12. (forking) Let A be be a set, and a a tuple.
(1) Say that the formula ϕ (x, a) forks over A if there are formulas ψi (x, ai)

for i < n such that ϕ (x, a) `
∨
i<nψi (x, ai) and ψi (x, ai) divides over

A for every i < n.
(2) Say that a type p forks over A if there is a finite conjunction of formulas

from p which forks over A.
(3) The notation a |̂

f

A
b means: tp (a/Ab) does not fork over A.

Note that:

Remark 1.2.13.
(1) If ϕ (x, a) divides over A then it forks over A.
(2) If M ⊇ A is an |A|

+ saturated model and p ∈ S (M) does not divide over
A, then it does not fork over A.
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Remark 1.2.14. |̂
f is standard (see, e.g. [Adl08, section 5]).

Two other pre-independence relations we shall use are |̂
u (finite satisfiability

– the u comes from “ultrafilter”), and |̂
i (invariance).

Definition 1.2.15. We write a |̂
u

A
b when tp (a/Ab) is finitely satisfiable in

A.

Remark 1.2.16. |̂
u is standard and satisfies left extension over models. Every

model is an extension base for |̂
u.

Proof. The fact that |̂
u is standard can be seen in e.g. [Adl08, section

5]. For left extension over models: Consider inheritance ( |̂
h) over a model M:

a |̂
h

M
b iff tp (a/Mb) is an heir over M, iff b |̂

u

M
a. It is well known that |̂

h

satisfies right extension over models, so the result follows. The fact that every
model is an extension base follows from the fact that filters can be extended to
ultrafilters. �

Let us recall the definition of Lascar strong types.

Definition 1.2.17. Aut fL (C/A) is the subgroup of all automorphisms of C
generated by the set {f ∈ Aut (C/M) |M ⊇ A is some small model }. We write a ≡LA
b (a is Lascar equivalent to b, or a and b have the same Lascar strong type) if
there is σ ∈ Aut fL (C/A) taking a to b.

Fact 1.2.18. (See e.g. in [Ker07]) The relation ≡LA is an equivalence rela-
tion, and in fact it is the finest invariant equivalence relation with boundedly many
classes. It is also defined as the transitive closure of the relation E (a, b) saying
that there is an indiscernible sequence over A containing both a and b.

Now we can define another pre-independence relation:

Definition 1.2.19. We say that a |̂
i

A
b iff there is is a global type p extending

tp (a/Ab) which is Lascar invariant over A: for every c, d such that c ≡LA d and
every formula ϕ (x, y) over A, ϕ (x, c) ∈ p iff ϕ (x, d) ∈ p.

Remark 1.2.20. In general, by Fact 1.2.18, if I is an indiscernible sequence
over A and a |̂

i

A
I then I is indiscernible over Aa. So a |̂

i

A
b iff for every finitely

many indiscernible sequences over A, I1, . . . , In, there are sequences I ′1, . . . , I
′
n such

that 〈I ′1 . . . I ′n〉 ≡Ab 〈I1 . . . In〉 and I ′i is indiscernible over Aa. Hence, it is easy to
see that |̂

i is standard. For more details, see [Adl08, Corollary 35].
In addition, over a modelM, |̂

i

M
is non-splitting (invariance) – a |̂

i

M
b iff tp (a/Mb)

can be extended to a global invariant type over M.

Definition 1.2.21. We say that |̂ is at least as strong as |̂
′ if for every a, b

and A, a |̂
A
b⇒ a |̂

′
A
b.

Example 1.2.22. |̂
u is at least as strong as |̂

i which is at least as strong as
|̂
f. See claim below.

By the remark above, when |̂ is at least as strong as |̂
i, if I is indiscernible

over A and a |̂
A
I then I is indiscernible over Aa. In this case, we’ll say that
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|̂ preserves indiscernibility. In fact, these two are equivalent (i.e. to preserve
indiscernibility and to be as strong as |̂

i) for standard pre-independence relations:
it follows from right extension and the criterion given in 1.2.20.

Remark 1.2.23. If N is |A|+ saturated, and p ∈ S (N) is an A-invariant type,
then p has a unique extension to a global A-invariant type.

Claim 1.2.24. |̂
i is at least as strong as |̂

f. If T is dependent, then |̂
i
= |̂

f.

Proof. The first statement is clear, and the second appears in [She09] and
also in [Adl08]. �

Generating indiscernible sequences.
Recall the following fact:

Fact 1.2.25. Assume that p is global A-invariant type. Then p generates an
indiscernible sequence over A: a0 |= p|A, ai+1 |= p|Aa0...ai . The type of this
indiscernible sequence depends only on p, and will be denoted by p(ω)|A ∈ S(ω) (A).
The type we get after n steps is denoted by p(n)|A ∈ Sn (A).

Definition 1.2.26.

(1) A type p is |̂ -free over A if for any b such that Ab ⊆ dom (p) and every
a |= p|Ab, a |̂

A
b.

(2) A Morley sequence 〈ai |i < ω 〉 for |̂ with base A over B ⊇ A is an
indiscernible sequence over B, such that for all i, ai |̂

A
Ba0 . . . ai−1.

Note that if a global type p is |̂ -free and invariant over A, then for every
B ⊇ A, the sequence p generates over B is a Morley sequence with base A over B.

NTP2 Theories.

Definition 1.2.27. A theory T has TP2 (the tree property of the second
kind) if there exists a formula ϕ(x, y), a number k < ω and an array of elements〈
aji |i, j < ω

〉
(in C) such that:

• Every row is k-inconsistent: for every i < ω and j0, . . . , jk−1 < ω, C |=

¬
(
∃x
∧
l<kϕ

(
x, ajli

))
.

• Every vertical path is consistent: for every function η : ω → ω, the set{
ϕ
(
x, ai,η(i)

)
|i < ω

}
is consistent.

We say that T is NTP2 when it does not have TP2.

Fact 1.2.28. Every dependent theory as well as every simple one is NTP2.

Proof. The tree property of the second kind implies the tree property (so
every simple theory is NTP2) and the Independence property. �

The tree property of the second kind was defined in [She80]. There it is proved
that a theory is non-simple (has the tree property) iff it has the tree property of
the first kind (which we shall not define here) or the the tree property of the second
kind.
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1.3. Main results

1.3.1. The Broom lemma.
We start with the main technical lemma. Here there are no assumptions on T .

Lemma 1.3.1. Suppose that |̂ satisfies all properties from 1.2.4 but we de-
mand that it satisfies left extension only over A, and in addition that it preserves
indiscernibility. Assume that

α (x, e) ` ψ (x, c)∨
∨
i<n

ϕi (x, ai)

where
(1) For i < n, the formula ϕi (x, ai) k-divides over A, as witnessed by the

indiscernible sequence Ii = 〈ai,l |l < ω 〉 where ai,0 = ai.
(2) For each i < n and 1 ≤ l, ai,l |̂

A
ai,<lI<i where ai,<l = ai,0 . . . ai,l−1,

and I<i = I0 . . . Ii−1.
(3) c |̂

A
I<n.

Then for somem < ω there is {ei |i < m } with ei ≡A e for i < m and
∧
i<m α (x, ei) `

ψ (x, c). In particular, if ψ (x, c) = ⊥ (i.e. ∀x (x 6= x)) , then {α (x, ei) |i < m } is
inconsistent.

Proof. By induction on n. For n = 0 there is nothing to prove.
Assume that the claim is true for n and we prove it for n+1. Let b0 = an,0 . . . an,k−2
and b1 = an,1 . . . an,k−1 (where k is from (1)). Since |̂ preserves indiscernibility,
as c |̂

A
In we have

cb1 ≡A cb0.

We build by induction on j < k sequences
〈
Il,j<n |l ≤ j

〉
(so Il,j<n = Il,j0 . . . Il,jn−1) such

that:
(1) Il,j<n = Il,j0 . . . Il,jn−1 and each Il,ji is of the same length as Ii,
(2) I0,j<n = I<n.
(3) Il,j<ncan,l ≡A I0,j<ncan,0 for all l ≤ j and
(4) For all 0 ≤ l < j, cIj,j<nI

j−1,j
<n . . . Il+1,j<n |̂

A
Il,j<n and c |̂

A
Ij,j<n (which al-

ready follows from the previous clauses).
For j = 0, use (2): I0,0<n = I<n.
So suppose we have this sequence for j and we build it for j+ 1 < k.
By (2), let I0,j+1<n = I<n.
As cb1 ≡A cb0 we can find some Jl,j+1<n for 1 ≤ l ≤ j+ 1 so that:

(I) Jj+1,j+1<n Jj,j+1<n . . . J1,j+1<n cb1 ≡A Ij,j<nIj−1,j<n . . . I0,j<ncb0.

By transitivity on the left and base monotonicity (and by (2)) we have cb1 |̂
A
an,0I<n,

and by left extension we can find
〈
Il,j+1<n |1 ≤ l ≤ j+ 1

〉
such that

(II) Ij+1,j+1<n Ij,j+1<n . . . I1,j+1<n cb1 ≡A Jj+1,j+1<n Jj,j+1<n . . . J1,j+1<n cb1

and

(III)
〈
Il,j+1<n |1 ≤ l ≤ j+ 1

〉
cb1 |̂

A

an,0I<n.
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And so we have constructed
〈
Il,j+1<n |l ≤ j+ 1

〉
.

Note that from equations (I) and (II) it follows that

(IV) Ij+1,j+1<n Ij,j+1<n . . . I1,j+1<n cb1 ≡A Ij,j<nIj−1,j<n . . . I0,j<ncb0.

Now to check that we have our conditions satisfied:
(1) and (2) follows directly from construction.
(3): First of all, I<ncan,0 ≡A I1,j+1<n can,1 by equation (IV). For 1 ≤ l ≤ j,

I<ncan,0 ≡A Il,j<ncan,l
by the hypothesis regarding j. By (IV),

Il,j<ncan,l ≡A Il+1,j+1<n can,l+1

and so we have (3) for l ≤ j+ 1.
(4) follows from (III), the invariance of |̂ and induction.
So, for j = k − 1 we have

〈
Il,k−1<n |l ≤ k− 1

〉
. We shall now use only this last

sequence.
There are some 〈el |l < k 〉 such that e0 = e and for 0 < l < k, elIl,k−1<n can,l ≡A
eI<ncan,0, so applying some automorphism fixing Ac, we replace an,0 by an,l, e
by el and I<n by Il,k−1<n . So we get

α (x, el) ` ψ (x, c)∨
∨
i<n

ϕi
(
x, al,k−1i

)
∨ϕn (x, an,l)

where al,k−1i starts Il,k−1i . Hence α0 =
∧
l<k α (x, el) implies the conjunction of

these formulas. But as In witnesses that ϕn (x, an) is k dividing, we have the
following:

α0 ` ψ (x, c)∨
∨

i<n,l<k

ϕi
(
x, al,k−1i

)
.

Define a new formulas ψr (x, cr) = ψ (x, c) ∨
∨
i<n,r≤l<kϕi

(
x, al,k−1i

)
for r ≤ k.

By induction on r ≤ k, we find αr such that αr is a conjunction of conjugates over
A of α (x, e), and αr ` ψr (x, cr). It will follow of course, that αk ` ψ (x, c) as
desired. For r = 0, we already found α0. Assume we found αr, so we have

αr ` ψr+1
(
x, cr+1

)
∨
∨
i<n

ϕi
(
x, ar,k−1i

)
One can easily see that the hypothesis of the lemma is true for this implication
(where c = cr+1, and Ii = Ir,k−1i ) so by the induction hypothesis (on n), there
is some αr+1(which is a conjunction of conjugates of αr over A, and so also of α)
such that αr+1 ` ψr+1

(
x, cr+1

)
. �

Definition 1.3.2. We say that a formula α (x, e) quasi-divides over A if there
are m < ω and {ei |i < m } such that ei ≡A e and {α (x, ei) |i < m } is inconsistent.

So this lemma shows that under certain conditions, a forking formula also
quasi-divides.

Remark 1.3.3. The name of this lemma is due to its method of proof, which
reminded the authors (and also Itai Ben Yaacov who thought of the name) of a
sweeping operation.
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1.3.2. On pre-independence relations in NTP2.

Existence of global free co-free types.
The title of this section may seem a bit mysterious, but it will become clearer with
the next Proposition. Let T be any theory.

Definition 1.3.4. Let |̂ be a pre-independence relation. We say that |̂ has
finite character if whenever a 6 |̂

B
b, there is a formula ϕ (x) over Bb such that

ϕ (a) and for all a ′ if ϕ (a ′) then a ′ 6 |̂
B
b.

Remark 1.3.5. This definition is taken from [Adl08], where it is called strong
finite character, but since there is no room for confusion, we decided to omit
“strong”.

Example 1.3.6. All the pre-independence relations we mentioned satisfy this:
|̂
f, |̂

u and |̂
i.

Proposition 1.3.7. Assume that |̂ is a standard pre-independence relation
with finite character. Assume that B is an extension base for |̂ and that if ϕ (x, a)

forks over B, then ϕ (x, a) quasi-divides over B (see 1.3.2; in this case we say that
forking implies quasi dividing over B).
Then: for every type p over B,

(1) There exists a global extension q, |̂ -free over B, such that for every C ⊇ B
and every c |= q|C, C |̂

f

B
c.

(2) There exists a global extension q ′ that doesn’t fork over B (i.e. |̂
f-free

over B), such that for every C ⊇ B and every c |= q ′|C, C |̂
B
c.

Proof. (1): Let a |= p. By finite character, it is enough to see that the
following set is consistent

p (x) ∪ {¬ϕ (x, b) |ϕ (x, y) is over B&b ∈ C&ϕ (a, y) forks over B }

∪

{
¬ψ (x, d)

∣∣∣∣∣ψ (x, z) is over B&d ∈ C&∀c

[
ψ (c, d)⇒ c 6 |̂

B

d

]}
.

Since then every global type q that contains this set will suffice.
Indeed: assume not, then we have an implication of the form

p `
∨
i<n

ϕi (x, bi)∨
∨
j<m

ψj (x, dj)

where ϕi (x, yi), ψj (x, zj) formulas over B, ∀c
[
ψj (c, dj)⇒ c 6 |̂

B
dj

]
and ϕi (a, yi)

forks over B.
Note that

∨
i<nϕi (a, yi) forks over B, so we may assume n = 1.

By assumption, ϕ0 (a, y) quasi-divides over B, so there are h0, . . . , hk−1 such that
hi ≡B a and {ϕ0 (hi, y) |i < k } is inconsistent. Denote h = h0h1 . . . hk−1 and
r (x0, . . . , xk−1) = tp (h/B). Then

r � xi ` ϕ0 (xi, b)∨
∨
j<m

ψj (xi, dj) .
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So

r `
∧
i<k

ϕ0 (xi, b)∨ ∨
j<m

ψj (xi, dj)

 .
But

r ` ¬∃z

(∧
i<k

ϕ0 (xi, z)

)
,

so r `
∨
i<k,j<mψj (xi, dj).

The set B is an extension base for |̂ , so h |̂
B
B, and by right extension there

is h ′ ≡B h such that h ′ |̂
B
{dj |j < m }. It follows that there are i, j such that

ψj (h
′
i, dj). This is a contradiction to the choice of ψj.
(2): The proof is very similar. Let a |= p. We must show that

p (x) ∪ {¬ϕ (x, b) |ϕ (x, y) is over B&b ∈ C&ϕ (x, b) forks over B }

∪

{
¬ψ (x, d)

∣∣∣∣∣ψ (x, z) is over B&d ∈ C&∀c

[
ψ (a, c)⇒ c 6 |̂

B

a

]}
is consistent. If not, then p `

∨
i<nϕi (x, bi)∨

∨
j<mψj (x, dj) and we may assume

n = 1. As ϕ0 (x, b0) forks over B, it quasi-divides over B, so there are e0, . . . , ek−1
such that ei ≡B b0 and {ϕ (x, ei) |i < k } is inconsistent. Let d̄ = 〈di,j |j < m 〉 be
such that d̄iei ≡B d̄b0. As p is over B, for every i < k,

p ` ϕ0 (x, ei)∨
∨
j<m

ψj (x, di,j) .

So it follows that p `
∨
i,jψj (x, di,j). Denote d̄ ′ = 〈di,j |i < k, j < m 〉. As B is an

extension base for |̂ , d̄ ′ |̂
B
B, and by right extension, wlog d̄ ′ |̂

B
a. So there are

i, j such that ψj
(
a, d ′i,j

)
which contradicts the choice of ψj. �

The following pre-independence relation is instrumental in the proof of the
main theorem.

Definition 1.3.8. We say that tp (a/Bb) is strictly invariant over B (denoted
by a |̂

ist
B
b) if there is a global extension p, which is Lascar invariant over B (so

a |̂
i

B
b) and for any C ⊇ Bb, if c |= p|C then C |̂

f

B
c.

Remark 1.3.9.

(1) |̂
ist satisfies extension, invariance and monotonicity.

(2) Strictly invariant types are a special case of strictly non-forking types.
We say that tp (a/Bb) strictly does not fork over B (denoted by a |̂

st
B
b)

if there is a global extension p, which does not fork over B, and for any
C ⊇ B, if c |= p|C then C |̂

f

B
c. They coincide in dependent theories, and

in stable theories they are the same as non-forking. The notion originated
in [She09, 5.6]. More on strict non-forking can be found in [Usv] and in
[UK].

As |̂
i has finite character, we conclude from (1) in Proposition 1.3.7 that:

Corollary 1.3.10. Assume forking implies quasi dividing over B and that B
is an extension base for |̂

i. Then B is an extension base for |̂
ist.
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Working with an abstract pre-independence relation.
Here we shall prove the following theorem:

Theorem 1.3.11. Let T be NTP2. Then (1) implies (2) where:
(1) There exists a standard pre-independence relation |̂ with left extension

over B, which preserves indiscernibility over B and such that B is an
extension base for it.

(2) Forking equals dividing over B.
In addition, if T is dependent then (1) and (2) are equivalent.

(1) implies (2).
So assume T is NTP2, and that |̂ is a pre-independence relation as in (1). We

do not need left extension for this next claim:

Lemma 1.3.12. Assume ϕ (x, a) divides over B. Then there is a model M ⊇ B
and a global |̂ -free type over B, p ∈ S (C), extending tp (a/M), such that ev-
ery Morley sequence generated by p over M (as in 1.2.25) witnesses that ϕ (x, a)
divides.

Proof. Let I = 〈bi |i < ω 〉 be a B-indiscernible sequence that witnesses k
dividing of ϕ (x, a). Let N be a (|B|+ |T |)

+ saturated model containing B. By
compactness we may assume that the length of I is

(
2|N|+|T |

)+
. As B is an extension

base, we may assume that I |̂
B
N. The number of types over N is bounded by

2|N|+|T |, so I has infinitely many elements with the same type p over N, and wlog
they are the first ω. Replace I with I � ω. Let B ⊆ M ⊆ N be any model such
that |M| ≤ |B|+ |T |.
Let Q (x0, x1, . . .) = tp (I/N). Then Q is an invariant type overM (asM is a model
and Q is Lascar invariant over B), and so is p (xi) = Q � xi. By saturation, we can
define a sequence 〈Ii |i < ω 〉 in N as in 1.2.25: I0 |= Q|M, Ii+1 |= Q|MI0...Ii . Then
〈Ii |i < ω 〉 is an indiscernible sequence. Let Ii = 〈ai,j |j < ω 〉. It follows that for
every η : ω → ω, a0,η(0)a1,η(1) . . . ≡M a0,0a1,0 . . ., as both sequences satisfy the
type p(ω)|M.
As T is NTP2, {ϕ (x, ai,0) |i < ω } is inconsistent (otherwise {ϕ (x, ai,j) |i, j < ω }

witnesses that T has the tree property of the second kind because of the choice of
I).
By 1.2.23, the type p has a unique extension to a global |̂ -free type over B (which
we shall also call p).
Let a ′ |= p|M, then a ′ ≡B a, so after applying an automorphism over B (and
changingM), we may assume that p extends tp (a/M) , and it is the required type:
it is |̂ -free (as Q is), and there is a Morley sequence generated by p that witnesses
dividing, so every such sequence does so as well. �

Corollary 1.3.13. Forking implies quasi dividing over B.

Proof. Suppose ϕ (x, a) forks over B, then ϕ (x, a) `
∨
i<nϕi (x, ai) where

for all i < n, ϕi (x, ai) divides over B. By Lemma 1.3.12, for i < n, there are
models Mi ⊇ B and types pi which are global |̂ -free extension of tp (ai/B). Let
I0 be some indiscernible sequence witnessing dividing of ϕ0 (x, a0). For 0 < i, let
Ii = 〈ai,l |l < ω 〉 be a Morley sequence generated by pi as follows: ai,0 = ai |=
pi|Mi

, and for all j > 0, ai,l+1 |= pi|MiI<iai,≤l . This will set us in the situation of
the broom lemma 1.3.1 hence ϕ quasi-divides over B. �
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For the next claims, let A be any set.
The importance of |̂

ist lies in the following lemma, which is analogous to “Kim’s
Lemma” (see [Kim98, 2.1]).

Lemma 1.3.14. If ϕ (x, a) divides over A, and 〈bi |i < ω 〉 is a sequence satisfy-
ing bi ≡A a and bi |̂

ist
A
b<i. Then {ϕ (x, ai) |i < ω } is inconsistent. In particular,

if 〈bi |i < ω 〉 is an indiscernible sequence then it witnesses dividing of ϕ (x, a).

Proof. Wlog b0 = a. Let I be an indiscernible sequence witnessing the divid-
ing of ϕ (x, a) over A. We build by induction on n sequences Ii = 〈ai,j |j < ω 〉 for
i < n such that

• Each Ii is indiscernible over AI<ia>i,0 (where a>i,0 = ai+1,0 . . . an−1,0).
• For i < ω, Ii ≡A I.
• ai,0 = bi.

This is enough, because then by compactness we can find an infinite such array and
then if {ϕ (x, bi) |i < ω } is consistent, we reach a contradiction to NTP2: In the
infinite array 〈ai,j |i, j < ω 〉, for every function η : ω → ω and every n, one may
show by decreasing induction on i ≤ n (starting with i = n), that

a0,η(0) . . . an−1,η(n−1) ≡A a0,η(0) . . . ai−1,η(i−1)ai,0 . . . an−1,0.
And this shows that every vertical path has the same type, but each row is k-
inconsistent for the same k (because Ii ≡A I).
For n ≤ 1 it is clear. Suppose we have built these sequences up to n and we
consider n + 1. Denote our array of n rows by I<n. By right extension, there
is J<n ≡Ab<n I<n such that bn |̂

ist
A
J<n. Hence also J<n |̂

f

A
bn. As bn ≡A a,

there is an indiscernible sequence I ′ ≡A I starting with bn. By 1.2.11, there is an
A-indiscernible sequence Jn such that Jn ≡Abn I ′ and Jn is indiscernible over J<n.
Now it is easy to check that the conditions we demanded are met with this new
array. The only non-trivial one is the first condition: Jn is indiscernible over J<n
by construction. For every i < n, Ji is indiscernible over AJ<ib>i by the induction
hypothesis (where b>i = bi+1 . . . bn−1). As bn |̂

i

A
J<n, by the base monotonicity

of |̂
i it follows that bn |̂

i

AJ<ib>i
Ji, and as |̂

i preserves indiscernibility, it follows
that Ji is indiscernible over AJ<ib>ibn. �

Remark 1.3.15. In fact we need less than Lemma 1.3.14. For our needs, it
suffices to see that if ϕ (x, a) divides over A, and there exists p, a global |̂ -free type
over A, containing tp (a/A), then every Morley sequence p generates (over a model
M ⊇ A) witnesses dividing. The proof of this fact is a bit easier: Assume that I
witnesses dividing, and that N is |M|

+ saturated. Let c |= p|N. Then c |̂
ist
A
N and

in particular N |̂
f

A
c, so (by 1.2.11) we may find I ′ such that cI ′ ≡A aI and I ′ is

indiscernible over N. Now, as in the proof of 1.3.12, we define Ii |= tp (I ′/N) |MI<i
in N. Then, every vertical path realizes the type p(ω)|M and we get a contradiction.

Corollary 1.3.16. If A is an extension base for |̂
ist , then forking equals

dividing over A.

Proof. Suppose ϕ (x, a) `
∨
i<nϕi (x, ai), each ϕi (x, ai) divides over A. Let

ā = aa0 . . . an−1 and let p = tp (ā/A). As ā |̂
ist
A
A, by definition there is q, a

global |̂
ist-free type over A, containing p.
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Let
〈
āj = ajaj0 . . . a

j
n−1 |j < ω

〉
be a Morley sequence generated by q over a model

M containing A. It is enough to see that
{
ϕ
(
x, aj

)
|j < ω

}
is inconsistent (as it is

an indiscernible sequence whose elements have the same type as a over A).
If this set is consistent, let c realize it. Then for all j < ω, there is ij < n such
that ϕ

(
c, ajij

)
, so there is ι < n and infinitely many j’s such that ι = ij. Then{

ϕi0

(
x, ajι

)
|ij = ι

}
is consistent – a contradiction to 1.3.14. �

Lemma 1.3.17. The set B (from our assumptions) is an extension base for |̂
ist

.

Proof. Forking implies quasi-dividing over B by 1.3.13, and B is an extension
base for |̂

i by our assumption (because |̂ is at least as strong as |̂
i), so the

lemma follows immediately from 1.3.10. �

Summing up, we have

Corollary 1.3.18. Forking equals dividing over B.

By this we have proved one direction of Theorem 1.3.11.

(2) implies (1).
Here we assume that T is dependent and that forking equals dividing over B. We
shall prove that |̂

f satisfy all the demands that appear in (1) in Theorem 1.3.11.
Note that by 1.2.24, |̂

f
= |̂

i, and |̂
f is standard. We are left with showing that

B is an extension base for |̂
f and that there is left extension over B.

Since no type divides over its domain, we get

Claim 1.3.19. (No need for NIP) B is an extension base for |̂
f.

Claim 1.3.20. (No need for NIP) We have left extension for |̂
f over B.

Proof. Suppose a |̂
f

B
b and we have some c. We want to find some c ′ ≡Ba c

such that c ′a |̂
f

B
b. Let p = tp (c/Ba). We need to show that the following set is

consistent:

p (x) ∪ {¬ϕ (x, a, b) |ϕ is over B and ϕ (x, y, b) divides over B } .

If not, then p (x) `
∨
i<nϕi (x, a, b) where ϕi (x, y, b) divides over B.

So ψ (x, y, b) :=
∨
i<nϕi (x, y, b) forks over B, hence divides over B. Assume that

I = 〈bi |i < ω 〉 is an indiscernible sequence that witnesses dividing (with b0 = b).
By 1.2.11, there is I ′ ≡Bb I such that I ′ is indiscernible over Ba and wlog I ′ = I.
The type p is over Ba, so p (x) ` ψ (x, a, bi) for all i. But this is a contradiction
as p is consistent.

This concludes the proof of 1.3.11. �

More conclusion from forking = dividing.
Here there are no assumption on the theory T .

Lemma 1.3.21. Assume forking equals dividing over B. Then we have
(1) a |̂

f

B
a iff a ∈ acl (B).

(2) a |̂
f

B
b iff a |̂

f

acl(B)
b iff acl (Ba) |̂

f

B
b iff a |̂

f

B
acl (Bb).
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Proof. (2): Every indiscernible sequence I over B is indiscernible over acl (B):
Every 2 increasing sub-sequences from I have the same Lascar strong type over B.
As every model containing B contains acl (B), they have the same type over acl (B).
It follows that a formula divides over B iff it divides over acl (B). Hence a |̂

f

acl(B)
b

implies a |̂
f

B
b.

Assume that a |̂
f

B
b, and assume that I is a B-indiscernible sequence starting with

b. Then there is an indiscernible sequence I ′ ≡Bb I such that I ′ is indiscernible
over Ba. So it is also indiscernible over acl (Ba). This shows that acl (Ba) |̂

f

B
b

(by 1.2.11). By right extension, there is a ′ ≡Bb a such that a ′ |̂
f

B
acl (Bb). But

every automorphism fixing Bb pointwise fixes acl (Bb) setwise, so a |̂
f

B
acl (Bb).

By base monotonicity, we get a |̂
f

acl(B)
b.

The rest follows from monotonicity.
(1): Assume that a ∈ acl (B), then since a |̂

f

B
B, it follows from (2) that a |̂

B
a.

On the other hand, if a |̂
f

B
a, then the formula x = a does not divide over B, so

there are not infinitely many realizations of tp (a/B), so this type is algebraic and
we are done. �

1.3.3. Applying the previous sections.
Here we assume T is NTP2 unless stated otherwise.

Corollary 1.3.22. Forking equals dividing over models.

Proof. We use Theorem 1.3.11 with |̂ = |̂
u. We saw in 1.2.16 that |̂

u

satisfies all the demands. �

We saw that if the conditions of Theorem 1.3.11 on the existence of |̂ and B
are met, then forking equals dividing, and moreover B is an extension base for |̂

ist.
So in this case we can use our version of “Kim’s lemma”. It gives more information
than just “forking equals dividing”, so naturally we are interested in knowing when
this happens.

Lemma 1.3.23. Suppose |̂ is a standard pre-independence relation. Moreover,
assume that every set containing B is an extension base for |̂ . Then |̂ has left
extension over B.

Proof. Assume a |̂
B
b and we are given c. We want to find c ′ ≡Ba b such

that ac ′ |̂
B
b. Well, by assumption c |̂

Ba
Ba, so by right extension there is c ′ ≡Ba

c such that c ′ |̂
Ba
Bab. This means that c ′ |̂

Ba
b, so by transitivity we get

c ′a |̂
B
b as requested. �

Definition 1.3.24. If B satisfies the condition of the previous lemma, we say
that B is a good extension base.

Corollary 1.3.25. If B is a good extension base for a standard pre-independence
relation |̂ , and in addition |̂ is at least as strong as |̂

i, then B is a good extension
base for |̂

ist as well. In particular, forking equals dividing over B.

For instance, this corollary is true if B is a good extension base for |̂
i. In

dependent theories, since |̂
i
= |̂

f, we have
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Corollary 1.3.26. If T is dependent and for every A and p ∈ S (A), p does
not fork over A, then every set is an extension base for |̂

ist and forking equals
dividing.

This corollary is true for o-minimal theories and c-minimal theories (see [HP11,
2.14]).

Now we turn to the proof of the main Theorem 1.1.2. We abandon for a moment
our desire to find extension basis for |̂

ist and concentrate on forking and dividing.
In the end we shall conclude a corollary which is stronger than both 1.3.22 and
1.3.25.

Claim 1.3.27. (T any theory) Assume that a |̂
f

B
b and ϕ (x, b) forks over B,

then ϕ (x, b) forks over Ba as well.

Proof. Assume ϕ (x, b) forks over B, so there are n < ω, ϕi (x, yi) and bi
for i < n such that ϕi (x, bi) divides over B and ϕ (x, b) `

∨
i<nϕi (x, bi). By

extension, we may assume a |̂
f

A
b 〈bi |i < n 〉. By 1.2.11, ϕi (x, bi) divides over

Ba. Hence ϕ (x, b) forks over Ba. �

Theorem 1.3.28. For a set B the following are equivalent:
(1) Forking equals dividing over B.
(2) B is an extension base for |̂

f (i.e. types over B do not fork over B).
(3) |̂

f has left extension over B.

Proof. We saw that (1) implies (2) and (3) in 1.3.19 and 1.3.20. Assume that
(2) or (3) are true. Assume that ϕ (x, a) forks over B, and let M be any model
containing B.
If (2) is true thenM |̂

f

B
B, so by right extension we may assume wlog thatM |̂

f

B
a.

If (3) is true, then B |̂
f

B
a (even B |̂

u

B
a). So by left extension we can assume wlog

that M |̂
f

B
a.

So in both cases we are in a situation where we have a model M that satisfies
M |̂

f

B
a. Hence, by 1.3.27, ϕ (x, a) forks over M. By 1.3.22, ϕ (x, a) divides over

M, so it also divides over B. �

The next corollary is stronger than both 1.3.22 and 1.3.25:

Corollary 1.3.29. A set B is an extension base for |̂
ist iff it is an extension

base for |̂
i. In this case, by the previous theorem, forking equals dividing over B.

Proof. If B is an extension base for |̂
ist, it is an extension base for |̂

i by
definition. On the other hand, if B is an extension base for |̂

i, then, since |̂
i is

at least as strong as |̂
f, B is an extension base for |̂

f, so forking equals dividing
over B by the previous theorem. By corollary 1.3.10, we are done (since if ϕ (x, a)
forks over B, it divides over B so it quasi-divides over B). �

1.3.4. Some corollaries for dependent theories.
Assume T is dependent. We shall see some consequences about the behavior of
forking.

Theorem 1.3.30. The following are equivalent for B:
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(1) Forking equals dividing over B.
(2) B is an extension base for |̂

f.
(3) |̂

f has left extension over B.
(4) B is an |̂

ist extension base.

Proof. (1) – (3) are equivalent by 1.3.28. If B is an extension base for |̂
ist,

then it is an extension base for |̂
f, and we are done by the same theorem. Recall

that in a dependent theory |̂
f
= |̂

i, so if B is an extension base for |̂
f, it is an

extension base for |̂
i, so by 1.3.29, also for |̂

ist. �

Assume from now on that forking equals dividing over B (for instance, B is a
model).

Corollary 1.3.31. The following are equivalent for a formula ϕ (x, a):
• ϕ forks over B.
• ϕ quasi Lascar divides over B: there are {ei |i < m } such that ei ≡LB a
and {ϕ (x, ei)} is inconsistent.

Proof. If ϕ (x, a) forks over B, then it quasi Lascar divides because forking
equals dividing over B. If ϕ (x, a) does not fork over B, then extend it to p, a global
non forking type over B. By dependence, p is Lascar invariant over B. This means
that it contains all Lascar conjugates of ϕ over B, and in particular it is impossible
for ϕ to quasi Lascar divide. �

Definition 1.3.32. We say that dividing over B is type definable when for
every formula ϕ (x, y) there is a (partial) type π (x) over B such that π (a) iff
ϕ (x, a) divides over B.

Remark 1.3.33. Dividing is type definable, so in dependent theories all these
notions – dividing, forking and quasi Lascar dividing – are type-definable over B
(i.e. dependent theories are low, see [Bue99])

Proof. (Due to Itai Ben Yaacov) First we shall see that for any set B, if
ϕ (x, a) divides over B then it k divides over B, with k = alt (ϕ). If 〈ai |i < ω 〉 is an
indiscernible sequence witnessing m > k dividing but not k dividing, it means that
∃x
∧
i<kϕ (x, ai), and by indiscernibility, ∃x

∧
i<kϕ (x, ami). So assume ϕ (c, ami)

for i < k. But for each i, there must be some mi < ji ≤ mi +m − 1 such that
¬ϕ (c, aji). This is a contradiction to the definition of the alternation rank (see
definition 1.2.2).
The remark now follows: The type π (y) says that there exists a sequence 〈yi |i < ω 〉
of elements having the same type as y over B, and that every subset of size k of
formulas of the form ϕ (x, yi) is inconsistent. �

The following is a strengthening of [HP11, Lemma 8.10]

Corollary 1.3.34. Let r be a partial type which is Lascar invariant over B.
Then there exists some global B-Lascar invariant extension of r.

Proof. If ϕ1, . . . , ϕn ∈ r, then
∧
iϕi does not quasi Lascar divide over A

(because all the conjugates of ϕi are in r for all i). Hence r does not fork over B,
hence there is a global non-forking (hence Lascar invariant) extension. �
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1.4. Bounded non-forking + NTP2 = Dependent

It is well-known that stable theories can be characterized as those simple the-
ories in which every type over model has boundedly many non-forking extensions
(see e.g. [Adl08, theorem 45]). Our aim in this section is to prove a generalization
of this fact: if non-forking is bounded, and the theory is NTP2, then the theory is
actually dependent. This gives a partial answer to a question of Adler.

Definition 1.4.1. We say that a pre-independence relation |̂ is bounded if
there is a function f on cardinals such that for every type p (x) ∈ S (C) (where x is
a finite tuple), and every model M ⊇ C, the size of the set{

tp (a/M)

∣∣∣∣∣a |= p&a |̂
C

M

}
is bounded by f (|T |+ |C|).

We quote from [Adl08, Corollary 38]:

Fact 1.4.2. The following are equivalent for a theory T :

(1) |̂
f is bounded.

(2) |̂
f is bounded by the function f (κ) = 22

κ

.
(3) |̂

f
= |̂

i.

The question Adler asks in [Adl08] is whether it is true that T is dependent iff |̂
f

is bounded. The answer in general is no (see Chapter 6), but under the assumption
of NTP2 it is true.

Theorem 1.4.3. Assume T is NTP2, and that |̂
f is bounded. Then T is

dependent.

Proof. Assumeϕ (x, y) has the independence property. This means that there
is an infinite set A of tuples, such that for any subset B ⊆ A, there is some b such
that for all a ∈ A, ϕ (b, a) iff a ∈ B. Let r (x) = {x 6= a |a ∈ A } be a partial type
over A. Since it is finitely satisfiable in A there is a global type p containing r which
is finitely satisfied in A. Let q = p(2). Denote ψ (x, y, z) = ϕ (x, y)∧ ¬ϕ (x, z).
Note that ifM ⊇ A is a model and b ≡M c then ψ (x, b, c) forks overM (otherwise
there is a global non-forking type over M which is not invariant over M in contra-
diction to our assumption) and hence divides over M.
We build by induction on α < ω1 a sequence of indiscernible sequences Jα =
〈Ii |i < α 〉 such that

(1) Jα ′ ⊆ Jα for α ′ < α.
(2) Ii = 〈ai,j |j < ω 〉.
(3) For all i < α, j < ω, ai,j |= q|AJi .
(4) For all i < α, Ii witnesses the dividing of ψ (x, ai,0) (over ∅).

For α = 0 there is nothing to do, for α limit we take the union.
For α + 1: Let M be a model containing AJα. Let aα,0 |= q|M. Then ψ (x, aα,0)
divides over M, and let Iα witness this. It is easy to see that all demands are met.
Since the array is of length ω1, there is some k such that for infinitely many i < ω1,
Ii witnesses k-dividing . Wlog, these are the first ω. It follows that for every ver-
tical path η : ω→ ω, tp

(〈
ai,η(i) |i < ω

〉
/A
)
= q(ω)|A.
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Now we shall show that the set {ψ (x, ai,0) |i < ω } is consistent and reach a con-
tradiction to NTP2.
Denote ai = ai,0 = (bi, ci). Note that by the choice of p and q, for every for-
mula φ (x0, y0, . . . , xn−1, yn−1), if φ (a0, . . . , an−1), then there are pairwise dis-
tinct b ′0, c

′
0, . . . , b

′
n−1, c

′
n−1 ∈ A such that

φ
(
b ′0, c

′
0, . . . , b

′
n−1, c

′
n−1

)
.

For n < ω, let φ = ¬∃x
∧
i<nψ (x, ai), then there are pairwise distinct

b ′0, c
′
0, . . . , b

′
n−1, c

′
n−1 ∈ A such that ¬∃x

∧
i<nψ (x, b ′i, c

′
i), which contradicts the

choice of ψ, i.e. this set is consistent. �

1.5. Optimality of results

In general, forking is not the same as dividing, and Shelah already gave an
example in [She90, III,2]. Kim gave another example in his thesis ([Kim96, Ex-
ample 2.11]) – circular ordering. Both examples were over the empty set, and the
theory was dependent.
Here we give 2 examples. The first shows that outside the realm of NTP2, our
results are not necessarily true, and the second shows that even in dependent the-
ories, forking is not the same as dividing even over sets containing models.
In both examples, we use the notion of a (directed) circular order, so here is the
definition:

Definition 1.5.1. A circular order on a finite set is a ternary relation obtained
by placing the points on a circle and taking all triples in clockwise order. For an
infinite set, a circular order is a ternary relation such that the restriction to any
finite set is a circular order.
A first order definition is: a circular order is a ternary relation C such that for
every x, C (x,−,−) is a linear order on {y |y 6= x } and C (x, y, z) → C (y, z, x) for
all x, y, z.

1.5.1. Example 1. Here we present a variant of an example found by Martin
Ziegler, showing that

(1) forking and dividing over models are different in general,
(2) strictly non-forking types need not exist over models (see 1.3.9), so in par-

ticular, strictly invariant types and non-forking heirs need not necessarily
exist over models.

Let L be a 2 sorted language: one sort P for "points", for which we will use the
variables t, t0, . . . and another S for "sets", for which we will use the variables
s, s0, . . .. L consists of 1 binary relation E (t, s) to denote "membership" (so a
subset of P × S), and two 4-ary relations: C (t1, t2, t3, s) and D (s1, s2, s3, t).
Consider the following universal theory T∀ saying:

(1) For all s, C (−,−,−, s) is a circular order on the set of all t such that
E (t, s), and if C (t1, t2, t3, s) then E (ti, s) for i = 1, 2, 3, and

(2) For all t, D (−,−,−, t) is a circular order on the set of all s such that
¬E (t, s), and if D (s1, s2, s3, t) then ¬ (E (t, si)) for i = 1, 2, 3.

This theory has the joint embedding property and the amalgamation property as
can easily be verified by the reader. Hence, as the language has no function symbols,
by Fraïssé’s theorem it has a model completion T , so T eliminates quantifiers (see
[Hod93, Theorem 7.4.1]).
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LetM be a model of T . We choose t0, s0 ∈ C\M, such that for all t ∈M, ¬E (t, s0)
and for all s ∈ M, E (t0, s). Now, E (x, s0) forks over M, and ¬E (t0, y) forks over
M, but none of them (quasi) divides.
Why? Non quasi dividing is straightforward from the construction of T .
We show that ¬E (t0, y) forks (for E (x, s0) use the same argument): choose some
circular order on PM, and choose s ′i for i < ω such that:

• ¬E (t0, s
′
i) for i < ω.

• D
(
s ′i, s

′
j, s
′
k, t0

)
whenever i < j < k.

• For all i < ω and for all t ∈M we have E (t, s ′i), and C (−,−,−, s ′i) orders
PM using the pre-chosen circular order.

Now,

¬E (t0, y) ` D (s ′0, y, s
′
1, t0)∨D (s ′1, y, s

′
0, t0)∨ y = s ′0 ∨ y = s ′1

and D (s ′0, y, s
′
1, t0) divides over Mt0 as witnessed by

〈
s ′is
′
i+1 |i < ω

〉
, and so does

D (s ′1, y, s
′
0, t0), because for all n, s ′1s

′
0 ≡Mt0 s ′n+1s ′n.

Let p (t) be tp (t0/M). We show that p is not a strictly non-forking type over
M: suppose q is a global strictly non-forking extension, and let t ′0 |= q|s0 . Then
t ′0 |̂

f

M
s0 and s0 |̂

f

M
t ′0. So surely ¬E (t, s0) ∈ q, so ¬E (t ′0, s0) holds. But t

′
0 ≡M

t0 so s0 6 |̂ fM t
′
0 – a contradiction.

Note that T has the tree property of the second kind: Let si for i < ω be such that
they are all different, and for each i, let tij for j < ω, be such that for j < k < l,
C
(
tij, t

i
k, t

i
l, si

)
. The array

{
C
(
tij, x, t

i
j+1, si

)
|i, j < ω

}
witnesses TP2.

1.5.2. Example 2. We give an example showing that even if T is dependent,
and S contains a model, forking is not necessarily the same as dividing over S.
Hence models are not good extension bases for non-forking in dependent theories
in general (see 1.3.24).
Let L the language {C, E} where E is a binary relation and C is a ternary rela-
tion. Let T∀ be the universal theory saying that E is an equivalence relation and
that C induces a circular order on every equivalence class, and that in addition
∀x, y, z (C (x, y, z)→ E (x, y)∧ E (y, z)).
This theory has the JEP and AP so it has a model completion (as in Example 1).
Moreover, T is dependent: To show this, it’s enough to show that all formulas
ϕ (x, y) where x is one variable have finite alternation rank. As T eliminates quan-
tifiers, it’s enough to consider atomic formulas (see e.g. [Adl08, Section 1]), and
this is straightforward and left to the reader.
Consider T eq. It is also dependent.
Let M be a model. Let c ∈ C\M be a code of an E-equivalence class without any
M-points. Then for every a1 6= a2 in this class, both C (a2, x, a1) and C (a1, x, a2)
divide over Mc (like in Example 1). So we have

πE (x) = c ` C (a1, x, a2)∨ C (a2, x, a1)∨ x = a1 ∨ x = a0

forks but does not divide over Mc (where πE is the canonical projection into the
sort of codes of E-classes).

1.6. Further remarks

Our understanding of forking in dependent theories was highly influenced by
Section 5 (Non-forking) in [She09]. This section contains the definition of strict
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non-forking, that we generalized to |̂
ist (in dependent theories they are equal).

Essentially, the ideas of the proof of Lemma 1.3.14 (“Kim’s Lemma”) appears there.
Alex Usvyatsov also noticed a variant of that lemma independently.
The claim and proof of 1.3.12, with some modifications and generalizations is due
to Usvyatsov and Onshuus in [OU11]. It should be noted that H. Adler and A.
Pillay were the first to realize that NTP2 is all the assumption one needs there.
Alex Usvyatsov noticed that one can use the broom lemma to prove that types over
models can be extended to global non-forking heirs (see [Usv]). In fact, this follows
directly from 1.3.7.

1.7. Questions and remarks

(1) Are simple theories |̂
i-extensible NTP2 theories?

(2) Can similar results be proved for NSOP theories? Or at least NTP1
theories?

(3) It would be nice to find some purely semantic characterization of theories
in which forking equals dividing over models. For example we know that
all NTP2 theories are such, however the opposite is not true: there is a
theory with TP2 in which forking equals dividing (essentially the example
from section 1.5, but with dense linear orders instead of circular ones).



CHAPTER 2

A weak independence theorem for NTP2 theories

This chapter is a joint work with Itai Ben Yaacov and is in circulation as a
preprint “A weak independence theorem for NTP2 theories” [BC12]. We establish
new results about dividing and forking in NTP2 theories. We show that dividing
is the same as array-dividing. Combining it with existence of strictly invariant
sequences we deduce that forking satisfies the chain condition over extension bases
(i.e. the forking ideal is S1, in Hrushovski’s terminology). Using it we prove a weak
independence theorem over an extension base (which, in the case of simple theories,
specializes to the ordinary independence theorem). As an application we show that
Lascar strong type and compact strong type coincide over an extension base in an
NTP2 theory. After that we define the dividing order of a theory — a generalization
of Poizat’s fundamental order from stable theories — and give some equivalent
characterizations under the assumption of NTP2. The last section is devoted to a
refinement of the class of strong theories and its place in the classification hierarchy.

2.1. Introduction

The class of NTP2 theories, namely theories without the tree property of the
second kind, was introduced by Shelah [She80] and is a natural generalization of
both simple and NIP theories containing new important examples (e.g. any ultra-
product of p-adics is NTP2, see Chapter 3).

The realization that it is possible to develop a good theory of forking in the
NTP2 context came from the paper [CK12], where it was demonstrated that the
basic theory can be carried out as long as one is working over an extension base (a
set is called an extension base if every complete type over it has a global non-forking
extension, e.g. any model or any set in a simple, o-minimal or C-minimal theory is
an extension base).

Here we establish further important properties of forking, thus demonstrating
that a large part of simplicity theory can be seen as a special case of the theory
forking in NTP2 theories.

In Section 2.2 we consider the notion of array dividing, which is a multi-
dimensional generalization of dividing. We show that in an NTP2 theory, dividing
coincides with array dividing over an arbitrary set (thus generalizing a correspond-
ing result of Kim for the class of simple theories).

Section 2.3 is devoted to a property of forking called the chain condition. We say
that forking in T satisfies the chain condition over a set A if for any A-indiscernible
sequence (ai)i∈ω and any formula ϕ (x, y), if ϕ (x, a0) does not fork over A, then
ϕ (x, a0)∧ϕ (x, a1) does not fork over A. This property is equivalent to requiring
that there are no anti-chains of unbounded size in the partial order of formulas
non-forking over A ordered by implication (hence the name, see Section 2.3 for

49
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more equivalences and the history of the notion). The following question had been
raised by Adler and by Hrushovski:

Problem 2.1.1. What are the implications between NTP2 and the chain con-
dition?

We resolve it by showing that:
(1) Forking in NTP2 theories satisfies the chain condition over extension bases

(Theorem 2.3.9, our proof combines the equality of dividing and array-
dividing with the existence of universal Morley sequences from Chapter
1).

(2) There is a theory with TP2 in which forking satisfies the chain condition
(Section 2.3.3).

In his work on approximate subgroups, Hrushovski [Hru12] reformulated the inde-
pendence theorem for simple theories with respect to an arbitrary invariant S1-ideal.
In Section 2.4 we observe that the chain condition means that the forking ideal is
S1. Using it we prove a weak independence theorem for forking over an arbitrary
extension base in an NTP2 theory (Theorem 2.4.3), which is a natural generaliza-
tion of the independence theorem of Kim and Pillay for simple theories. As an
application we show that Lascar type coincides with compact strong type over an
extension base in an NTP2 theory.

In Section 2.5 we discuss a possible generalization of the fundamental order of
Poizat which we call the dividing order. We prove some equivalent characterizations
and connections to the existence of universal Morley sequences in the case of NTP2
theories, and make some conjectures.

In the final section we define burden2 and strong2 theories (which coincide
with strongly2 dependent theories under the assumption of NIP, just as Adler’s
strong theories specialize to strongly dependent theories). We establish some basic
properties of burden2 and prove that NTP2 is characterized by the boundedness of
burden2.

Preliminaries. We assume some familiarity with the basics of forking and
dividing (e.g. [CK12, Section 2]), simple theories (e.g. [Cas07]) and NIP theories
(e.g. [Adl08]).

As usual, T is a complete first-order theory, M |= T is a monster model. We
write a |̂

C
b when tp(a/bC) does not fork over C and a |̂

d

C
b when tp(a/bC)

does not divide over C. In general these relations are not symmetric. We say
that a global type p (x) ∈ S (M) is invariant (Lascar-invariant) over A if whenever
ϕ (x, a) ∈ p and b ≡A a (resp. b ≡L

A a, see Definition 2.4.1), then ϕ (x, b) ∈ p.
We use the plus sign to denote concatenation of sequences, as in I+J, or a0+ I+b1
and so on.

Definition 2.1.2. Recall that a formula ϕ (x, y) is TP2 if there are (aij)i,j∈ω
and k ∈ ω such that:

• {ϕ (x, aij)}j∈ω is k-inconsistent for each i ∈ ω,
•
{
ϕ
(
x, aif(i)

)}
i∈ω is consistent for each f : ω→ ω.

A formula is NTP2 if it is not TP2, and a theory T is NTP2 if it implies that
every formula is NTP2.
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2.2. Array dividing

For the clarity of exposition (and since this is all that we will need) we only
deal in this section with 2-dimensional arrays. All our results generalize to n-
dimensional arrays by an easy induction (or even to λ-dimensional arrays for an
arbitrary ordinal λ, by compactness; see [Ben03, Section 1]).

Definition 2.2.1. (1) We say that (aij)i,j∈κ is an indiscernible array

overA if both
(
(aij)j∈κ

)
i∈κ

and
(
(aij)i∈κ

)
j∈κ are indiscernible sequences.

Equivalently, all n× n sub-arrays have the same type over A, for all n <
ω. Equivalently, tp(ai0j0ai0j1 ...ainjn/A) depends just on the quantifier-
free order types of {i0, ..., in} and {j0, ..., jn}. Notice that, in particular,(
aif(i)

)
i∈κ is an A-indiscernible sequence of the same type for any strictly

increasing function f : κ→ κ.
(2) We say that an array (aij)i,j∈κ is strongly indiscernible over A if it is

an indiscernible array over A, and in addition its rows are mutually in-
discernible over A, i.e. (aij)j∈κ is indiscernible over (ai ′j)i ′∈κ\{i},j∈κ for
each i ∈ κ.

Definition 2.2.2. We say that ϕ(x, a) array-divides over A if there is an A-
indiscernible array (aij)i,j∈ω such that a00 = a and {ϕ(x, aij)}i,j∈ω is inconsistent.

Definition 2.2.3. (1) Given an array A = (aij)i,j∈ω and k ∈ ω, we
define:
(a) Ak =

(
a ′ij
)
i,j∈ω with a ′ij = a(ik)ja(ik+1)j . . . a(ik+i−1)j.

(b) AT = (aji)i,j∈ω, namely the transposed array.
(2) Given a formula ϕ (x, y), we let ϕk (x, y0 . . . yk−1) =

∧
i<kϕ (x, yi).

(3) Notice that with this notation
(
Ak
)l

= Akl and
(
ϕk
)l

= ϕkl.

Lemma 2.2.4. (1) If A is a B-indiscernible array, then Ak (for any k ∈
ω) and AT are B-indiscernible arrays.

(2) If A is a strongly indiscernible array over B, then Ak is a strongly indis-
cernible array over B (for any k ∈ ω).

Lemma 2.2.5. Assume that T is NTP2 and let (aij)i,j∈ω be a strongly indis-
cernible array. Assume that the first column {ϕ (x, ai0)}i∈ω is consistent . Then
the whole array {ϕ (x, aij)}i,j∈ω is consistent.

Proof. Let ϕ (x, y) and a strongly indiscernible arrayA = (aij)i,j∈ω be given.
By compactness, it is enough to prove that {ϕ (x, aij)}i<k,j∈ω is consistent for
every k ∈ ω. So fix some k, and let Ak = (bij)i,j∈ω — it is still a strongly
indiscernible array by Lemma 2.2.4. Besides

{
ϕk (x, bi0)

}
i∈ω is consistent. But

then
{
ϕk (x, bij)

}
j∈ω is consistent for some i ∈ ω (as otherwise ϕk would have

TP2 by the mutual indiscernibility of rows), thus for i = 0 (as the sequence of rows
is indiscernible). Unwinding, we conclude that {ϕ (x, aij)}i<k,j∈ω is consistent. �

Lemma 2.2.6. Let A = (aij)i,j∈ω be an indiscernible array and assume that
the diagonal {ϕ (x, aii)}i∈ω is consistent. Then for any k ∈ ω, if Ak = (bij)i,j∈ω
then the diagonal

{
ϕk (x, bii)

}
i∈ω is consistent.
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Proof. By compactness we can extend our array A to (aij)i∈ω×ω,j∈ω and
let bij = ai×ω+j,i.

It then follows that (bij)i,j∈ω is a strongly indiscernible array and that {ϕ (x, bi0)}i∈ω
is consistent. But then {ϕ (x, bij)}i,j∈ω is consistent by Lemma 2.2.5 , and we can
conclude by indiscernibility of A.

Figure 2.2.1.

�

Proposition 2.2.7. Assume T is NTP2. If (aij)i,j∈ω is an indiscernible array
and the diagonal {ϕ(x, aii)}i∈ω is consistent, then the whole array {ϕ(x, aij)}i,j∈ω
is consistent. Moreover, this property characterizes NTP2.

Proof. Let κ ∈ ω be arbitrary. Let Ak = (bij)i,j∈ω, then its diagonal{
ϕk (x, bii)

}
i∈ω is consistent by Lemma 2.2.6. As B =

(
Ak
)T has the same diago-

nal, using Lemma 2.2.6 again we conclude that if Bk = (cij)i,j∈ω, then its diagonal{
ϕk

2

(x, cii)
}
i∈ω

is consistent. In particular {ϕ (x, aij)}i,j<k is consistent. Con-
clude by compactness.

Figure 2.2.2.

“Moreover” follows from the fact that if T has TP2, then there is a strongly
indiscernible array witnessing this. �

Corollary 2.2.8. Let T be NTP2. Then ϕ(x, a) divides over A if and only if
it array-divides over A.
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Proof. If (aij)i,j∈ω is anA-indiscernible array with a00 = a, then {ϕ(x, aii)}i∈ω
is consistent since (aii)i∈ω is indiscernible over A and ϕ(x, a) does not divide over
A, apply Proposition 2.2.7. �

Remark 2.2.9. Array dividing was apparently first considered for the purposes
of classification of Zariski geometries in [HZ96]. Kim [Kim96] proved that in
simple theories dividing equals array dividing. Later the first author used it to
develop the basics of simplicity theory in the context of compact abstract theories
[Ben03], and Adler used it in his presentation of thorn-forking in [Adl09].

2.3. The chain condition

2.3.1. The chain condition.

Definition 2.3.1. We say that forking in T satisfies the chain condition over
A if whenever I = (ai)i∈ω is an indiscernible sequence over A and ϕ(x, a0) does
not fork over A, then ϕ(x, a0)∧ϕ(x, a1) does not fork over A. It then follows that
{ϕ(x, ai)}i∈ω does not fork over A.

Lemma 2.3.2. The following are equivalent for any theory T and a set A:
(1) Forking in T satisfies the chain condition over A.
(2) For every p(x) ∈ S(A), whenever (p(x) ∪ {ϕi(x, ai)})i∈(2|T|+|A|)

+ is a fam-
ily of partial types non-forking over A, there are i < j ∈ κ such that
p(x) ∪ {ϕi(x, ai)} ∪ {ϕj(x, aj)} does not fork over A.

(3) There are no anti-chains of unbounded size in the partial order of non-
forking types of a fixed size over A: there is κ such that given p(x) ∈ S(A),
whenever (p(x) ∪ {ϕi(x, ai)})i∈λ is a family of partial types non-forking
over A, there are i < j ∈ κ such that p(x) ∪ {ϕi(x, ai)} ∪ {ϕj(x, aj)} does
not fork over A.

(4) If b |̂
A
a0 and I = (ai)i∈ω is indiscernible over A, then there is I ′ ≡Aa0

I, indiscernible over Ab and such that b |̂
A
I ′.

Proof. (1) implies (2): Follows from the fact that in every set S with elements
of size λ, if |S| > 2λ+|T | then some two different elements appear in an indiscernible
sequence (see e.g. [Cas03, Proposition 3.3]).

(2) implies (3) is obvious.
(3) implies (4): We may assume that I is of length κ, long enough. Let

p(x, a0) = tp(b/a0A). It follows from (3) by compactness that
⋃
i<κ p(x, ai) does

not fork over A. Then there is b ′ realizing it, such that in addition b ′ |̂
A
I. By

Ramsey, automorphism and compactness we find an I ′ as wanted.
(4) implies (1): Assume that (1) fails, let I andϕ(x, y) witness this, soϕ(x, a0)∧

ϕ(x, a1) forks over A. Let b |= ϕ(x, a0)∧ϕ(x, a1). It is clearly not possible to find
I ′ as in (4). �

Remark 2.3.3. The term “chain condition” refers to Lemma 2.3.2(3) inter-
preted as saying that there are no antichains of unbounded size in the partial order
of non-forking formulas (ordered by implication). The chain condition was intro-
duced and proved by Shelah with respect to weak dividing, rather than dividing,
for simple theories in the form of (2) in [She80]. Later [GIL02, Theorem 4.9]
presented a proof due to Shelah of the chain condition with respect to dividing for
simple theories using the independence theorem, again in the form of (2). The chain
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condition in the form of (1) was proved for simple theories by Kim [Kim96]. It
was further studied by Dolich [Dol04b], Lessman [Les00], Casanovas [Cas03] and
Adler [Adl06] establishing the equivalence of (1), (2) and (3). In the case of NIP
theories, the chain condition follows immediately from the fact that non-forking is
equivalent to Lascar-invariance (see Lemma 2.3.11).

Of course, the chain condition need not hold in general.

Example 2.3.4. Let T be the model completion of the theory of triangle-free
graphs. It eliminates quantifiers. LetM |= T and let (ai)i∈ω be anM-indiscernible
sequence such that |= ¬Raib for any i and b ∈M. Notice that by indiscernibility
|= ¬Raiaj for i 6= j. It is easy to see that Rxa0 does not divide over M. On the
other hand, Rxa0 ∧ Rxa1 divides over M.

2.3.2. NTP2 implies the chain condition.
We will need some facts about forking and dividing in NTP2 theories established

in Chapter 1. Recall that a set C is an extension base if every type in S(C) does
not fork over C.

Definition 2.3.5. We say that (ai)i∈κ is a universal Morley sequence in p(x) ∈
S(A) when:

• it is indiscernible over A with ai |= p(x)
• for any ϕ(x, y) ∈ L(A), if ϕ(x, a0) divides over , then {ϕ(x, ai)}i∈κ is

inconsistent.

Fact 2.3.6. [Chapter 1] Assume that T is NTP2.
(1) Let M be a model. Then for every p(x) ∈ S(M), there is a universal

Morley sequence in it.
(2) Let C be an extension base. Then ϕ(x, a) divides over C if and only if

ϕ(x, a) forks over C.

First we observe that the chain condition always implies equality of dividing
and array dividing:

Proposition 2.3.7. If T satisfies the chain condition over C, then ϕ(x, a)
divides over C if and only if it array-divides over C.

Proof. Assume that ϕ(x, a) does not divide over C. Let (aij)i,j∈ω be a
C-indiscernible array and a00 = a. It follows by the chain condition and compact-
ness that {ϕ (x, ai0)}i∈ω does not divide over C. But as

(
(aij)i∈ω

)
j∈ω is also a

C-indiscernible sequence, applying the chain condition and compactness again we
conclude that {ϕ (x, aij)}i,j∈ω does not divide over C, so in particular it is consis-
tent. �

And in the presence of universal Morley sequences witnessing dividing, the
converse holds:

Proposition 2.3.8. Let T be NTP2 and M |= T . Then forking satisfies the
chain condition over M.

Proof. Let κ be very large compared to |M|, assume that ā0 = (a0i)i∈κ is
indiscernible over M, ϕ(x, a00) does not divide over M, but ϕ(x, a00)∧ϕ(x, a01)
does. By Fact 2.3.6, let (āi)i∈ω be a universal Morley sequence in tp(ā0/M). By
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the universality and indiscernibility of ā0, {ϕ(x, aij1)∧ϕ(x, aij2)}i∈ω is inconsis-

tent for any j1 6= j2. We can extract an M-indiscernible sequence
((
a ′ij
)
i∈ω

)
j∈ω

from
(
(aij)i∈ω

)
j∈κ, such that type of every finite subsequence over M is already

present in the original sequence. It follows that
(
a ′ij
)
i,j∈ω is an M-indiscernible

array and that
{
ϕ(x, a ′ij)

}
i,j∈ω is inconsistent, thus ϕ(x, a00) array-divides over

M, thus divides over M by Corollary 2.2.8 — a contradiction. �

Theorem 2.3.9. If T is NTP2, then it satisfies the chain condition over exten-
sion bases.

Proof. Let C be an extension base and ā = (ai)i∈ω be an A-indiscernible
sequence. As C is an extension base, we can find M ⊇ C such that M |̂

C
ā. It

follows that for any n ∈ ω,
∧
i<nϕ(x, ai) divides over C if and only if it divides

over M. It follows from Proposition 2.3.8 that if ϕ(x, a0) does not divide over C,
then {ϕ(x, ai)}i∈ω does not divide over C. �

Corollary 2.3.10. If T is NTP2, A is an extension base, (aij)i,j∈ω is an
A-indiscernible array, and ϕ (x, a00) does not divide over A, then {ϕ (x, aij)}i,j∈ω
does not divide over A.

2.3.3. The chain condition does not imply NTP2.

Lemma 2.3.11. Let T be a theory satisfying:
• For every set A and a global type p(x), it does not fork over A if and only
if it is Lascar-invariant over A.

Then T satisfies the chain condition.

Proof. Let ā = (ai)i∈ω be an A-indiscernible sequence and assume that
ϕ(x, a0) does not fork over A. Then there is a global type p(x) containing ϕ(x, a0)
and non-forking over A, thus Lascar-invariant over A. Taking c |= p|āA, it follows
by Lascar-invariance that c |= {ϕ(x, ai)}i∈ω. �

In Chapter 6, Section 5.3 the following example is constructed:

Fact 2.3.12. There is a theory T such that:
(1) T has TP2.
(2) A global type does not fork over a small set A if and only if it is finitely

satisfiable in A (therefore, if and only if it is Lascar-invariant over A).

It follows from Lemma 2.3.11 that this T satisfies the chain condition.

2.4. The weak independence theorem and Lascar types

Definition 2.4.1. As usual, we write a ≡L
C b to denote that a and b have

the same Lascar type over C. That is, if any of the following equivalent properties
holds:

(1) a and b are equivalent under every C-invariant equivalence relation with
a bounded number of classes.

(2) There are n ∈ ω and a = a0, ..., an = b such that ai, ai+1 start a C-
indiscernible sequence for each i < n.
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We let dC (a, b) be the Lascar distance, that is the smallest n as in (2) or ∞ if it
does not exist.

Now we will use the chain condition in order to deduce a weak independence
theorem over an extension base.

Lemma 2.4.2. Assume that dA (b, b ′) = 1 and a |̂
Ab
b ′. Then there exists a

sequence (aibi)i∈ω indiscernible over A and such that a0b0b1 = abb ′.

Proof. Standard. �

Theorem 2.4.3. Let T be NTP2 and A an extension base. Assume that
c |̂

A
ab, a |̂

A
bb ′ and b ≡L

A b
′. Then there is c ′ such that c ′ |̂

A
ab ′, c ′a ≡A

ca, c ′b ′ ≡A cb.

Proof. Let us first consider the case dA (b, b ′) = 1. Since a |̂
Ab
b ′, by

Lemma 2.4.2 we can find (aibi)i∈ω indiscernible over A and such that a0b0b1 =
abb ′. As c |̂

A
a0b0, it follows by the chain condition that there exists c ′ ≡Aa0b0 c

such that c ′ |̂
A
(aibi)i∈ω and (aibi)i∈ω is indiscernible over c ′A. In particular

c ′ |̂
A
ab ′, c ′a ≡A ca and c ′b ′ ≡A c ′b ≡A cb, as desired.

For the general case, assume that dA (b, b ′) ≤ n, namely that there are
b0, ..., bn be such that bibi+1 start an A-indiscernible sequence for all i < n and
b0 = b, bn = b ′. We may assume that a |̂

A
b0...bn.

By induction on i ≤ n we choose ci such that:
(1) ci |̂

A
abi,

(2) cia ≡A ca,
(3) cibi ≡A cb0.

Let c0 = c, it satisfies (1)–(3) by hypothesis. Given ci, by the Lascar distance 1
case there is some ci+1 |̂

A
abi+1 such that ci+1a ≡A cia ≡A ca and ci+1bi+1 ≡A

cibi ≡A cb0 (by the inductive assumption).
It follows that c ′ = cn is as wanted. �

Remark 2.4.4. For simplicity of notation, let us work over A = ∅.
(1) It is easy to see that the usual independence theorem implies the weak

one. Indeed, let c1 be such that c1b ′ ≡L cb. Then c1 |̂ b ′, c |̂ a, a |̂ b ′ and
c1 ≡L c. By the independence theorem we find c ′ such that c ′ |̂ ab ′, c ′a ≡ ca
and c ′b ′ ≡ c1b ′ ≡ cb.

(2) In a simple theory, the usual independence theorem follows from the weak
one by a direct forking calculus argument. Indeed, assume that we are given
d1 |̂ e1, d2 |̂ e2, d1 ≡L d2 and e1 |̂ e2. Using symmetry and Lemma 2.4.10
we find e ′1d

′
2 such that e ′1d

′
2 |̂ e1e2 and e ′1d

′
2 ≡L e1d1. It is easy to check that

all the assumptions of the weak independence theorem are satisfied with c = d ′2,
b = e ′1, a = e2 and b ′ = e1. Applying it we find some d such that d |̂ e1e2,
de1 ≡ d ′2e ′1 ≡ d1e1 and de2 ≡ d2e2.

We observe that the chain condition means precisely that the ideal of forking
formulas is S1, in the terminology of Hrushovski [Hru12]. Combining Proposition
2.3.7 with [Hru12, Theorem 2.18] we can slightly relax the assumption on the
independence between the elements, at the price of assuming that some type has a
global invariant extension:
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Proposition 2.4.5. Let T be NTP2 and A an extension base. Assume that
c |̂

A
ab, b |̂

A
a, b ′ |̂

A
a, b ≡A b ′ and tp (a/A) extends to a global A-invariant

type. Then there exists c ′ |̂
A
ab ′ and c ′b ′ ≡A cb, c ′a ≡A ca.

Using the weak independence theorem, we can show that in NTP2 theories
Lascar types coincide with Kim-Pillay strong types over extension bases.

Corollary 2.4.6. Assume that T is NTP2 and A is an extension base. Then
d ≡L

A e if and only if dA(d, e) ≤ 3.

Proof. Let d ≡L
A e and let (di)i∈ω be a Morley sequence over A starting with

d = d0. As d≥1 |̂
A
d0, we may assume that d≥1 |̂

A
d0e.

We have:
• d>1 |̂

A
d0d1

• d1 |̂
A
d0e

• d0 ≡L
A e

Applying the weak independence theorem (with a = d1, b = d0, b ′ = e and
c = d>1) we get some d ′>1 such that d1d ′>1 ≡A d1d>1 (thus d1 + d ′>1 is an A-
indiscernible sequence) and ed ′>1 ≡A d0d>1 (thus e + d ′>1 is an A-indiscernible
sequence). It follows that dA(d, e) ≤ 3 along the sequence d, d1, d ′2, e. �

Remark 2.4.7. Consider the standard example [CLPZ01, Section 4] showing
that the Lascar distance can be exactly n for any n ∈ ω. It is easy to see that this
theory is NIP, as it is interpretable in the real closed field. However, ∅ is not an
extension base.

It is known that both in simple theories (for arbitrary A) and in NIP theories
(for A an extension base), a ≡A b implies that dA (a, b) ≤ 2 ([HP11, Corollary
2.10(i)]), while our argument only gives an upper bound of 3. Thus it is natural to
ask:

Problem 2.4.8. Is there an NTP2 theory T , an extension base A and tuples
a, b such that dA (a, b) = 3?

Definition 2.4.9. Let a ≡ ′A b be the transitive closure of the relation “a, b
start a Morley sequence over A, or b, a starts a Morley sequence over A”. This is
an A-invariant equivalence relation refining ≡L

A.

The proof of Corollary 2.4.6 demonstrates in particular that if A is an extension
base in an NTP2 theory, then a ≡L

A b if and only if a ≡ ′A b. We show that in fact
this holds in a much more general setting.

Let T be an arbitrary theory. We call a type p (x) ∈ S (A) extensible if it has
a global extension non-forking over A, equivalently if it does not fork over A (thus
A is an extension base if and only if every type over it is extensible).

Lemma 2.4.10. Let tp (a/A) be extensible. Then for any b there is some a ′
such that a ′ ≡ ′A a and a ′ |̂

A
b.

Proof. Let (ai)i∈ω be a Morley sequence over A starting with a0. It follows
that a≥1 |̂

A
a0. Then there is a ′≥1 |̂

A
a0b and such that a≥1 ≡a0A a ′≥1. In

particular a0+a ′≥1 is still a Morley sequence over A, thus a ′1 ≡ ′A a0, and a ′1 |̂
A
b

as wanted. �
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Proposition 2.4.11. Let p be an extensible type. Then a ≡L
A b if and only if

a ≡ ′A b, for any a, b |= p (x).

Proof. By Definition 2.4.1(1) it is enough to show that ≡ ′A has boundedly
many classes on the set of realizations of p.

Assume not, and let κ be large enough. We will choose ≡ ′-inequivalent (ai)i∈κ
such that in addition ai |̂

A
a<i. Suppose we have chosen a<j and let us choose

aj. Let b |= p be ≡ ′A-inequivalent to ai for all i < j. By Lemma 2.4.10, there exists
aj ≡ ′A b such that aj |̂

A
a<j. In particular aj 6≡ ′A ai for all i < j as desired.

With κ sufficiently large, we may extract an A-indiscernible sequence b̄ =
(bi)i∈ω from (ai)i∈κ — a contradiction, as then b̄ is a Morley sequence over A but
bi 6≡ ′A bj for any i 6= j. �

2.5. The dividing order

In this section we suggest a generalization of the fundamental order of Poizat
[Poi85] in the context of NTP2 theories. For simplicity of notation, we only con-
sider 1-types, but everything we do holds for n-types just as well.

Given a partial type r (x) over A, we let SEM,r(A) be the set of Ehrenfeucht-
Mostowski types of A-indiscernible sequences in r(x). We will omit A when A = ∅
and omit r when it is “x = x”.

Definition 2.5.1. Given p ∈ SEM (A), let cldiv(p) be the set of all ϕ(x, y) ∈
L (A) such that for some (any) infinite indiscernible sequences ā |= p, the set
{ϕ(ai, y)}i∈ω is consistent. For p, q ∈ SEM (A), we say that p ∼divA q ( respectively,
p ≤div

A q) if cldiv(p) = cldiv(q) (respectively, cldiv(p) ⊇ cldiv(q)). We obtain a
partial order

(
SEMA / ∼divA ,≤div

A

)
.

Proposition 2.5.2. Let T be stable. Then p ∼div q if and only if p = q, and(
SEM,≤div

)
is isomorphic to the fundamental order of T .

Proof. For a type p over a modelM we let cl(p) denote its fundamental class,
namely the set of formulas ϕ(x, y) such that there exists an instance ϕ(x, b) ∈ p(x).
We denote the fundamental order of T by

(
S/ ∼fund,≤fund

)
where S is the set of all

types over all models of T , p ≤fund q if cl(p) ⊇ cl(q) and ∼fund is the corresponding
equivalence relation. Given p ∈ S (M), let p(ω) ∈ Sω (M) be the type of its
Morley sequence over M. By stability p(ω) is determined by p. Let pEM be the
Ehrenfeucht-Mostowski type over the empty set of ā |= p(ω)|M. Let f : S → SEM,
f : p 7→ pEM.

(1) Given p ∈ S (M), let ā |= p(ω), and let us show that ϕ(x, y) ∈ cl(p)
if and only if {ϕ (ai, y)}i∈ω is consistent. Indeed, by stability, either
condition is equivalent to:ϕ(a0, y) does not divide overM. In other words,
cl(p) = cldiv(f(p)), so p ≤fund q ⇔ f (p) ≤div f (q).

(2) We show that f is onto. Let P ∈ SEM be arbitrary, and let (ai)i∈2ω
be an indiscernible sequence with P as its EM type. Let M be a model
containing I = (ai)i∈ω, such that J = (aω+i)i∈ω is indiscernible over
M. Then J is a Morley sequence in p (x) = tp (aω/M), and f (p) = P, as
wanted.

(3) To conclude, let P,Q ∈ SEM, P ∼div Q, and let us show that they are
equal. Let p ∈ S(M) and q ∈ S(N) be sent by f to P and Q, respectively.
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Since Th(M) ⊆ cldiv(P) and similarly for N,Q, we have M ≡ N. Taking
non-forking extensions of p, q, we may therefore assume that M = N is
a monster model. Since cl(p) = cl(q), the types of (the parameters of)
their definitions are the same, so there exists an automorphism sending
one definition to the other, and therefore sending p 7→ q. Since f(p) does
not involve any parameters, it follows that P = f(p) = f(q) = Q.

�

Remark 2.5.3. A couple of remarks on the existence of the greatest element
in the dividing order in NTP2 theories.

(1) Given a type r(x1, x2) ∈ S(A), assume that p
(
(x1j, x2j)j∈ω

)
is the great-

est element in SEM,r(A) (modulo ∼divA ). Then for i = 1, 2, pi
(
(xij)j∈ω

)
=

p|(xij)j∈ω is the greatest element in SEM,ri(A) with ri = r|xi .
(2) If for every r ∈ S(A) there is a ≤div-greatest element in SEM,r(A), then a

formula ϕ(x, a) forks over A if and only if it divides over A.
(3) If T is NTP2 then for every extension base A and r ∈ S(A) there is a
≤div-greatest element in SEM,r(M).

Proof. (1) Clear as e.g. given an A-indiscernible sequence (a1j)j∈ω
in r1(x1), by compactness and Ramsey we can find (a2j)j∈ω such that
(a1ja2j)j∈ω is an A-indiscernible sequence in r(x1, x2).

(2) Assume that ϕ(x, a) `
∨
i<kϕi(x, ai) and ϕi(x, ai) divides over A for

each i < k. Let r(xx0 . . . xk−1) = tp(aa0 . . . ak−1/A), let p(x̄x̄0 . . . x̄k−1)
be the greatest element in SEM,r(A) and let

(
aja0j . . . a(k−1)j

)
j∈ω realize

it. As {ϕ(x, aj)}j∈ω is consistent, it follows that {ϕi(x, aij)}j∈ω is consis-
tent for some i < k— contradicting the assumption that ϕi(x, ai) divides
by (1).

(3) Let a |= r. As A is an extension base, let M ⊇ A be a model such that
M |̂

A
a. Let I = (ai)i∈ω be a universal Morley sequence in tp(a/M)

which exists by Fact 2.3.6. Then tp(I/A) is the greatest element in
SEM,r(A). Indeed, ϕ(x, a) divides over A ⇔ ϕ(x, a) divides over M ⇔
{ϕ(x, ai)}i∈ω is inconsistent.

�

Definition 2.5.4. For p, q ∈ SEM, we write p ≤# q if there is an array
(aij)i,j∈ω such that:

• (aij)j∈ω |= p for each i ∈ ω,
•
(
aif(i)

)
i∈ω |= q for each f : ω→ ω.

Proposition 2.5.5. Let p, q ∈ SEM.
(1) If p ≤div q, then p ≤# q.
(2) If T is NTP2 and p ≤# q, then p ≤div q.

Proof. (1): We show by induction that for each n ∈ ω we can find (āi)i∈n
and b̄ such that: āi |= p and a0j1+...+a(n−1)jn−1

+b̄ |= q for any j1, . . . , jn−1 ∈ ω.
Assume we have found (āi)i<n and b̄, without loss of generality b̄ = b̄ ′ + b̄ ′′ =
(b ′i)i∈ω + (b ′′i )i∈ω. Consider the type
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r(x̄0...x̄n−1, y, z̄) =
⋃
i≤n

p(x̄i) ∪ q(z̄) ∪

∪
⋃
j0,...,jn∈ω "x0j0 + x1j1 + ...+ xnjn + y+ z̄is indiscernible"

For every finite r ′ ⊂ r, {r ′(x̄0...x̄n−1, yi, z̄)}i∈ω ∪ q(ȳ) is consistent — since
by the inductive assumption |= r ′(ā0...ān−1, b

′
i, b̄
′′) for all i ∈ ω. Together with

p ≤div q this implies that {r ′(x̄0...x̄n−1, yi, z̄)}i∈ω ∪ p(ȳ) is consistent. By com-
pactness we find ā0, ..., ān−1, ān, b̄ realizing it, and they are what we were looking
for.

(2): Follows from the definition of TP2. �

Definition 2.5.6. We write p ≤+ q1 if there is ā = (ai)i∈Z |= q and b̄ =

(bi)i∈Z |= p such that a0 = b0 and b̄ is indiscernible over (ai)i 6=0.

Remark 2.5.7. In any theory, p ≤# q implies p ≤+ q (and so p ≤div q implies
p ≤+ q).

Proof. If p ≤# q, then by compactness and Ramsey we can find an array
(cij)i,j∈Z such that:

• c̄i is indiscernible over c̄ 6=i,
• (c̄i)i∈Z is an indiscernible sequence,
• c̄i |= p for all i ∈ ω,
•
(
cif(i)

)
i∈ω |= q for all f : ω→ ω.

Then take ā = (c0j)j∈Z and b̄ = (ci0)i∈Z. �

It is much less clear, however, if the converse implication holds.

Definition 2.5.8. We say that T is resilient2 if we cannot find indiscernible
sequences ā = (ai)i∈Z, b̄ = (bi)i∈Z and a formula ϕ(x, y) such that:

• a0 = b0,
• b̄ is indiscernible over (ai)i6=0,
• {ϕ(x, ai)}i∈ω is consistent,
• {ϕ(x, bi)}i∈ω is inconsistent.

Remark 2.5.9. It follows by compactness that we get an equivalent definition
replacing Z by Q.

Lemma 2.5.10. The following are equivalent:
(1) T is resilient.
(2) For every p, q ∈ SEM, p ≤+ q implies p ≤div q.
(3) For any indiscernible sequence ā = (ai)i∈Z and ϕ(x, y) ∈ L, if ϕ(x, a0)

divides over (ai)i 6=0, then {ϕ(x, ai)}i∈Z is inconsistent.
(4) There is no array (aij)i,j∈ω and ϕ(x, y) ∈ L such that {ϕ(x, ai0)}i∈ω is

consistent, {ϕ(x, aij)}j∈ω is inconsistent for each i ∈ ω and āi = (aij)j∈ω
is indiscernible over (aj0)j6=i for each i ∈ ω.

1Note that “#” and “+” are supposed to graphically represent the combinatorial configuration
which we are using in the definition of the order.

2The term was suggested by Hans Adler as a replacement for “NTP2” but we prefered to use
it for a (possibly) smaller class of theories.
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(5) There is a cardinal κ such that for any (ai)i∈κ and b with ai, b finite,
b |̂

d

a 6=i
ai for some i ∈ κ.

Proof. (1) is equivalent to (2) Assume that p ≤+ q, i.e. there is ā = (ai)i∈Z |=

q and b̄ = (bi)i∈Z |= p such that a0 = b0 and b̄ is indiscernible over (ai)i 6=0. For
any ϕ (x, y), if {ϕ (x, bi)}i∈ω is inconsistent, then {ϕ (x, ai)}i∈ω is inconsistent by
resilience, which means precisely that p ≤div q. The converse is clear.

(1) is equivalent to (3) If ϕ (x, a0) divides over a 6=0, then there is a sequence
(bi)i∈Z indiscernible over a 6=0 and such that b0 = a0 and {ϕ (x, bi)}i∈Z is incon-
sistent. It follows by resilience that {ϕ (x, ai)}i∈Z is inconsistent. On the other
hand, assume that {ϕ (x, ai)}i∈Z is inconsistent. By compactness we can extend
our indiscernible sequence to ā ′+ ā+ ā ′′ = (a ′i)i∈ω∗+(ai)i∈Z+(a ′′i )i∈ω. But then
ā witnesses that ϕ (x, a0) divides over ā ′ā ′′. Sending ā ′ to a≤−1 and ā ′′ to a≥1
by an automorphism fixing a0 we conclude that ϕ (x, a0) divides over a 6=0.

(1) is equivalent to (4) Let ā, b̄ and ϕ (x, y) witness that T is not resilient. Then
we let ā0 = b̄ and we let āi be an image of b̄ under some automorphism sending
b0 to ai by indiscernibility. It follows that (aij)i,j∈ω is an array as wanted.

Conversely, if we have an array as in (4), by compactness we may assume that
it is of the form (aij)i,j∈Z and and that in addition (ai0)i∈Z is indiscernible. Then
ā = (ai0)i∈Z, b̄ = (a0j)j∈ω and ϕ (x, y) contradicts resilience.

(5) is equivalent to (4) Let κ be arbitrary. By compactness we may assume that
we have an array (aij)i∈κ,j∈ω as in (4). Let b |= {ϕ (x, ai0)}i∈κ. It then follows
that b 6 |̂ d

a6=i0
ai0 (as ϕ (x, ai0) divides over a 6=i0, witnessed by āi) — contradicting

(5).
(3) implies (5): Assume that we have (ai)i∈κ and b with ai, b finite, b 6 |̂ d

a 6=i
ai

for all i ∈ κ. If κ is large enough then by Erdős-Rado and compactness we can
extract a b-indiscernible sequence (ai)i∈Z such that still b 6 |̂ d

a 6=i ai. Then some
ϕ (x, a0) ∈ tp (b/a0) divides over a6=0, while b |= {ϕ (x, ai)}i∈Z by indiscernibility
over b. �

Proposition 2.5.11. (1) If T is NIP, then it is resilient.
(2) If T is simple, then it is resilient.
(3) If T is resilient, then it is NTP2.

Proof. (1): Fix ϕ(x, y) and assume that {ϕ(x, ai)}i∈Q is consistent. Then
by NIP there is a maximal k ∈ ω such that {¬ϕ(x, ai)}i∈s ∪ {ϕ(x, ai)}i/∈s is con-
sistent, for s = {1, 2, ..., k} ⊆ Q. Let d realize it. If {ϕ(x, bi)} was inconsistent,
then we would have ¬ϕ(d, bi) for some i ∈ ω, and thus {¬ϕ(x, ai)}i∈s∪{k+1} ∪
{ϕ(x, ai)}i/∈s∪{k+1} would be consistent, but by all the indiscernibility around — a
contradiction to the maximality of k. Thus, {ϕ(x, bi)}i∈Q is consistent.

(2): It is easy to see that (ai)i>0 is a Morley sequence over A = (ai)i<0 by
finite satisfiability. If ϕ(x, a0) divides over a 6=0, then by Kim’s lemma {ϕ(x, ai)}i∈Q
is inconsistent.

(3): By Erdős-Rado and compactness we can find a strongly indiscernible array
(cij)i,j∈Z witnessing TP2 for ϕ (x, y). Set ai = ci0 for i ∈ ω and bj = b0j for j ∈ ω.
Then ā, b̄ and ϕ (x, y) witness that T is not resilient. �
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Claim 2.5.12. Let T be resilient, A an extension base, and let ā = (ai)i∈Z
be indiscernible over A, say in and r = tp(a0/A) ∈ S(A). Then the following are
equivalent:

(1) The EM type tpEM(ā/A) is ≤div
A -greatest in SEM,r(A).

(2) tp(a 6=0/a0A) does not divide over A.

Proof. We may assume that A = ∅.
(1) implies (2) in any theory: Let |= ϕ(a 6=0, a0). By indiscernibility and com-

pactness {ϕ(x, ai)}i∈Z is consistent, so by (1) ϕ(x, a0) does not divide.
(2) implies (1): Assume that ϕ(x, a0) divides. As tp(a 6=0/a0) does not divide,

it follows that ϕ(x, a0) divides over a 6=0. But then by Lemma 2.5.10(3) we have
that {ϕ(x, ai)}i∈Z is inconsistent, hence (1). �

Remark 2.5.13. Similar observation in the context of NIP theories based on
[She09] is made in [KU].

Recall that a theory is called low if for every formula ϕ (x, y) there is k ∈ ω
such that for any indiscernible sequence (ai)i∈ω, {ϕ (x, ai)}i∈ω is consistent if and
only if it is k-consistent. The following is a generalization of [BPV03, Lemma 2.3].

Proposition 2.5.14. Let T be resilient. Then the following are equivalent:
(1) ϕ(x, y) is low.
(2) The set {(c, d) : ϕ(x, c) divides over d} is type-definable (where d is al-

lowed to be of infinite length).

Proof. (1) implies (2) holds in any theory, and we show that (2) implies (1).
Assume that ϕ (x, y) is not low. Then for every i ∈ ω we have a sequence

āi = (aij)j∈Z such that {ϕ (x, aij)}j∈Z is i-consistent, but inconsistent. In particular
ϕ (x, ai0) divides over (aij)j6=0 for each i.

If (2) holds, then by compactness we can find a sequence ā = (aj)j∈ω such
that {ϕ (x, aj)}j∈ω is consistent and ϕ (x, a0) still divides over a 6=0. But this is a
contradiction to resilience by 2.5.10(3). �

Problem 2.5.15. (1) Does NTP2 imply resilience?
(2) Is resilience preserved under reducts?
(3) Does type-definability of dividing imply lowness in NTP2 theories?

2.6. On a strengthening of strong theories

Recently several attempts have been made to define weight outside of the famil-
iar context of simple theories. First Shelah had defined strongly dependent theories
and several notions of dp-rank in [She09, Shed]. The study of dp-rank was con-
tinued in [OU11]. After that Adler [Adl07] had introduced burden, a notion based
on the invariant κinp of Shelah [She90] which generalizes simultaneously dp-rank in
NIP theories and weight in simple theories. In this section we are going to add yet
another version of measuring weight. First we recall the notions mentioned above.

For notational convenience we consider an extension Card* of the linear order
on cardinals by adding a new maximal element∞ and replacing every limit cardinal
κ by two new elements κ− and κ+. The standard embedding of cardinals into Card*

identifies κ with κ+. In the following, whenever we take a supremum of a set of
cardinals, we will be computing it in Card*.
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Definition 2.6.1. [Adl07] Let p (x) be a (partial) type.
(1) An inp-pattern of depth κ in p(x) consists of (āi, ϕi(x, yi), ki)i∈κ with

āi = (aij)j∈ω and ki ∈ ω such that:
• {ϕi(x, aij)}j∈ω is ki-inconsistent for every i ∈ κ,
• p(x) ∪

{
ϕi(x, aif(i))

}
i∈κ is consistent for every f : κ→ ω.

(2) The burden of a partial type p(x) is the supremum (in Card∗) of the
depths of inp-patterns in it. We denote the burden of p as bdn(p) and we
write bdn(a/A) for bdn(tp(a/A)).

(3) We get an equivalent definition by taking supremum only over inp-patterns
with mutually indiscernible rows.

(4) It is easy to see by compactness that T is NTP2 if and only if bdn ("x = x") <∞, if and only if bdn ("x = x") < |T |
+.

(5) A theory T is called strong if bdn (p) ≤ (ℵ0)− for every finitary type p
(equivalently, there is no inp-pattern of infinite depth). Of course, if T is
strong then it is NTP2.

Fact 2.6.2. [Adl07]
(1) Let T be NIP. Then bdn(p) = dp-rk(p) for any p.
(2) Let T be simple. Then the burden of p is the supremum of weights of its

complete extensions.

Some basics of the theory of burden are developed in Chapter 3:

Fact 2.6.3. Let T be an arbitrary theory.
(1) The following are equivalent:

(a) bdn(p) < κ.
(b) For any (āi)i∈κ mutually indiscernible over A and b |= p, there

is some i ∈ κ and ā ′i such that ā ′i is indiscernible over bA and
ā ′i ≡Aai0 āi.

(2) Assume that bdn(a/A) < κ and bdn(b/aA) < λ, with κ and λ finite or
infinite cardinals. Then bdn(ab/A) < κ× λ.

(3) In particular, in the definition of strong (or NTP2) it is enough to look at
types in one variable.

In [KOU11] it is proved that dp-rank is sub-additive, so burden in NIP theories
is sub-additive as well. The sub-additivity of burden in simple theories follows from
Fact 2.6.2 and the sub-additivity of weight in simple theories. It thus becomes
natural to wonder if burden is sub-additive in general, or at least in NTP2 theories.

Now we are going to define a refinement of the class of strong theories.

Definition 2.6.4. Let p (x) be a partial type.
(1) An inp2-pattern of depth κ in p (x) consists of formulas (ϕi(x, yi, zi))i∈κ,

mutually indiscernible sequences (āi)i∈κ and bi ⊆
⋃
j<i āj such that:

(a) {ϕi(x, ai0, bi)}i∈ω ∪ p (x) is consistent,
(b) {ϕi(x, aij, bi)}j∈ω is inconsistent for every i ∈ ω.

(2) An inp3-pattern of depth κ in p (x) is defined exactly as an inp2-pattern
of depth κ, but allowing bi ⊆

⋃
j∈κ,j6=i āj. It is then clear that every

inp2-pattern is an inp3-pattern of the same depth, but the opposite is not
true.
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(3) The burden2 (burden3) of a partial type p(x) is the supremum (in Card∗)
of the depths of inp2-patterns (resp. inp3-patterns) in it. We denote the
burden2 of p as bdn2(p) and we write bdn2(a/A) for bdn2(tp(a/A)) (and
similarly for bdn3).

(4) A theory T is called strong2 if bdn2 (p) ≤ (ℵ0)− for every finitary type p
(that is, there is no inp2-pattern of infinite depth). Similarly for strong3.

In the following proposition we sum up some of the properties of bdn2 and
bdn3.

Proposition 2.6.5. (1) For any partial type p (x), bdn (p) ≤ bdn2 (p) ≤
bdn3 (p).

(2) Strong3 implies strong2 implies strong.
(3) In fact, T is strong2 if and only if it is strong3.
(4) T is strongly2 dependent if and only if it is NIP and strong2 (we recall

from [KS12a, Definition 2.2] that T is called strongly2 dependent when
there are no

(
ϕi (x, yi, zi) , āi = (aij)j∈ω , bi ⊆

⋃
j<i āj

)
i∈ω

such that

(āi)i∈ω are mutually indiscernible and the set {ϕi (x, ai0, bi)∧ ¬ϕi (x, ai1, bi)}i∈ω
is consistent.).

(5) If T is supersimple, then it is strong2.
(6) There are strong2 stable theories which are not superstable.
(7) There are strong stable theories which are not strong2.
(8) We still have that T is NTP2 if and only if every finitary type has bounded

burden3.

Proof. (1) is immediate by comparing the definitions, and (2) follows from
(1).

(3) Assume that T is not strong3, witnessed by (ϕi(x, yi, zi), āi, bi)i∈ω. For
i ∈ ω, let f (i) be the smallest j ∈ ω such that bi ∈ ā<j. Now for i ∈ ω we define
inductively:

• α0 = 0, αi+1 = f (αi),
• b ′i = bαi∩ā∈{α0,α1,...,αi−1} and b ′′i = bαi∩ā∈{0,1,...,αi+1−1}\{α0,α1,...,αi},

so we may assume that bαi = b ′′i b
′
i.

• a ′ij = aαijb ′′i for j ∈ ω,
• ϕ ′i

(
x, a ′ij, b

′
i

)
= ϕi (x, aij, bi).

It is now easy to check that (ā ′i)i∈ω are mutually indiscernible, b ′i ∈ ā ′<i, {ϕ ′i (x, a ′i0, b ′i)}i∈ω
is consistent and

{
ϕ ′i
(
x, a ′ij, b

′
i

)}
j∈ω is inconsistent for every i ∈ ω. This gives us

an inp2-pattern of infinite depth, witnessing that T is not strong2.
(4) Let (ϕi (x, yi, zi) , āi, bi)i∈ω witness that T is not strong2 and let c |=

{ϕi(x, ai0, bi)}i∈ω, it follows from the inconsistency of {ϕ (x, aij, bi)}j∈ω’s that for
each i ∈ ω there is some ki ∈ ω such that c |= {ϕi(x, ai0, bi)∧ ¬ϕi (x, aiki , bi)}i∈ω.
Define a ′ij = ai,ki×jai,ki×j+1 . . . ai,ki×(j+1)−1 andϕ

′ (x, a ′ij, bi) = ϕ (x, ai,ki×j, bi).
Then (ā ′i)i∈ω are mutually indiscernible, bi ∈

⋃
j<i ā

′
j and c |= {ϕi (x, a

′
i0, bi)∧ ¬ϕi (x, a

′
i1, bi)}i∈ω

— witnessing that T is not strongly2 dependent.
On the other hand, let (ϕi (x, yi, zi) , āi, bi)i∈ω witness that T is not strongly2

dependent and assume that T is NIP. Letϕ ′i (x, y
′
i, zi) = ϕi

(
x, y0i , zi

)
∧¬ϕi

(
x, y1i , zi

)
,

a ′ij = ai(2j)ai(2j+1) for all i, j ∈ ω. We then have that (ā ′i)i∈ω are still mutually in-
discernible and bi ∈

⋃
j<i ā

′, {ϕ ′i (x, a
′
i0, bi)}i∈ω is consistent and

{
ϕ ′i
(
x, a ′ij, bi

)}
j∈ω
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is inconsistent (otherwise let c realize it, it follows that ϕi (c, aij, bi) holds if and
only if j is even, contradicting NIP). But this shows that T is not strong2.

(5) Let T be supersimple, and assume that T is not strong2, witnessed by
(ϕi (x, yi, zi) , āi, bi)i∈ω and let A =

⋃
i,j∈ω aij. Let c |= {ϕi(x, ai0, bi)}i∈ω. By

supersimplicity, there has to be some finite A0 ⊂ A such that tp (c/A) does not di-
vide overA0. It follows that there is some i ′ ∈ ω such thatA0 ⊂

⋃
i<i ′,j∈ω aij. But

then c |= ϕi ′ (x, ai ′0, bi ′), (ai ′jbi ′)j∈ω is indiscernible overA0 and {ϕ (x, ai ′j, bi ′)}j∈ω
is inconsistent, so tp (c/A) divides over A0 — a contradiction.

(6) It is easy to see that the theory of an infinite family of refining equivalence
relations with infinitely many infinite classes satisfies the requirement.

(7) In [Shed, Example 2.5] Shelah gives an example of a strongly stable theory
which is not strongly2 stable. In view of (3) this is sufficient. Besides, there are
examples of NIP theories of burden 1 which are not strongly2 dependent (e.g.
(Qp,+, ·, 0, 1) or (R, <,+, ·, 0, 1)).

(8) We remind the statement of Fodor’s lemma.
Fact (Fodor’s lemma). If κ is a regular, uncountable cardinal and f : κ→ κ is

such that f(α) < α for any α 6= 0, then there is some γ and some stationary S ⊆ κ
such that f(α) = γ for any α ∈ S.

If T has TP2, then clearly bdn3 (T) = ∞, and we prove the converse. Assume
that bdn3 (T) ≥ |T |

+ and let κ = |T |
+. Then we can find (ϕi (x, yi, zi) , āi, bi)i∈κ

with (āi)i∈κ mutually indiscernible, finite bi ∈
⋃
j∈κ,j6=i āj such that {ϕi(x, ai0, bi)}i∈κ

is consistent and {ϕi(x, aij, bi)}j∈ω is inconsistent for every i ∈ κ. For each i ∈ κ,
let f (i) be the largest j < i such that āj ∩ bi 6= ∅ and let g (i) be the largest j ∈ κ
such that āj ∩ bi 6= ∅. By Fodor’s lemma there is some stationary S ⊆ κ and γ ∈ κ
such that f(i) = γ for all i ∈ S.

By induction we choose an increasing sequence (iα)α∈κ from S such that
i0 > γ and iα > g(iβ) for β < α. Now let a ′αj = aiαjbiα and ϕ ′α (x, y ′α) =

ϕiα (x, yiα , ziα). It follows by the choice of iα’s that (ā ′α)α∈κ are mutually in-
discernible, {ϕ ′α (x, a ′α0)}α∈κ is consistent and

{
ϕ ′α
(
x, a ′αj

)}
j∈ω is inconsistent for

each α ∈ κ. It follows that we had found an inp-pattern of depth κ = |T |
+ — so T

has TP2. �

We are going to give an analogue of Fact 2.6.3(1) for burden2,3, but first a
standard lemma.

Lemma 2.6.6. Let ā = (ai)i∈ω be indiscernible over A and let p(x, a0) =
tp(c/a0A). Assume that {p(x, ai)}i∈ω is consistent. Then there is ā ′ ≡a0A ā
which is indiscernible over cA.

Lemma 2.6.7. Let p (x) be a partial type over A:

(1) The following are equivalent:
(a) bdn3 (p) < κ.
(b) For any (āi)i∈κ mutually indiscernible over A and c |= p (x) there is

some i ∈ κ and ā ′i such that:
• ā ′i ≡ai0ā 6=iA āi,
• ā ′i is indiscernible over cā6=iA.

(2) The following are equivalent:
(a) bdn2 (p) < κ.
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(b) For any (āi)i∈κ mutually indiscernible over A and c |= p (x) there is
some i ∈ κ and ā ′i such that:
• ā ′i ≡ai0ā<iA āi,
• ā ′i is indiscernible over cā<iA.

Proof. (1): (a) implies (b): Let (āi)i∈κ mutually indiscernible over A and
c |= p (x) be given. Define pi (x, ai0) = tp (c/ai0ā6=iA). By Lemma 2.6.6 it is
enough to show that

⋃
j∈ω pi (x, aij) is consistent for some i ∈ κ.

Assume not, but then by compactness for each i ∈ κ we have someϕi (x, ai0, bidi) ∈
pi (x, ai0) with bi ∈ ā 6=i and di ∈ A such that {ϕi (x, aij, bidi)}j∈ω is inconsis-
tent. Let ϕ ′i

(
x, a ′ij, b

′
i

)
= ϕi (x, aij, bidi) with a ′ij = aijdi and b ′i = bi. It

follows that (ā ′i)i∈κ are mutually indiscernible, c |= {ϕ ′i (x, a
′
i0, b

′
i)}i∈κ ∪ p (x) and{

ϕ ′i
(
x, a ′ij, b

′
i

)}
j∈ω is inconsistent for each i ∈ κ, thus witnessing that bdn3 (p) ≥ κ

— a contradiction.
(b) implies (a): Assume that bdn3 (p) ≥ κ, witnessed by an inp3-pattern

(ϕi (x, yi, zi) , āi, bi)i∈κ in p (x). Let c |= {ϕi (x, ai0, bi)}i∈κ and take A = ∅.
It is then easy to check that (2) fails.

(2): Similar. �



CHAPTER 3

Theories without the tree property of the second
kind

This chapter is submitted to the Anals of Pure and Appllied Logic as “Theories
without the tree property of the second kind” [Che12]. We initiate a systematic
study of the class of theories without the tree property of the second kind — NTP2.
Most importantly, we show: the burden is “sub-multiplicative” in arbitrary theories
(in particular, if a theory has TP2 then there is a formula with a single variable
witnessing this); NTP2 is equivalent to the generalized Kim’s lemma; the dp-rank
of a type in an arbitrary theory is witnessed by mutually indiscernible sequences of
realizations of the type, after adding some parameters — so the dp-rank of a 1-type
in any theory is always witnessed by sequences of singletons; in NTP2 theories,
simple types are co-simple, characterized by the co-independence theorem, and
forking between the realizations of a simple type and arbitrary elements satisfies
full symmetry; a Henselian valued field of characteristic (0, 0) is NTP2 (strong, of
finite burden) if and only if the residue field is NTP2 (the residue field and the
value group are strong, of finite burden respectively); adding a generic predicate to
a geometric NTP2 theory preserves NTP2.

3.1. Introduction

The aim of this chapter is to initiate a systematic study of theories without
the tree property of the second kind, or NTP2 theories. This class was defined
by Shelah implicitly in [She90] in terms of a certain cardinal invariant κinp (see
Section 3.3) and explicitly in [She80], and it contains both simple and NIP theories.
There was no active research on the subject until the recent interest in generalizing
methods and results of stability theory to larger contexts, necessitated for example
by the developments in the model theory of important algebraic examples such as
algebraically closed valued fields [HHM08].

We give a short overview of related results in the literature. The invariant
κinp, an upper bound for the number of independent partitions, was considered by
Tsuboi in [Tsu85] for the case of stable theories. In [Adl08] Adler defines burden,
by relativizing κinp to a fixed partial type, makes the connection to weight in simple
theories and defines strong theories. Burden in the context of NIP theories, where
it is called dp-rank, was already introduced by Shelah in [Shed] and developed
further in [OU11]. Results about forking and dividing in NTP2 theories were
established in [CK12]. In particular, it was proved that a formula forks over a
model if and only if it divides over it (see Section 3.5). Some facts about ordered
inp-minimal theories and groups (that is with κ1inp = 1) are proved in [Goo10,
Sim11b]. In [Ben11, Theorem 4.13] Ben Yaacov shows that if a structure has
IP, then its randomization (in the sense of continuous logic) has TP2. Malliaris
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[Mal12] considers TP2 in relation to the saturation of ultra-powers and the Keisler
order. In [Cha08] Chatzidakis observes that ω-free PAC fields have TP2.

A brief description of the results in this paper.
In Section 3.3 we introduce inp-patterns, burden, establish some of their basic

properties and demonstrate that burden is sub-multiplicative: that is, if bdn(a/C) <
κ and bdn(b/aC) < λ, then bdn(ab/C) < κ × λ. As an application we show that
the value of the invariant of a theory κinp(T) does not depend on the number of
variables used in the computation. This answers a question of Shelah from [She90]
and shows in particular that if T has TP2, then some formula φ(x, y) with x a
singleton has TP2.

In Section 3.4 we describe the place of NTP2 in the classification hierarchy
of first-order theories and the relationship of burden to dp-rank in NIP theories
and to weight in simple theories. We also recall some combinatorial “structure /
non-structure” dichotomy due to Shelah.

Section 3.5 is devoted to forking (and dividing) in NTP2 theories. After dis-
cussing strictly invariant types, we give a characterization of NTP2 in terms of the
appropriate variants of Kim’s lemma, local character and bounded weight relatively
to strict non-forking. As an application we consider theories with dependent divid-
ing (i.e. whenever p ∈ S(N) divides over M ≺ N, there some φ(x, a) ∈ p dividing
over M and such that φ(x, y) is NIP) and show that any theory with dependent
dividing is NTP2. Finally we observe that the the analysis from Chapter 1 gen-
eralizes to a situation when one is working inside an NTP2 type in an arbitrary
theory.

A famous equation of Shelah “NIP = stability + dense linear order” turned out
to be a powerful ideological principle, at least at the early stages of the development
of NIP theories. In this paper the equation “NTP2 = simplicity + NIP” plays an
important role. In particular, it seems very natural to consider two extremal kinds
of types in NTP2 theories (and in general) — simple types and NIP types. While
it is perfectly possible for an NTP2 theory to have neither, they form important
special cases and are not entirely understood.

In section 3.6 we look at NIP types. In particular we show that the results of the
previous section on forking localized to a type combined with honest definitions from
Chapter 4 allow to omit the global NTP2 assumption in the theorem of [KS12b],
thus proving that dp-rank of a type in arbitrary theory is always witnessed by
mutually indiscernible sequences of its realizations, after adding some parameters
(see Theorem 3.6.3). We also observe that in an NTP2 theory, a type is NIP if and
only if every extension of it has only boundedly many global non-forking extensions.

In Section 3.7 we consider simple types (defined as those type for which every
completion satisfies the local character), first in arbitrary theories and then in
NTP2. While it is more or less immediate that on the set of realizations of a simple
type forking satisfies all the properties of forking in simple theories, the interaction
between the realizations of a simple type and arbitrary tuples seems more intricate.
We establish full symmetry between realizations of a simple type and arbitrary
elements, answering a question of Casanovas in the case of NTP2 theories (showing
that simple types are co-simple, see Definition 3.7.7). Then we show that simple
types are characterized as those satisfying the co-independence theorem and that
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co-simple stably embedded types are simple (so in particular a theory is simple if
and only if it is NTP2 and satisfies the independence theorem).

Section 3.8 is devoted to examples. We give an Ax-Kochen-Ershov type state-
ment: a Henselian valued field of characteristic (0, 0) is NTP2 (strong, of finite
burden) if and only if the residue field is NTP2 (the residue field and the value
group are strong, of finite burden respectively). This is parallel to the result of
Delon for NIP [Del81], and generalizes a result of Shelah for strong dependence
[Shed]. It follows that the valued fields of Hahn series over pseudo-finite fields
are NTP2. In particular, the theory of the ultra-product of p-adics is NTP2 (and
in fact strong, of finite burden). We also show that expanding a geometric NTP2
theory by a generic predicate (Chatzidakis-Pillay style [CP98]) preserves NTP2.

Acknowledgments. I am grateful to Itaï Ben Yaacov, Itay Kaplan and Mar-
tin Hils for multiple discussions around the topics of the paper. I would also like
to thank Hans Adler and Enrique Casanovas for their interest in this work and for
suggesting nice questions.

3.2. Preliminaries

As usual, we will be working in a monster modelM of a complete first-order the-
ory T . We will not be distinguishing between elements and tuples unless explicitly
stated.

3.2.1. Mutually indiscernible sequences and arrays.

Definition 3.2.1. We will often be considering collections of sequences (āα)α<κ
with āα = (aα,i)i<λ (where each aα,i is a tuple, maybe infinite). We say that they
are mutually indiscernible over a set C if āα is indiscernible over Cā 6=α for all i < κ.
We will say that they are almost mutually indiscernible over C if āα is indiscernible
over Cā<α (aβ,0)β>α. Sometimes we call (aα,i)α<κ,i<λ an array. We say that(
b̄α

)
α<κ ′

is a sub-array of (āα)α<κ if for each α < κ ′ there is βα < κ such that

b̄α is a sub-sequence of āβα . We say that an array is mutually indiscernible (almost
mutually indiscernible) if rows are mutually indiscernible (resp. almost mutually in-
discernible). Finally, an array is strongly indiscernible if it is mutually indiscernible
and in addition the sequence of rows (āα)α<κ is an indiscernible sequence.

The following lemma follows easily by a repeated use of the usual “Erdös-Rado”
and Ramsey theorems, and will be constantly used for finding indiscernible arrays.

Lemma 3.2.2. (1) For any small set C and cardinal κ there is λ such that:
If A = (aα,i)α<n,i<λ is an array, n < ω and |aα,i| ≤ κ, then there is
an array B = (bα,i)α<n,i<ω with rows mutually indiscernible over C and
such that every finite sub-array of B has the same type over C as some
sub-array of A.

(2) Let C be small set and A = (aα,i)α<n,i<ω be an array with n < ω. Then
for any finite ∆ ∈ L(C) and N < ω we can find ∆-mutually indiscernible
sequences (aα,iα,0 , ..., aα,iα,N) ⊂ āα, α < n.

Lemma 3.2.3. Let (āα)α<κ be almost mutually indiscernible over C. Then
there are (ā ′α)α<κ, mutually indiscernible over C and such that ā ′α ≡aα,0 āα for
all α < κ.
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Proof. By Lemma 3.2.2, taking an automorphism, and compactness. �

Definition 3.2.4. Given a set of formulas ∆, let R(κ,∆) be the minimal length
of a sequence sufficient for the existence of a ∆-indiscernible sub-sequence of length
κ. For example, for finite ∆, R(κ,∆) = κ for any infinite κ and and R(n,∆) is finite
for any n ∈ ω.

Remark 3.2.5. Let (āi) be a mutually indiscernible array over A. Then it is
still a mutually indiscernible over acl(A).

3.2.2. Invariant types. We recall that

Fact 3.2.6. (see e.g. [HP11]) Let p (x) be a global type invariant over a set
C (that is φ(x, a) ∈ p if and only if φ(x, σ(a)) ∈ p for any σ ∈ Aut(M /C)). For
any set D ⊇ C, and an ordinal α, let the sequence c̄ = 〈ci | i < α 〉 be such that
ci |= p|Dc<i . Then c̄ is indiscernible over D and its type over D does not depend
on the choice of c̄. Call this type p(α)|D, and let p(α) =

⋃
D⊇C p

(α)|D. Then p(α)

also does not split over C.

Finally, we assume some acquaintance with the basics of simple (e.g. [Cas07])
and NIP (e.g. [Adl08]) theories.

3.3. Burden and κinp

Let p(x) be a (partial) type.

Definition 3.3.1. An inp-pattern in p(x) of depth κ consists of (aα,i)α<κ,i<ω,
φα(x, yα) and kα < ω such that

• {φα(x, aα,i)}i<ω is kα-inconsistent, for each α < κ
•
{
φα(x, aα,f(α))

}
α<κ
∪ p(x) is consistent, for any f : κ→ ω.

The burden of p(x), denoted bdn(p), is the supremum of the depths of all inp-
patterns in p(x). By bdn(a/C) we mean bdn(tp(a/C)).

Obviously, p(x) ⊆ q(x) implies bdn(p) ≥ bdn(q) and bdn(p) = 0 if and only if
p is algebraic. Also notice that bdn(p) <∞⇔ bdn(p) < |T |+ by compactness.

First we observe that it is sufficient to look at mutually indiscernible inp-
patterns.

Lemma 3.3.2. For p(x) a (partial) type over C, the following are equivalent:
(1) There is an inp-pattern of depth κ in p(x).
(2) There is an array (āα)α<κ with rows mutually indiscernible over C and

φα(x, yα) for α < κ such that:
• {φα(x, aα,i)}i<ω is inconsistent for every α < κ
• p(x) ∪ {φα(x, aα,0)}α<κ is consistent.

(3) There is an array (āα)α<κ with rows almost mutually indiscernible over
C with the same properties.

Proof. (1)⇒(2) is a standard argument using Lemma 3.2.2 and compactness,
(2)⇒(3) is clear and (3)⇒(1) is an easy reverse induction plus compactness. �

We will need the following technical lemma.
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Lemma 3.3.3. Let (āα)α<κ be a mutually indiscernible array over C and b
given. Let pα(x, aα,0) = tp(b/aα,0C), and assume that p∞(x) =

⋃
α<κ,i<ω pα(x, aα,i)

is consistent. Then there are (ā ′α)α<κ such that:
(1) ā ′α ≡aα,0C āα for all α < κ
(2) (ā ′α)α<κ is a mutually indiscernible array over Cb.

Proof. It is sufficient to find b ′ such that b ′ ≡aα,0C b for all α < κ and
(āα)α<κ is mutually indiscernible over b ′C (then applying an automorphism over
C to conclude). Let b∞ |= p∞(x). By Lemma 3.2.2, for any finite ∆ ∈ L(C), S ⊆ κ
and n < ω, there is a ∆(b∞)-mutually indiscernible sub-array (a ′α,i)α∈S,i<n of
(āα)α∈S. Let σ be an automorphism over C sending (a ′α,i)α∈S,i<n to (aα,i)α∈S,i<n
and b ′ = σ(b∞). Then (aα,i)α∈S,i<n is ∆(b ′)-mutually indiscernible and b ′ |=⋃
α∈S pα(x, aα,0), so b

′ ≡aα,0C b. Conclude by compactness. �

Next lemma provides a useful equivalent way to compute the burden of a type.

Lemma 3.3.4. The following are equivalent for a partial type p(x) over C:
(1) There is no inp-pattern of depth κ in p.
(2) For any b |= p(x) and (āα)α<κ, an almost mutually indiscernible ar-

ray over C, there is β < κ and ā ′ indiscernible over bC and such that
ā ′ ≡aβ,0C āβ.

(3) For any b |= p(x) and (āα)α<κ, a mutually indiscernible array over C,
there is β < κ and ā ′ indiscernible over bC and such that ā ′ ≡aβ,0C āβ.

Proof. (1)⇒(2): So let (āα)α<κ be almost mutually indiscernible over C and
b |= p(x) given. Let pα(x, aα,0) = tp(b/aα,0C) and let pα(x) =

⋃
i<ω pα(x, aα,i).

Assume that pα is inconsistent for each α, by compactness and indiscernibility
of āα over C there is some φα(x, aα,0cα) ∈ pα(x, aα,0) with cα ∈ C such that
{φα(x, aα,icα)}i<ω is kα-inconsistent. As b |= {φα(x, aα,0cα)}α<κ, by almost in-
discernibility of (āα)α<κ over C and Lemma 3.3.2 we find an inp-pattern of depth
κ in p – a contradiction.

Thus pβ(x) is consistent for some β < κ. Then we can find ā ′ which is indis-
cernible over bC and such that ā ′ ≡aβ,0C āβ by Lemma 3.3.3.

(2)⇒(3) is clear.
(3)⇒(1): Assume that there is an inp-pattern of depth κ in p(x). By Lemma

3.3.2 there is an inp-pattern (āα, φα, kα)α<κ in p(x) with (āα)α<κ a mutually
indiscernible array over C. Let b |= p(x) ∪ {φα(x, aα,0)}α<κ. On the one hand |=
φα(b, aα,0), while on the other {φα(x, aα,i)}i<ω is inconsistent, thus it is impossible
to find an ā ′α as required for any α < κ. �

Theorem 3.3.5. If there is an inp-pattern of depth κ1×κ2 in tp(b1b2/C), then
either there is an inp-pattern of depth κ1 in tp(b1/C) or there is an inp-pattern of
depth κ2 in tp(b2/b1C).

Proof. Assume not. Without loss of generality C = ∅, and let (āα)α∈κ1×κ2 be
a mutually indiscernible array. By induction on α < κ1 we choose ā ′α and βα ∈ κ2
such that:

(1) ā ′α is indiscernible over b2ā ′<αā≥(α+1,0).
(2) tp(ā ′α/a(α,βα),0ā

′
<αā≥(α+1,0)) = tp(ā(α,βα)/a(α,βα),0ā

′
<αā≥(α+1,0)).

(3) ā ′≤α ∪ ā≥(α+1,0) is a mutually indiscernible array.
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For α = −1, (1) and (2) are empty conditions and (3) is the assumption. Now
assume we have managed up to α, and we need to choose ā ′α and βα. Let D =
ā ′<αā≥(α+1,0). As

(
ā(α,δ)

)
δ∈κ2

is a mutually indiscernible array over D by (3)
and there is no inp-pattern of depth κ2 in tp(b2/D), by Lemma 3.3.4(3) there is
some βα < κ2 and ā ′α indiscernible over b2D (which gives us (1)) and such that
tp(ā ′α/a(α,βα),0D) = tp(ā(α,βα)/a(α,βα),0D) (which together with the inductive
assumption gives us (2) and (3)).

So we have carried out the induction. Now it is easy to see by (1), noticing
that the first elements of ā ′α and ā(α,βα) are the same by (2), that (ā ′α)α<κ1 is an
almost mutually indiscernible array over b2. By Lemma 3.2.3, we may assume that
in fact (ā ′α)α<κ1 is a mutually indiscernible array over b2.

As there is no inp-pattern of depth κ1 in tp(b1/b2), by Lemma 3.3.4 there is
some γ < κ1 and ā indiscernible over b1b2 and such that ā ≡a ′

γ,0
ā ′γ ≡a(γ,βγ),0

ā(γ,βγ). As (āα)α∈κ1×κ2 was arbitrary, by Lemma 3.3.4(3) this implies that there
is no inp-pattern of depth κ1 × κ2 in tp(b1b2). �

Corollary 3.3.6. “Sub-multiplicativity” of burden: If bdn(ai) < ki for i < n
with ki ∈ ω, then bdn(a0...an−1) <

∏
i<n ki.

We note that in the case of NIP theories it is known that burden is not only
sub-multiplicative, but actually sub-additive [KOU11].

Definition 3.3.7. For n < ω, we let κninp(T) be the first cardinal κ such
that there is no inp-pattern (āα, φα(x, yα), kα) of depth κ with |x| ≤ n. And let
κinp(T) = supn<ω κninp(T). Notice that κminp ≥ κninp(T) ≥ n for all n < m, just
because of having the equality in the language, and thus κinp(T) ≥ ℵ0.

We can use the previous theorem to answer a question of Shelah [She90, Ch.
III, Question 7.5].

Corollary 3.3.8. κinp(T) = κninp(T) = κ1inp(T), as long as κninp is infinite for
some n < ω.

3.4. NTP2 and its place in the classification hierarchy

The aim of this section is to (finally) define NTP2, describe its place in the
classification hierarchy of first-order theories and what burden amounts to in the
more familiar situations.

Definition 3.4.1. A formula φ(x, y) has TP2 if there is an array (aα,i)α,i<ω
such that {φ(x, aα,i)}i<ω is 2-inconsistent for every α < ω and

{
φ(x, aα,f(α))

}
α<ω

is consistent for any f : ω→ ω. Otherwise we say that φ(x, y) is NTP2, and T is
NTP2 if every formula is.

Lemma 3.4.2. The following are equivalent for T :
(1) Every formula φ(x, y) with |x| ≤ n is NTP2.
(2) κninp(T) ≤ |T |+.
(3) κninp(T) <∞.
(4) bdn(b/C) < |T |

+ for all b and C, with |b| = n.

Proof. (1)⇒(2): Assume we have a mutually indiscernible inp-pattern (āα, φα(x, yα), kα)α<|T |+

of depth |T |+. By pigeon-hole we may assume that φα(x, yα) = φ(x, y) and kα = k.
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Then by Ramsey and compactness we may assume in addition that (āα) is a
strongly indiscernible array. If {φ(x, aα,0)∧ φ(x, aα,1)}α<n is inconsistent for some
n < ω, then taking bα,i = anα,ianα+1,i...anα+n−1,i,

(∧
i<nφ(x, yi), b̄α, 2

)
α<ω

is an inp-pattern. Otherwise {φ(x, aα,0)∧ φ(x, aα,1)}α<ω is consistent, then tak-
ing bα,i = aα,2iaα,2i+1 we conclude that

(
φ(x, y1)∧ φ(x, y2), b̄α,

[
k
2

])
α<ω

is an
inp-pattern. Repeat if necessary.

The other implications are clear by compactness. �

Remark 3.4.3. (1) implies (2) is from [Adl08].

It follows from the lemma and Theorem 3.3.8 that if T has TP2, then some
formula φ(x, y) with |x| = 1 has TP2. From Lemma 3.8.1 it follows that if φ1(x, y1)
and φ2(x, y2) are NTP2, then φ1(x, y1)∨φ2(x, y2) is NTP2. This, however, is the
only Boolean operation preserving NTP2.

Definition 3.4.4. [Adler] T is called strong if there is no inp-pattern of infinite
depth in it. It is clearly a subclass of NTP2 theories.

Proposition 3.4.5. If φ(x, y) is NIP, then it is NTP2.

Proof. Let (aα,j)α,j<ω be an array witnessing that φ(x, y) has TP2. But
then for any s ⊆ ω, let f(α) = 0 if α ∈ s, and f(α) = 1 otherwise. Let d |={
φ(x, aα,f(α))

}
. It follows that φ(d, aα,0)⇔ α ∈ s. �

We recall the definition of dp-rank (e.g. [KOU11]):

Definition 3.4.6. We let the dp-rank of p, denoted dprk(p), be the supremum
of κ for which there are b |= p and mutually indiscernible over C (a set containing
the domain of p) sequences (āα)α<κ such that none of them is indiscernible over
bC.

Fact 3.4.7. The following are equivalent for a partial type p (x) (by Ramsey
and compactness):

(1) dprk (p) > κ.
(2) There is an ict-pattern of depth κ in p (x), that is (āi, ϕi (x, yi) , ki)i<κ

such that p (x) ∪
{
ϕi
(
x, ai,s(i)

)}
i<κ
∪ {ϕi (x, ai,j)}s(i)6=j<κ is consistent

for every s : κ→ ω.

It is easy to see that every inp-pattern with mutually indiscernible rows gives
an ict-pattern of the same depth. On the other hand, if T is NIP then every ict-
pattern gives an inp-pattern of the same depth (see [Adl07, Section 3]). Thus we
have:

Fact 3.4.8. (1) For a partial type p(x), bdn(p) ≥ dprk(p). And if p(x)
is an NIP type, then bdn(p) = dprk(p)

(2) T is strongly dependent ⇔ T is NIP and strong.

Proposition 3.4.9. If T is simple, then it is NTP2.

Proof. Of course, inp-pattern of the form (āα, φ(x, y), k)α<ω witnesses the
tree property. �

Moreover,
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Fact 3.4.10. [Adl07, Proposition 8] Let T be simple. Then the burden of a
partial type is the supremum of the weights of its complete extensions. And T is
strong if and only if every type has finite burden.

Definition 3.4.11. [Shelah] φ(x, y) is said to have TP1 if there are (aη)η∈ω<ω
and k ∈ ω such that:

•
{
φ(x, aη|i)

}
i∈ω is consistent for any η ∈ ωω

• {φ(x, aηi)}i<k is inconsistent for any mutually incomparable η0, ..., ηk−1 ∈
ω<ω.

Fact 3.4.12. [She90, III.7.7, III.7.11] Let T be NTP2, q(y) a partial type and
φ(x, y) has TP witnessed by (aη)η∈ω<ω with aη |= q, and such that in addition{
φ(x, aη|i)

}
i∈ω∪p(x) is consistent for any η ∈ ω

ω. Then some formula ψ(x, ȳ) =∧
i<kφ(x, yi) ∧ χ(x) (where χ(x) ∈ p(x)) has TP1, witnessed by (bη) with bη ⊆

q(M) and such that
{
φ(x, bη|i)

}
i∈ω ∪ p(x) is consistent.

It is not stated in exactly the same form there, but immediately follows from
the proof. See [Adl07, Section 4] and [KKS12, Theorem 6.6] for a more detailed
account of the argument. See [KK11] for more details on NTP1.

Example 3.4.13. (1) Triangle free random graph (i.e. the model com-
panion of the theory of graphs without triangles) has TP2.

(2) The theories of free roots of the random graph (as defined and studied in
[CW04]) have TP2. In particular, the rational Urysohn space has TP2.

Proof. (1): We can find (aijbij)ij<ω such that R(aij, bik) for every i and j 6=
k, and this are the only edges around. But then {xRaij ∧ xRbij}j<ω is 2-inconsistent
for every i as otherwise it would have created a triangle, while

{
xRaif(i) ∧ xRbif(i)

}
i<ω

is consistent for any f : ω→ ω.
(2): Let (ai,j)i,j<ω be such that d(ai,j, ai,j ′) = 3 for all i, j 6= j ′ < ω and

d(ai,j, ai ′,j ′) = 2 for all i 6= i ′, j, j ′ < ω - possible to find by model completeness
as the triangular inequality is not violated. But then {xR1ai,j}j<ω is inconsistent
for every i, while

{
xR1ai,f(i)

}
i<ω

is consistent for any f : ω→ ω. �

In fact it is known that the triangle-free random graph is rosy and 2-dependent
(in the sense of [She07]), thus there is no implication between rosiness and NTP2,
and between k-dependence and NTP2 for k > 1. We also remark that in [She90,
Exercise III.7.12] Shelah suggests an example of a theory satisfying NTP2+NSOP
which is not simple.

3.5. Forking in NTP2

In [Kim01, Theorem 2.4] Kim gives several equivalents to the simplicity of a
theory in terms of the behavior of forking and dividing.

Fact 3.5.1. The following are equivalent:
(1) T is simple.
(2) φ(x, a) divides over A if and only if {φ(x, ai)}i<ω is inconsistent for every

Morley sequence (ai)i<ω over A.
(3) Dividing in T satisfies local character.
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In this section we show an analogous characterization of NTP2. But first we
recall some facts about forking and dividing in NTP2 theories and introduce some
terminology.

Definition 3.5.2. (1) A type p(x) ∈ S(C) is strictly invariant over A if
it is Lascar invariant over A and for any small B ⊆ C and a |= p|B, we
have that tp(B/aA) does not fork over A. For example, a definable type
or a global type which is both an heir and a coheir over M, are strictly
invariant over M.

(2) We will write a |̂
ist
c
b when tp(a/bc) can be extended to a global type

p(x) strictly invariant over A.
(3) We say that (ai)<ω is a strict Morley sequence over A if it is indiscernible

over A and ai |̂
ist
A
a<i for all i < ω.

(4) As usual, we will write a |̂
u

c
b if tp(a/bc) is finitely satisfiable in c,

a |̂
d

c
b (a |̂

f

c
b) if tp(a/bc) does not divide (resp. does not fork) over c.

(5) We write a |̂
i

c
b if tp(a/bc) can be extended to a global type p(x) Las-

car invariant over c. We point out that if a |̂
i

c
b and (bi)i<ω is a c-

indiscernible sequence with b0 = b, then it is actually indiscernible over
a.

(6) If T is simple, then |̂
i
= |̂

ist. And if T is NIP, then |̂
i
= |̂

f.
(7) We say that a set A is an extension base if every type over A has a global

non-forking extension. Every model is an extension base (because every
type has a global coheir). A theory in which every set is an extension base
is called extensible.

Strictly invariant types exist in any theory (but it is not true that every type
over a model has a global extension which is strictly invariant over the same model).
In fact, there are theories in which over any set there is some type without a global
strictly invariant extension (see Chapter 6).

Lemma 3.5.3. Let p(x) be a global type invariant over A, and let M ⊃ A be
|A|+-saturated. Then p is strictly invariant over M.

Proof. It is enough to show that p is an heir over M. Let φ(x, c) ∈ p. By
saturation ofM, tp(c/A) is realized by some c ′ ∈M. But as p is invariant over A,
φ(x, c ′) ∈ p as wanted. �

One of the main uses of strict invariance is the following criterion for making
indiscernible sequences mutually indiscernible without changing their type over the
first elements.

Lemma 3.5.4. Let (āi)i<κand C be given, with āi indiscernible over C and
starting with ai. If ai |̂

ist
C
a<i, then there are mutually C-indiscernible

(
b̄i

)
i<κ

such that b̄i ≡aiC āi.

Proof. (1): Enough to show for finite κ by compactness. So assume we have
chosen ā ′0, ..., ā

′
n−1, and lets choose ā ′n. As an |̂

ist
C
a<n, there are ā ′′0 ...ā

′′
n−1 ≡Ca0...an−1

ā ′0...ā
′
n−1 and such that an |̂

ist
C
ā ′′<n. As an |̂

i

Cā ′′
<n,6=j

ā ′′j for j < n, it follows

by the inductive assumption and Definition 3.5.2(5) that ā ′′j is indiscernible over



76 3. THEORIES WITHOUT THE TREE PROPERTY OF THE SECOND KIND

anā
′′
6=j. On the other hand ā ′′0 ...ā

′′
n−1 |̂

f

C
an, and so by basic properties of forking

there is some ā ′n ≡Can ān indiscernible over ā ′′0 , ..., ā
′′
n−1. Conclude by Lemma

3.2.3. �

Remark 3.5.5. This argument is essentially from [She09, Section 5].

We recall a result about forking and dividing in NTP2 theories from Chapter
1:

Fact 3.5.6. Let T be NTP2 and M |= T .
(1) Every p ∈ S(M) has a global strictly invariant extension.
(2) For any a, φ(x, a) divides over M if and only if φ(x, a) forks over M,

if and only if for every (ai)i<ω, a strict Morley sequence in tp(a/M),
{φ(x, ai)}i<ω is inconsistent.

(3) In fact, just assuming that A is an extension base, we still have that
φ(x, a) does not divide over A if and only if φ(x, a) does not fork over A.

3.5.1. Characterization of NTP2. Now we can give a method for computing
the burden of a type in terms of dividing with each member of an |̂

ist-independent
sequence.

Lemma 3.5.7. Let p(x) be a partial type over C. The following are equivalent:
(1) There is an inp-pattern of depth κ in p(x).
(2) There is d |= p(x), D ⊇ C and (aα)α<κ such that aα |̂

ist
D
a<α and

d 6 |̂ d
D
aα for all α < κ.

Proof. (1)⇒(2): Let (āα, φα(x, yα), kα)α<κ be an inp-pattern in p(x) with
(āα) mutually indiscernible over C. Let qα(ȳα) be a non-algebraic type finitely
satisfiable in āα and extending tp (aα0/C). Let M ⊇ C (āα)α<κ be (|C|+ κ)

+-
saturated. Then qα is strictly invariant over M by Lemma 3.5.3. For α, i < κ let
bα,i |= qα �M(bα,j)α<κ,j<i(bβ,i)β<α

. Let eα = bα,α. Now we have:

• eα |̂
ist
M
e<α: as eα |= qα �e<αM.

• there is d |= p(x) ∪ {φα(x, eα)}α<κ: it is easy to see by construction that
for any ∆ ∈ L(C) and α0 < ... < αn−1 < κ, if |= ∆(eα0 , ..., eαn−1

), then
|= ∆(aα0,i0 , ..., aαn−1,in−1

) for some i0, ..., in−1 < ω. By assumption on
(āα)α<κ and compactness it follows that p(x)∪ {φα(x, eα)}α<κ is consis-
tent.

• φα(x, eα) divides over M: notice that (bα,α+i)i<ω is an M-indiscernible
sequence starting with eα, as bα,α+i |= qα �M(bα,α+j)j<i

and qα is finitely
satisfiable in M. As tp(b̄α) is finitely satisfiable in āα, we conclude that
{φα(x, bα,α+i)}i<ω is kα-inconsistent.

(2)⇒(1): Let d |= p(x), D ⊇ C and (aα)α<κ such that aα |̂
ist
D
a<α and d 6 |̂ f

D
aα

for all α < κ be given. Let φα(x, aα) ∈ tp(d/aαD) be a formula dividing over D,
and let āα indiscernible over D and starting with aα witness it. By Lemma 3.3.2
we can find a (ā ′α)α<κ, mutually indiscernible over D and such that ā ′α ≡aαD āα.
It follows that {φα(x, yα), ā ′α}α<κ is an inp-pattern of depth κ in p(x). �

Definition 3.5.8. We say that dividing satisfies generic local character if for
every A ⊆ B and p(x) ∈ S(B) there is some A ′ ⊆ B with |A ′| ≤ |T |

+ and such that:
for any φ(x, b) ∈ p, if b |̂

ist
A
A ′, then φ(x, b) does not divide over AA ′.
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Of course, the local character of dividing implies the generic local character.
We are ready to prove the main theorem of this section.

Theorem 3.5.9. The following are equivalent:
(1) T is NTP2.
(2) T has absolutely bounded |̂

ist-weight: for every M, b and (ai)i<|T |+ with
ai |̂

ist
M
a<i, b |̂

d

M
ai for some i < |T |+.

(3) T has bounded |̂
ist-weight: for everyM there is some κM such that given

b and (ai)i<κM with ai |̂
ist
M
a<i, b |̂

d

M
ai for some i < κM.

(4) T satisfies “Kim’s lemma”: for any M |= T , φ(x, a) divides over M if and
only if {φ(x, ai)}i<ω is inconsistent for every strict Morley sequence over
M.

(5) Dividing in T satisfies generic local character.

Proof. (1) implies (2): Assume that there are M, b and (ai)i<|T |+ with
ai |̂

ist
M
a<i and b 6 |̂ dM ai for all i. But then by Lemma 3.5.7 bdn(b/M) ≥ |T |

+,
thus T has TP2 by Lemma 3.4.2.

(2) implies (3) is clear.
(1) implies (4): by Fact 3.5.6(1)+(2).
(4) implies (3): assume that we have M, b and (ai)i<κ such that, letting

κ = i(2|M|)
+ , ai |̂

ist
M
a<i and b 6 |̂ dM ai for all i < κ. We may assume that dividing

is always witnessed by the same formula φ(x, y). Extracting an M-indiscernible
sequence (a ′i)i<ω from (ai)i<κ by Erdös-Rado, we get a contradiction to (4) as
{φ(x, a ′i)}i<ω is still consistent, (a ′i) is a strict Morley sequence overM and φ(x, a ′0)
divides over M.

(3) implies (1): Assume that ϕ (x, y) has TP2, let A = (āα)α<ω with āα =
(aαi)i<ω be a strongly indiscernible array witnessing it (so rows are mutually
indiscernible and the sequence of rows is indiscernible). Let M ⊃ A be some |A|

+-
saturated model, and assume that κM is as required by (3). Let λ = i(2|M|)

+ and

µ =
(
22
λ
)+

. Adding new elements and rows by compactness, extend our strongly
indiscernible array to one of the form (āα)α∈ω+µ∗ with āα = (aαi)i∈λ. By all the
indiscernibility around it follows that āα |̂

u

A
ā<α for all α < µ. As there can be

at most 22
λ

global types from Sλ (M) that are finitely satisfiable in A, without loss
of generality there is some p (x̄) ∈ Sλ (M) finitely satisfiable in A and such that
āα |= p (x̄) |Aā<α .

By Lemma 3.5.3, p (x̄) is strictly invariant overM. We choose
(
b̄α

)
α<κM

such

that b̄α |= p|Mb̄<α .
By the choice of λ and Erdös-Rado, for each α < κM there is iα < λ and d̄α

such that d̄α is anM-indiscernible sequence starting with bαiα and such that type
of every finite subsequence of it is realized by some subsequence of b̄α. Now we
have:

• dα0 |̂
ist
M
d<α0 (as dα0 = bαiα and b̄α |̂

ist
M
b̄<α),

• ϕ (x, dα0) divides overM (as d̄α isM-indiscernible and {ϕ (x, dαi)}i∈ω is
inconsistent by construction),

• {ϕ (x, dα0)}α<κM is consistent (follows by construction).
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Taking some c |= {ϕ (x, dα0)}α<κM we get a contradiction to (3).
(5) implies (2): Let p(x) = tp(b/B) with B =M∪

⋃
i<|T |+ ai. Letting A =M,

it follows by generic local character that there is some A ′ ⊆ B with |A ′| ≤ |T |,
such that b |̂

d

MA ′
a for any a ∈ B with a |̂

M
A ′. Let i ∈ |T | be such that

i > {j : aj ∈ A ′}. Then ai |̂
ist
M
A, but also b 6 |̂ d

MA ′
ai (by left transitivity as

A ′ |̂
d

M
ai and b 6 |̂ dM ai) — a contradiction.

(1) implies (5): Let p (x) ∈ S (B) and A ⊆ B be given. By induction on i < |T |
+

we try to choose ai ∈ B and ϕi (x, ai) ∈ p such that ai |̂
ist
A
a<i and ϕi (x, ai)

divides over a<iA. But then by Lemma 3.5.7 bdn(b/A) ≥ |T |
+, thus T has TP2 by

Lemma 3.4.2. So we had to get stuck, and letting A ′ =
⋃
ai witnesses the generic

local character. �

Remark 3.5.10. (1) The proof of the equivalences shows that in (2) and
(3) we may replace a |̂

ist
C
b by “tp(a/bC) extends to a global type which

is both an heir and a coheir over C”.
(2) From the proof one immediately gets a similar characterization of strong-

ness. Namely, the following are equivalent:
(a) T is strong.
(b) For everyM, finite (or even singleton) b and (ai)i<ω with ai |̂

ist
M
a<i,

b |̂
d

M
ai for some i < ω.

(c) For every A ⊆ B and p(x) ∈ S(B) there is some finite A ′ ⊆ B such
that: for any φ(x, b) ∈ p, if b |̂

ist
A
A ′, then φ(x, b) does not divide

over AA ′.

If we are working over a somewhat saturated model and consider only small
sets, then we actually have the generic local character with respect to |̂

u in the
place of |̂

ist.

Lemma 3.5.11. Let (āi)i<κand C be given, āi starting with ai. If āi is indis-
cernible over ā<iC and ai |̂

i

C
a<i, then (āi)i<κ is almost mutually indiscernible

over C.

Proposition 3.5.12. Let T be NTP2. Let M be κ-saturated, p(x) ∈ S(M) and
A ⊂ M of size < κ. Then there is A ⊆ A ′ ⊂ M of size < κ such that for any
φ(x, a) ∈ p, if a |̂

i

A
A ′ then φ(x, a) does not fork over A ′.

Proof. Assume not, then we can choose inductively on α < |T |+:

(1) āα ⊆ M such that aα,0 |̂
i

A
Aα and āα is Aα-indiscernible, Aα = A ∪⋃

β<α āβ.
(2) φα(x, yα) such that φα(x, aα,0) ∈ p and {φα(x, aα,i)}i<ω is inconsistent.

(1) is possible by saturation of M. But then by Lemma 3.5.11, (āα)α<|T |+ are
almost mutually indiscernible. �

3.5.2. Dependent dividing.

Definition 3.5.13. We say that T has dependent dividing if givenM � N and
p(x) ∈ S(N) dividing overM, then there is a dependent formula φ(x, y) and c ∈ N
such that φ(x, c) ∈ p and φ(x, c) divides over M.
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Proposition 3.5.14. (1) If T has dependent dividing, then it is NTP2.
(2) If T has simple dividing, then it is simple.

Proof. (1) In fact we will only use that dividing is always witnessed
by an instance of an NTP2 formula. Assume that T has TP2 and let
φ(x, y) witness this. Let TSk be a Skolemization of T , φ(x, y) still has
TP2 in TSk. Then as in the proof of Theorem 3.5.9, for any κ we can
find (bi)i<κ, a and M such that a |= {φ(x, bi)}i<κ, φ(x, bi) divides over
M and tp (bi/b<iM) has a global heir-coheir over M, all in the sense of
TSk. Taking Mi = Sk(Mbi) |= T , and now working in T , we still have
that a 6 |̂ d

M
Mi and Mi |̂

ist
M
M<i (as tp(Mi/M<iM) still has a global

heir-coheir overM). But then for each i we find some di ∈Mi and NTP2
formulas φi(x, yi) ∈ L such that a |= {φi(x, di)} and φi(x, di) divides over
M, witnessed by d̄i starting with di. We may assume that φi = φ ′, and
this contradicts φ ′ being NTP2.

(2) Similar argument shows that if T has simple dividing, then it is simple.
�

Of course, if T is NIP, then it has dependent dividing, and for simple theories
it is equivalent to the stable forking conjecture. It is natural to ask if every NTP2
theory T has dependent dividing.

3.5.3. Forking and dividing inside an NTP2 type.

Definition 3.5.15. A partial type p(x) over C is said to be NTP2 if the
following does not exist: (āα)α<ω, φ(x, y) and k < ω such that {φ(x, aαi)}i<ω
is k-inconsistent for every α < ω and

{
φ(x, aαf(α))

}
α<ω

∪ p(x) is consistent for
every f : ω → ω. Of course, T is NTP2 if and only if every partial type is NTP2.
Also notice that if p(x) is NTP2, then every extension of it is NTP2 and that
q((xi)i<κ) =

⋃
i<κ p(xi) is NTP2 (follows from Theorem 3.3.5).

For the later use we will need a generalization of the results from Chapter 1
working inside a partial NTP2 type, and with no assumption on the theory.

Lemma 3.5.16. Let p(x) be an NTP2 type overM. Assume that p(x)∪{φ(x, a)}
divides over M, then there is a global coheir q(x) extending tp(a/M) such that
p(x) ∪ {φ(x, ai)}i<ω is inconsistent for any sequence (ai)i<ω with ai |= q|a<iM.

Proof. The proof of [CK12, Lemma 3.12] goes through. �

Lemma 3.5.17. Assume that tp(ai/C) = p(x) for all i and that tp(ai/a<iC)
has a strictly invariant extension to p(M)∪C. Then there are mutually C-indiscernible(
b̄i

)
i<κ

such that b̄i ≡aiC āi.

Proof. The assumption is sufficient for the proof of Lemma 3.5.4 to work. �

Lemma 3.5.18. Let p(x) over M be NTP2, a ∈ p(M), c ∈M and assume that
p(x) ∪ {φ(x, ac)} divides over M. Assume that tp(a/M) has a strictly invariant
extension p ′(y) ∈ S(p(M)). Then for any (ai)i<ω such that ai |= p ′|a<iM, p(x) ∪
{φ(x, aic)}i<ω is inconsistent.
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Proof. Let (ā0c) with a0,0 = a0 be an M-indiscernible sequence witness-
ing that p(x) ∪ {φ(x, a0c)} divides over M. Let āi be its image under an M-
automorphism sending a0 to ai. By Lemma 3.5.4(2) we can find

(
b̄i

)
i<ω

mutually

indiscernible overM and with b̄i ≡aiM āi. By the choice of b̄i’s and compactness,
there is some ψ(x) ∈ p(x) such that {ψ(x)∧ φ(x, bi,jc)}j<ω is k-inconsistent for all
i < ω. It follows that p(x) ∪ {φ(x, aic)}i<ω is inconsistent as p is NTP2. �

We need a version of the Broom lemma localized to an NTP2 type.

Lemma 3.5.19. Let p(x) be an NTP2 type over M and p ′(x) be a partial global
type invariant over M. Suppose that p(x)∪p ′(x) `

∨
i<nφi(x, c) and each φi(x, c)

divides over M. Then p(x) ∪ p ′(x) is inconsistent.

Proof. Follows from the proof of [CK12, Lemma 3.1]. �

Corollary 3.5.20. Let p(x) be an NTP2 type over M and a ∈ p(M). Then
tp(a/M) has a strictly invariant extension p ′(x) ∈ S(p(M) ∪M).

Proof. Following the proof of [CK12, Proposition 3.7] but using Lemma
3.5.19 in place of the Broom lemma. �

And finally,

Proposition 3.5.21. Let p(x) be an NTP2 type, a ∈ p(M) ∪M and assume
that {φ(x, a)}∪p(x) does not divide. Then there is p ′(x) ∈ S(p(M)∪M) which does
not divide over M and {φ(x, a)} ∪ p(x) ⊂ p ′(x).

Proof. By compactness, it is enough to show that if p(x) ∪ {φ(x, ac)} `∨
i<nφi(x, aici) with a, ai ∈ p(M) and c, ci ∈ M, then p(x) ∪ {φi(x, aici)}

does not divide for some i < n. As in the proof of [CK12, Corollary 3.16],
let
(
ajaj0...a

j
n−1

)
j<ω

be a strict Morley sequence in tp(aa0...an−1), which ex-

ists by Lemma 3.5.20. Notice that
(
ajcaj0c0...a

j
n−1cn−1

)
j<ω

is still indiscernible

over M. Then p(x) ∪
{
φ(x, ajc)

}
j<ω

is consistent, which implies that p(x) ∪{
φi(x, a

j
ici)
}
j<ω

is consistent for some i < n. But then by Lemma 3.5.18,

p(x) ∪ {φi(x, aici)} does not divide over M — as wanted. �

3.6. NIP types

Let T be an arbitrary theory.

Definition 3.6.1. (1) A partial type p(x) over C is called NIP if there is
no φ(x, y) ∈ L, (ai)i∈ω with ai |= p(x) and (bs)s⊆ω such that |= φ(ai, bs)⇔ i ∈ s.

(2) The roles of a’s and b’s in the definition are interchangeable. It is easy to
see that any extension of an NIP type is again NIP, and that the type of
several realizations of an NIP type is again NIP.

(3) p(x) is NIP ⇔ dprk(p) < |T |+ ⇔ dprk(p) <∞ (see Definition 3.4.6).

Lemma 3.6.2. Let p(x) be an NIP type.
(1) Let ā = (aα)α<κ be an indiscernible sequence over A with aα from p(M),

and c be arbitrary. If κ = (|aα|+ |c|)
+, then some non-empty end segment

of ā is indiscernible over Ac.



3.6. NIP TYPES 81

(2) Let (āα)α<κ be mutually indiscernible (over ∅), with āα = (aαi)i<λ from
p(M). Assume that ā = (a0ia1i...)i<λ is indiscernible over A. Then
(āα)α<κ is mutually indiscernible over A.

Standard proofs of the corresponding results for NIP theories go through, see
e.g. [Adl08].

3.6.1. Dp-rank of a type is always witnessed by an array of its real-
izations. In [KS12b] Kaplan and Simon demonstrate that inside an NTP2 theory,
dp-rank of a type can always be witnessed by mutually indiscernible sequences of
realizations of the type. In this section we show that the assumption that the the-
ory is NTP2 can be omitted, thus proving the following general theorem with no
assumption on the theory.

Theorem 3.6.3. Let p(x) be an NIP partial type over C, and assume that
dprk(p) ≥ κ. Then there is C ′ ⊇ C, b |= p(x) and (āα)α<κ with āα = (aαi)i<ω
such that:

• aαi |= p(x) for all α, i
• (āα)α<κ are mutually indiscernible over C ′
• None of āα is indiscernible over bC ′.
• |C ′| ≤ |C|+ κ.

Corollary 3.6.4. It follows that dp-rank of a 1-type is always witnessed by
mutually indiscernible sequences of singletons.

We will use the following result from [CS10, Proposition 1.1]:

Fact 3.6.5. Let p(x) be a (partial) NIP type, A ⊆ p(M) and φ(x, c) given.
Then there is θ(x, d) with d ∈ p(M) such that:

(1) θ(A,d) = φ(A, c),
(2) θ(x, d) ∪ p(x)→ φ(x, c).

We begin by showing that the burden of a dependent type can always be wit-
nessed by mutually indiscernible sequences from the set of its realizations.

Lemma 3.6.6. Let p(x) be a dependent partial type over C of burden ≥ κ.
Then we can find

(
d̄α

)
α<κ

witnessing it, mutually indiscernible over C and with

d̄i ⊆ p(M) ∪ C.
Proof. Let λ be large enough compared to |C|. Assume that bdn(p) ≥ κ,

then by compactness we can find
(
b̄α, φα(x, yα), kα

)
i<n

such that b̄α = (bαi)i<λ,

{φα(x, bαi)}α<κ is kα-inconsistent and p(x) ∪
{
φα(x, bαf(α))

}
i<n

is consistent for
every f : κ→ λ, let af realize it. Set A = {af}f∈λκ ⊆ p(M).

By Fact 3.6.5, let θαi(x, dαi) be an honest definition of φα(x, bαi) over A
(with respect to p(x)), with dαi ∈ p(M). As λ is very large, we may assume that
θαi = θα.

Now, as θα(x, dαi)∪p(x)→ φα(x, bαi), it follows that there is some ψα(x, c) ∈
p such that letting χα(x, y1y2) = θα(x, y1) ∧ ψα(x, y2), {χ(x, dαicα)}i<ω is kα-
inconsistent.

On the other hand,
{
χα(x, dαf(α)cα)

}
α<κ

∪ p(x) is consistent, as the corre-
sponding af realizes it. Thus this array still witnesses that burden of p is at least
κ. �
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We will also need the following lemma.

Lemma 3.6.7. Let p(x) be an NIP type over M |= T

(1) Assume that a ∈ p(M) ∪M and φ(x, a) does not divide over M, then
there is a type q(x) ∈ S(p(M) ∪M) invariant under M-automorphisms
and with φ(x, a) ∈ q.

(2) Let p ′(x) ⊃ p(x) be an M invariant type such that p(ω) is an heir-coheir
over M. If (ai)i<ω is a Morley sequence in p ′ and indiscernible over
bM with b ∈ p(M), then tp(b/MI) has an M-invariant extension in
S(p(M) ∪M).

Proof. (1) As NIP type is in particular an NTP2 type, by Lemma 3.5.21 we
find a type q(x) ∈ S(p(M)) which doesn’t divide overM and such that φ(x, a) ∈ q.
It is enough to show that q(x) is Lascar-invariant over M. Assume that we have
an M-indiscernible sequence (ai)i<ωin p(M) such that φ(x, a0) ∧ ¬φ(x, a1) ∈ q.
But then {φ(x, a2i)∧ φ(x, a2i+1)}i<ω is inconsistent, so q divides over M — a
contradiction. Easy induction shows the same for a0 and a1 at Lascar distance n.

(2) By Lemma 3.5.18 and (1). �

Now for the proof of Theorem 3.6.3. The point is that first the array witnessing
dp-rank of our type p(x) can be dragged inside the set of realizations of p by Lemma
3.6.6. Then, combined with the use of Proposition 3.6.7 instead of the unrelativized
version, the proof of Kaplan and Simon [KS12b, Section 3.2] goes through working
inside p(M).

Problem 3.6.8. Is the analogue of Lemma 3.6.6 true for the burden of an
arbitrary type in an NTP2 theory?

We include some partial observations to justify it.

Proposition 3.6.9. The answer to the Problem 3.6.6 is positive in the follow-
ing cases:

(1) T satisfies dependent forking (so in particular if T is NIP).
(2) T is simple.

Proof. (1): Recall that if bdn(p) ≥ κ, then we can find (bi)i<κ, a |= p and
M ⊇ C such that a 6 |̂ d

M
bi and bi |̂

ist
M
b<i. Notice that p(x) still has the same

burden in the sense of a Skolemization TSk. Choose inductively Mi ⊇M∪ bi such
that Mi |̂

ist
M
b<i, let Mi = Sk(M∪ bi). Let φ(x, bi) be witness this dividing with

φ(x, y) an NIP formula, we can make b̄i mutually indiscernible. Now the proof of
Lemma 3.6.6 goes through.

(2): Let p(x) ∈ S(A), a |= p(x) and let (bi)i<κ independent over A, with
a 6 |̂

A
bi. Without loss of generality A = ∅. Consider tp(a/b0) and take I =

(ai)i<|T |+ such that a_I is a Morley sequence in it. By extension and automorphism
we may assume b>0 |̂

ab0
I, together with a |̂

b0
I implies b>0 |̂

b0
I, thus b>0 |̂ I

(as b>0 |̂ b0).
Assume that I is a Morley sequence over ∅, then by simplicity ai |̂ b0 for some

i, contradicting ai ≡b0 a and a 6 |̂ b0. Thus by indiscernibility a 6 |̂ a<n for some
n, while {a<n} ∪ b>0 is an independent set.

Repeating this argument inductively and using the fact that the burden of a
type in a simple theory is the supremum of the weights of its completions (Fact
3.4.10) allows to conclude. �
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3.6.2. NIP types inside an NTP2 theory. We give a characterization of
NIP types in NTP2 theories in terms of the number of non-forking extensions of its
completions.

Theorem 3.6.10. Let T be NTP2, and let p(x) be a partial type over C. The
following are equivalent:

(1) p is NIP.
(2) Every p ′ ⊇ p has boundedly many global non-forking extensions.

Proof. (1)⇒(2): A usual argument shows that a non-forking extension of
an NIP type is in fact Lascar-invariant (see Lemma 3.6.7), thus there are only
boundedly many such.

(2)⇒(1): Assume that p(x) is not NIP, that is there are I = (bi)i∈ω such that
such that for any s ⊆ ω, ps(x) = p(x)∪ {φ(x, bi)}i∈s ∪ {¬φ(x, bi)}i/∈s is consistent.
Let q(y) be a global non-algebraic type finitely satisfiable in I. Let M ⊇ IC be
some |IC|+-saturated model. It follows that q(ω) is a global heir-coheir over M
by Lemma 3.5.3. Take an arbitrary cardinal κ, and let J = (ci)i∈κ be a Morley
sequence in q over M. We claim that for any s ⊆ κ, ps(x) does not divide over M.
First notice that ps(x) is consistent for any s, as tp(J/M) is finitely satisfiable in
I. But as for any k < ω, (ckicki+1...ck(i+1)−1)i<ω is a Morley sequence in q(k),
together with Fact3.5.6 this implies that ps(x)|c0...ck−1 does not divide over M for
any k < ω, thus by indiscernibility of J, ps(x) does not divide over M, thus has a
global non-forking extension by Fact 3.5.6.

As there are only boundedly many types over M, there is some p ′ ∈ S(M)
extending p, with unboundedly many global non-forking extensions. �

Remark 3.6.11. (2)⇒(1) is just a localized variant of an argument from Chap-
ter 6.

3.7. Simple types

3.7.1. Simple and co-simple types. Simple types, to the best of our knowl-
edge, were first defined in [HKP00, §4] in the form of (2).

Definition 3.7.1. We say that a partial type p(x) ∈ S(A) is simple if it satisfies
any of the following equivalent conditions:

(1) There is no φ(x, y), (aη)η∈ω<ω and k < ω such that: {φ(x, aηi)}i<ω is
k-inconsistent for every η ∈ ω<ω and {φ(x, aη�i)}i<ω ∪p(x) is consistent
for every η ∈ ωω.

(2) Local character: If B ⊇ A and p(x) ⊆ q(x) ∈ S(B), then q(x) does not
divide over AB ′ for some B ′ ⊆ B, |B ′| ≤ |T |.

(3) Kim’s lemma: If {φ(x, b)} ∪ p(x) divides over B ⊇ A and (bi)i<ω is a
Morley sequence in tp(b/B), then p(x) ∪ {φ(x, bi)}i<ω is inconsistent.

(4) Bounded weight: Let B ⊇ A and κ ≥ i(2|B|)
+ . If a |= p(x) and (bi)i<κ is

such that bi |̂
f

B
b<i, then a |̂

d

B
bi for some i < κ.

(5) For any B ⊇ A, if b |̂
f

B
a and a |= p(x), then a |̂

d

B
b.

Proof.
(1)⇒(2): Assume (2) fails, then we choose φα(x, bα) ∈ q(x) kα-dividing over

A ∪ Bα, with Bα = {bβ}β<α ⊆ B, |Bα| ≤ |α| by induction on α < |T |+.
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Then w.l.o.g. φα = φ and kα = k. Now construct a tree in the usual
manner, such that {φ(x, aηi)}i<ω is inconsistent for any η ∈ ω<ω and
{φ(x, aη|i)}i<ω ∪ p(x) is consistent for any η ∈ ωω.

(2)⇒(3): Let I = (|T |+)∗, and (bi)i∈I be Morley over B in tp(b/B). Assume
that a |= p(x) ∪ {φ(x, bi)}i∈I. By (2), tp(a/(bi)i∈IB) does not divide
over B(bi)i∈I0 for some I0 ⊆ I, |I0| ≤ |T |. Let i0 ∈ I, i0 < I0. Then
(bi)i∈I0 |̂

f

B
bi0 , and thus φ(x, bi0) divides over BI0 - a contradiction.

(3)⇒(4): Assume not, then by Erdös-Rado and finite character find a Morley
sequence over B and a formula φ(x, y) such that |= φ(a, bi) and φ(x, bi)
divides over B, contradiction to (3).

(4)⇒(5): For κ as in (4), let I = (bi)i<κ be a Morley sequence over B, indiscernible
over Ba and with b0 = b. By (4), a |̂

d

B
bi for some i < κ, and so

a |̂
d

B
b by indiscernibility.

(5)⇒(1): Let (bη)η∈ω<ω witness the tree property of φ(x, y), such that {φ(x, bη|i)}i<ω∪
p(x) is consistent for every η ∈ ωω. Then by Ramsey and compact-
ness we can find (bi)i≤ω indiscernible over a, |= φ(a, bi) and φ(x, bi)
divides over b<iA. Taking B = A ∪ {bi}i<ω we see that a 6 |̂ d

B
bω,

while bω |̂
f

B
a (as it is finitely satisfiable in B by indiscernibility) - a

contradiction to (5).
�

Remark 3.7.2. Let p(x) ∈ S(A) be simple.
(1) Any q(x) ⊇ p(x) is simple.
(2) Let p(x) ∈ S(A) be simple and C ⊆ p(M). Then tp(C/A) is simple.

Proof. (1): Clear, for example by (1) from the definition.
(2): Let C = (ci)i≤n, and we show that for any B ⊇ A, if b |̂

f

B
C, then

C |̂
d

B
b by induction on the size of C. Notice that b |̂

f

Bc<n
cn and cn |= p, thus

cn |̂
d

Bc<n
b. By the inductive assumption c<n |̂

d

B
b, thus c≤n |̂

d

B
b. �

We give a characterization in terms of local ranks.

Proposition 3.7.3. The following are equivalent:
(1) p(x) is simple in the sense of Definition 3.7.1.
(2) D(p,∆, k) < ω for any finite ∆ and k < ω.

Proof. Standard proof goes through. �

Lemma 3.7.4. Let p(x) ∈ S(A) be simple, a |= p(x) and B ⊇ A arbitrary. Then
a |̂

f

B0
B for some |B0| ≤ |T |+.

Proof. Standard proof using ranks goes through. �

It follows that in the Definition 3.7.1 we can replace everywhere “dividing” by
“forking”.

Lemma 3.7.5. Let p(x) ∈ S(A) be simple. If A is an extension base, then
{φ(x, c)} ∪ p(x) forks over A if and only if it divides over A.
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Proof. Assume that {φ(x, c)} ∪ p(x) does not divide over A, but {φ(x, c)} ∪
p(x) `

∨
i<nφi(x, ci) and each of φi(x, ci) divides over A. As A is an ex-

tension base, let (cic0,i...cn−1,i) be a Morley sequence in tp(cc0...cn−1/A). As
p(x) ∪ {φ(x, c)} does not divide over A, let a |= p(x) ∪ {φ(x, ci)}, but then p(x) ∪
{φi(x, ci,j)}j<ω is consistent for some i < n, contradicting Kim’s lemma. �

Problem 3.7.6. Let q(x) be a non-forking extension of a complete type p(x),
and assume that q(x) is simple. Does it imply that p(x) is simple?

Unlike stability or NIP, it is possible that φ(x, y) does not have the tree prop-
erty, while φ∗(x ′, y ′) = φ(y ′, x ′) does. This forces us to define a dual concept.

Definition 3.7.7. A partial type p(x) over A is co-simple if it satisfies any of
the following equivalent properties:

(1) No formula φ(x, y) ∈ L(A) has the tree property witnessed by some
(aη)η∈ω<ω with aη ⊆ p(M).

(2) Every type q(x) ∈ S(BA) with B ⊆ p(M) does not divide over AB ′ for
some B ′ ⊆ B, |B ′| ≤ (|A|+ |T |)

+.
(3) Let (ai)i<ω ⊆ p(M) be a Morley sequence over BA, B ⊆ p(M) and

φ(x, y) ∈ L(A). If φ(x, a0) divides over BA then {φ(x, ai)}i<ω is incon-
sistent.

(4) Let B ⊆ p(M) and κ ≥ i(2|B|+|A|)
+ . If (bi)i<κ ⊆ p(M) is such that

bi |̂
f

AB
b<i and a arbitrary, then a |̂

d

AB
bi for some i < κ.

(5) For B ⊆ p(M), if a |= p and a |̂
f

AB
b, then b |̂

d

AB
a.

Proof. Similar to the proof in Definition 3.7.1. �

Remark 3.7.8. It follows that if p(x) is a co-simple type over A and B ⊆ p(M),
then any q(x) ∈ S(AB) extending p is co-simple (while adding the parameters from
outside of the set of solutions of p may ruin co-simplicity).

It is easy to see that T is simple ⇔ every type is simple ⇔ every type is co-
simple. What is the relation between simple and co-simple in general?

Example 3.7.9. There is a co-simple type over a model which is not simple.

Proof. Let T be the theory of an infinite triangle-free random graph, this
theory eliminates quantifiers. Let M |= T , m ∈ M and consider p(x) = {xRm} ∪
{¬xRa}a∈M\{m} - a non-algebraic type over M. As there can be no triangles, if
a, b |= p(x) then ¬aRb. It follows that for any A ⊆ p(M) and any B, B 6 |̂ d

M
A⇔ B ∩ A 6= ∅. So p(x) is co-simple, for example by checking the bounded weight

(Definition 3.7.7(4)).
For each α < ω, take (b ′α,ib

′′
α,i)i<ω such that b ′α,iRb

′′
α,j for all i 6= j, and

no other edges between them or to elements of M. Then {xRb ′α,i ∧ xRb
′′
α,i}i<ω is

2-inconsistent for every α, while p(x)∪
{
xRb ′α,η(α) ∧ xRb

′′
α,η(α)

}
α<ω

is consistent
for every η : ω→ ω. Thus p(x) is not simple by Definition 3.7.1(1). �

However, this T has TP2.

Problem 3.7.10. Is there a simple, non co-simple type in an arbitrary theory?



86 3. THEORIES WITHOUT THE TREE PROPERTY OF THE SECOND KIND

3.7.2. Simple types are co-simple in NTP2 theories. In this section we
assume that T is NTP2 (although some lemmas remain true without this restric-
tion). In particular, we will write |̂ to denote non-forking/non-dividing when
working over an extension base as they are the same by Fact 3.5.6(3).

Lemma 3.7.11. Weak chain condition: Let A be an extension base, p(x) ∈ S(A)
simple. Assume that a |= p(x), I = (bi)i<ω is a Morley sequence over A and
a |̂

A
b0. Then there is an aA-indiscernible J ≡Ab0 I satisfying a |̂

A
J .

Proof. Let a |= φ(x, b0), then {φ(x, b0)} ∪ p(x) does not divide over A.

Claim. {φ(x, b0)∧ φ(x, b1)} ∪ p(x) does not divide over A.

Proof. As p(x) satisfies Definition 3.7.1(3), (b2ib2i+1)i<ω is a Morley se-
quence over A and {φ(x, bi)}i<ω ∪ p(x) is consistent. �

By iterating the claim and compactness, we conclude that
⋃
i<ω p(x, bi) does

not divide over A, where p(x, b0) = tp(a/b0). As A is an extension base and
forking equals dividing, there is a ′ |=

⋃
i<ω p(x, bi) satisfying a

′ |̂
A
I. By Ramsey,

compactness and the fact that a ′bi ≡A ab0 we find a sequence as wanted. �

Remark 3.7.12. If fact, in Chapter 2 we had demonstrated that in an NTP2
theory this lemma holds over extension bases with I just an indiscernible sequence,
not necessarily Morley.

Lemma 3.7.13. Let A be an extension base, p ∈ S(A) simple. For i < ω, Let
āi be a Morley sequence in p(x) over A starting with ai, and assume that (ai)i<ω
is a Morley sequence in p(x). Then we can find b̄i ≡Aai āi such that (b̄i)i<ω are
mutually indiscernible over A.

Proof. W.l.o.g. A = ∅.
First observe that by simplicity of p, {ai}i<ω is an independent set.
For i < ω, we choose inductively b̄i such that:
(1) b̄i ≡ai āi
(2) b̄i is indiscernible over a>ib̄<i
(3) a>i+1b̄≤i |̂ ai+1

(4) a≥i+1 |̂ b̄≤i

Base step: As a>0 |̂ a0 and tp(a>0) is simple by Remark 3.7.2 and Lemma
3.7.11, we find an a>0-indiscernible b̄0 ≡a0 ā0 with a>0 |̂ b̄0.

Induction step: Assume that we have constructed b̄0, ..., b̄i−1. By (3) for i− 1
it follows that a>ib̄<i |̂ ai. Again by Remark 3.7.2 and Lemma 3.7.11 we find an
a>ib̄<i-indiscernible sequence b̄i ≡ai āi such that a>ib̄<i |̂ b̄i.

We check that it satisfies (3): As all tuples are inside p(M), we can use
symmetry, transitivity and |̂

d
= |̂

f freely. And so, a>i+1ai+1b̄<i |̂ b̄i ⇒
a>i+1b̄<i |̂

ai+1
b̄i + a>i+1b̄<i |̂ ai+1(as a>i+1 |̂ ai+1 and b̄<i |̂ a≥i+1 by (4)

for i−1)⇒ a>i+1b̄<i |̂ b̄iai+1⇒ a>i+1b̄<i |̂
b̄i
ai+1 + b̄i |̂ ai+1⇒ a>i+1b̄≤i |̂ ai+1.

We check that it satisfies (4): As a>ib̄<i |̂ b̄i ⇒ a>i |̂
b̄<i

b̄i + a>i |̂ b̄<i

by (4) for i− 1 ⇒ a>i |̂ b̄≤i.
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Having chosen (b̄i)i<ω we see that they are almost mutually indiscernible by
(1) and (2). Conclude by Lemma 3.2.3. �

Lemma 3.7.14. Let T be NTP2, A an extension base and p(x) ∈ S(A) simple.
Assume that φ(x, a) divides over A, with a |= p(x). Then there is a Morley sequence
over A witnessing it.

Proof. As A is an extension base, let M ⊇ A be such that M |̂
f

A
a. Then

φ(x, a) divides over M. By Fact 3.5.6(1), there is a Morley sequence (ai)i<ω over
M witnessing it (in particular (ai)i<ω ⊆ p(M)). We show that it is actually a
Morley sequence over A. Indiscernibility is clear, and we check that ai |̂

A
a<i by

induction. As ai |̂
M
a<i, a<i |̂

M
ai by simplicity of tp(a<i/M). Noticing that

M |̂
A
ai, we conclude a<i |̂

A
ai, so again by simplicity ai |̂

A
a<i. �

Proposition 3.7.15. Let T be NTP2, A an extension base and p(x) ∈ S(A)
simple. Assume that a |= p and a |̂

f

A
b. Then b |̂

d

A
a.

Proof. Assume that there is φ(x, a) ∈ L(Aa) such that |= φ(b, a) and φ(x, a)
divides over A. Let (ai)i<ω be a Morley sequence over A starting with a. Assume
that {φ(x, ai)}i<ω is consistent. Let ā0 be a Morley sequence witnessing that
φ(x, a0) k-divides over A (exists by Lemma 3.7.14), and let āi be its image under
an A-automorphism sending a0 to ai. By Lemma 3.7.13, we find ā ′i ≡aiA āi, such
that (ā ′i)i<ω are mutually indiscernible. But then we have that {φ(x, ai,η(i))}i<ω
is consistent for any η ∈ ωω, while {φ(x, ai,j)}j<ω is k-inconsistent for any i < ω
— contradiction to NTP2.

Now let (ai)i<ω be a Morley sequence over A starting with a and indiscernible
over Ab. Then clearly b |= {φ(x, ai)}i<ω for any φ(x, a) ∈ tp(b/aA), so by the
previous paragraph b |̂

d

A
a. �

Lemma 3.7.16. Let p(x) be a partial type over A. Assume that p(x) is not
co-simple over A. Then there is some M ⊇ A, a |= p(x) and b such that a |̂

u

M
b

but b 6 |̂ d
M
a.

Proof. So assume that p(x) is not co-simple over A, then there is an L(A)-
formula φ(x, y) and (aη)η∈ω<ω ⊆ p(M) witnessing the tree property. Let TSk be
a Skolemization of T , then of course φ(x, y) and aη still witness the tree property.
As in the proof of (5)⇒(1) in Definition 3.7.7, working in the sense of TSk, we can
find an Ab-indiscernible sequence (ai)i<ω+1 in p(x) such that φ(x, ai) divides over
Aa<i and b |= {φ(x, ai)}i<ω+1. Let I = (ai)i<ω and Sk(AI) =M |= T . It follows
that aω |̂

u

M
b (by indiscernibility) and that b 6 |̂ d

M
aω (as M ∈ acl(Aa<ω)) —

also the sense of T , as wanted. �

Theorem 3.7.17. Let T be NTP2, A an arbitrary set and assume that p(x)
over A is simple. Then p(x) is co-simple over A.

Proof. If p(x) over A is not co-simple over A, then by Lemma 3.7.16 we find
some M ⊇ A, a |= p and b such that a |̂

u

M
b, but b 6 |̂ d

M
a. As M is an extension

base, it follows by Proposition 3.7.15 that tp(a/M) is not simple, thus p(x) is not
simple by Remark 3.7.2(1) — a contradiction. �

Corollary 3.7.18. Let T be NTP2 and p(x) ∈ S(A) simple.
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(1) If a |= p(x) then a |̂
A
b⇔ b |̂

A
a

(2) Right transitivity: If a |= p(x), B ⊇ A, a |̂
A
B and a |̂

B
C then a |̂

A
C.

3.7.3. Independence and co-independence theorems.
In [Kim01] Kim demonstrates that if T has TP1, then the independence theorem

fails for types over models, assuming the existence of a large cardinal. We give a
proof of a localized and a dual versions, showing in particular that the large cardinal
assumption is not needed.

Definition 3.7.19. Let p(x) be (partial) type over A.
(1) We say that p(x) satisfies the independence theorem if for any b1 |̂

f

A
b2

and c1 ≡
Lstp
A c2 ⊆ p(M) such that c1 |̂

f

A
b1 and c2 |̂

f

A
b2, there is some

c |̂
f

A
b1b2 such that c ≡b1A c1 and c ≡b2A c2.

(2) We say that p(x) satisfies the co-independence theorem if for any b1 |̂
f

A
b2

and c1 ≡Lstp
A c2 |= p such that b1 |̂

f

A
c1 and b2 |̂

f

A
c2 , there is some

c |= p such that b1b2 |̂
f

A
c and c ≡Ab1 c1, c ≡Ab2 c2.

Of course, both the independence and the co-independence theorems hold in
simple theories, but none of them characterizes simplicity.

Proposition 3.7.20. Let T be NTP2 and p(x) is a partial type over A.
(1) If every p ′(x) ⊇ p with p ′(x) ∈ S(M),M ⊇ A satisfies the co-independence

theorem, then it is simple.
(2) If p(x) satisfies the independence theorem, then it is co-simple.

Proof. (1) Without loss of generality A = ∅. Assume that p is not simple,
then by Fact 3.4.12 there are some formula φ(x, y) , (aη)η∈ω<ω such that:

•
{
φ(x, aη|i)

}
i∈ω ∪ p(x) is consistent for every η ∈ ω

ω.
• φ(x, aη)∧ φ(x, aη ′) is inconsistent for any incomparable η, η ′ ∈ ω<ω.

By compactness we can find a similar tree of size κ large enough. Let TSk be some
Skolemization of T , and we work in the sense of TSk.

Claim. There is a sequence (cidi)i∈ω satisfying:
(1) {φ(x, ci)}i∈ω ∪ p(x) is consistent.
(2) ci, di start an infinite sequence indiscernible over c<id<i.
(3) φ(x, di)∧ φ(x, dj) is inconsistent for any i 6= j ∈ ω.

Proof. Why? By induction we let ci = as1...si−1si and di = as1...si−1ti for
some si 6= ti ∈ κ such that there is a c<id<i-indiscernible sequence starting with
as1...si−1si , as1...si−1ti (exists by Erdos-Rado as κ is large enough), so we get (2).
We get (1) and (3) by the assumption on (aη)η∈κ<κ . �

By compactness and Ramsey we can find a and (cidi)i≤ω+1 indiscernible over
a, satisfying (1)–(3) and such that a |= p(x) ∪ {φ(x, ci)}.

Let M = Sk(cidi)i<ω, a model of TSk. Then we have cω+1 |̂
u

M
a and

dω |̂
u

M
cω+1 by indiscernibility. As cωdω start anM-indiscernible sequence, there

is σ ∈ Aut(M /M) sending cω to dω. Let a ′ = σ(a), then a ′ ≡Lstp
M a, dω |̂

u

M
a ′

(as cω |̂
u

M
a by indiscernibility) and φ(a ′, dω). But φ(x, cω+1) ∧ φ(x, dω) is

inconsistent by (3)+(2) — so the co-independence theorem fails for p ′ = tp(a/M).
(2) Similar. �
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Now we will show that in NTP2 theories simple types satisfy the independence
theorem over extension bases. We will need the following fact from Chapter 2.

Fact 3.7.21. Let T be NTP2 and M |= T . Assume that c |̂
M
ab, b |̂

M
a,

b ′ |̂
M
a, b ≡M b ′. Then there exists c ′ |̂

M
ab ′ and c ′b ′ ≡M cb, c ′a ≡M ca.

Proposition 3.7.22. Let T be NTP2 and p(x) a simple type overM |= T . Then
it satisfies the independence theorem: assume that e1 |̂

M
e2, di |̂

M
ei, d1 ≡M

d2 |= p(x). Then there is d |̂ e1e2 with d ≡eiA di.

Proof. First we find some e ′1 |̂
M
d2e2 and such that e ′1d2 ≡M e1d1 (Let

σ ∈ Aut(M /M) be such that σ(d1) = d2, then σ(e1)d2 ≡M e1d1. As e1 |̂
M
d1

by simplicity of tp(d1/M), σ(e1) |̂ d2. Let e ′1 realize a non-forking extension
to d2e2). Then we also have d2 |̂

M
e ′1e2 (by transitivity and symmetry using

simplicity of tp(d2/M)).
Applying Fact 3.7.21 with a = e2, b = e ′1, b

′ = e1, c = d2 we find some
d |̂

M
e1e2, de1 ≡M d2e

′
1 ≡M d1e1 and de2 ≡ d2e2 — as wanted. �

We conclude with the main theorem of the section.

Theorem 3.7.23. Let T be NTP2 and p(x) a partial type over A. Then the
following are equivalent:

(1) p(x) is simple (in the sense of Definition 3.7.1).
(2) For any B ⊇ A, a |= p and b, a |̂

f

A
b if and only if b |̂

f

A
a.

(3) Every extension p ′(x) ⊇ p(x) to a modelM ⊇ A satisfies the co-independence
theorem.

Proof. (1) is equivalent to (2) is by Definitions 3.7.1 and Corollary 3.7.18.
(1) implies (3): By Proposition 3.7.22 and Corollary 3.7.18.
(3) implies (1) is by Proposition 3.7.20. �

Problem 3.7.24. Is every co-simple type simple in an NTP2 theory?

We point out that at least every co-simple stably embedded type (defined over a
small set) is simple. Recall that a partial type p(x) defined over A is called stably
embedded if for any φ(x̄, c) there is some ψ(x̄, y) ∈ L(A) and d ∈ p(M) such that
p(M)n ∩φ(x̄, c) = p(M)n ∩ψ(x̄, d). If p(x) happens to be defined by finitely many
formulas, it is easy to see by compactness that ψ(x̄, y) can be chosen to depend
just on φ(x̄, y), and not on c. But for an arbitrary type this is not true.

Proposition 3.7.25. Let T be NTP2. Let p(x) be a co-simple type over A and
assume that p is stably embedded. Then p(x) is simple.

Proof. Assume p(x) is not simple, and let (aη)η∈ω<ω , k and φ(x, y) witness
this. We may assume in addition that (aη) is an indiscernible tree over A (that is,
ss-indiscernible in the terminology of [KKS12], see Definition 3.7 and the proof of
Theorem 6.6 there).

By the stable embeddedness assumption, there is some ψ(x, z) ∈ L(A) and b ⊆
p(M) such that ψ(x, b)∩p(M) = φ(x, a∅)∩p(M). It follows by the indiscernibility
over A that for every η ∈ ω<ω there is bη ⊆ p(M) satisfying ψ(x, bη) ∩ p(M) =
φ(x, aη) ∩ p(M).
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As {φ(x, a∅i)}i<ω is k-inconsistent, it follows that {ψ(x, b∅i)}i<ω ∪ p(x) is k-
inconsistent, thus {ψ(x, b∅i)}i<ω ∪ {χ(x)} is k-inconsistent for some χ(x) ∈ p by
compactness and indiscernibility. Again by the indiscernibility over A we have that
{ψ(x, bηi)}i<ω ∪ {χ(x)} is k-inconsistent for every η ∈ ω<ω. It is now easy to see
that ψ ′(x, z) = ψ(x, z) ∧ χ(x) and (bη)η∈ω<ω witness that p(x) is not co-simple
over A. �

Remark 3.7.26. If p(x) is actually a definable set, the argument works in an
arbitrary theory since instead of extracting a sufficiently indiscernible tree (which
seems to require NTP2), we just use the uniformity of stable embeddedness given
by compactness.

3.8. Examples

In this section we present some examples of NTP2 theories. But first we state
a general lemma which may sometimes simplify checking NTP2 in particular ex-
amples.

Lemma 3.8.1.
(1) If (āα, φα,0(x, yα,0)∨φα,1(x, yα,1), kα)α<κ is an inp-pattern, then (āα, φα,f(α)(x, yα,f(α)),

kα)α<κ is an inp-pattern for some f : κ→ {0, 1}.
(2) Let (āα, φα(x, yα), kα)α<κ be an inp-pattern and assume that φα(x, aα0)↔

ψα(x, bα) for α < κ. Then there is an inp-pattern of the form
(
b̄α, ψα(x, zα), kα

)
α<κ

.

3.8.1. Adding a generic predicate. Let T be a first-order theory in the
language L. For S(x) ∈ L we let LP = L ∪ {P(x)} and T0P,S = T ∪ {∀x (P(x)→ S(x))}.

Fact 3.8.2. [CP98] Let T be a theory eliminating quantifiers and ∃∞. Then:
(1) T0P,S has a model companion TP,S, which is axiomatized by T together with

∀z̄
[
∃x̄φ(x̄, z̄)∧ (x̄ ∩ aclL(z̄) = ∅)∧

∧
i<n S(xi)∧

∧
i6=j<n xi 6= xj

]→[
∃x̄φ(x̄, z̄)∧

∧
i∈I P(xi)∧

∧
i/∈I ¬P(xi)

]
for every formula φ(x̄, z̄) ∈ L, x̄ = x0...xn−1 and every I ⊆ n. It is
possible to write it in first-order due to the elimination of ∃∞.

(2) aclL(a) = aclLP(a)
(3) a ≡LP b ⇔ there is an isomorphism between LP structures f : acl(a) →

acl(b) such that f(a) = b.
(4) Modulo TP,S, every formula ψ(x̄) is equivalent to a disjunction of formulas

of the form ∃z̄φ(x̄, z̄) where φ(x̄, z̄) is a quantifier-free LP formula and for
any ā, b̄, if |= φ(ā, b̄), then b̄ ∈ acl(ā).

Theorem 3.8.3. Let T be geometric (that is, the algebraic closure satisfies the
exchange property, and T eliminates ∃∞) and NTP2. Then TP is NTP2.

Proof. Denote a |̂
a

c
b ⇔ a /∈ acl(bc) \ acl(c). As T is geometric, |̂

a is a
symmetric notion of independence, which we will be using freely from now on.

Let (āi, φ(x, y), k)i<ω be an inp-pattern, such that (āi)i<ω is an indiscernible
sequence and āi’s are mutually indiscernible in the sense of LP, and φ an LP-
formula.

Claim. For any i, {aij}j<ω is an |̂
a-independent set (over ∅) and aij /∈ acl(∅).
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Proof. By indiscernibility and compactness. �

Let A =
⋃
i<ω āi.

Claim. There is an infinite A-indiscernible sequence (bt)t<ω such that bt |=
{φ(x, ai0)}i<ω for all t < ω.

Proof. First, there are infinitely many different bt’s realizing {φ(x, ai0)}i<ω,
as {φ(x, ai0)}0<i<ω ∪ {φ(x, a0j)} is consistent for any j < ω and {φ(x, a0j)}j<ω is
k-inconsistent. Extract an A-indiscernible sequence from it. �

Let pi(x, ai0) = tpL(b0/ai0).

Claim. For some/every i < ω, there is b |=
⋃
j<ω pi(x, aij) such that in

addition b /∈ acl(A).

Proof. For any N < ω, let

qNi (x0...xN−1, ai0) =
⋃
n<N

pi(xn, ai0) ∪ {xn1 6= xn2 }n1 6=n2<N

As b0...bN−1 |=
⋃
i<ω q

N
i (x0...xN−1, ai0) and T is NTP2, there must be some

i < ω such that
⋃
j<ω q

N
i (x0...xN−1, aij) is consistent for arbitrary large N (and

by indiscernibility this holds for every i). Then by compactness we can find b |=⋃
j<ω pi(x, aij) such that in addition b /∈ acl(A). �

Work with this fixed i. Notice that b0ai0 ≡L baij for all j ∈ ω.

Claim. The following is easy to check using that |̂
a satisfies exchange.

(1) acl(A) ∩ acl(aijb) = acl(aij).
(2) acl(aijb) ∩ acl(aikb) = acl(b) for j 6= k.

Now we conclude as in the proof of [CP98, Theorem 2.7]. That is, we are
given a coloring P on āi. Extend it to a Pi-coloring on acl(aijb) such that aijb
realizes tpLP(ai0b0), and by the claim all Pi’s are consistent. Thus there is some
b ′ such that b0ai0 ≡LP b ′aij for all j ∈ ω, in particular b ′ |= {φi(x, aij)} — a
contradiction. �

Example 3.8.4. Adding a (directed) random graph to an o-minimal theory is
NTP2.

Problem 3.8.5. Is it true without assuming exchange for the algebraic closure?

3.8.2. Valued fields. In this section we are going to prove the following the-
orem:

Theorem 3.8.6. Let K̄ = (K, Γ, k, v : K→ Γ, ac : K→ k) be a Henselian valued
field of characteristic (0, 0) in the Denef-Pas language. Let κ = κ1inp(k) × κ1inp(Γ).
Then κ1inp(K) < R(κ+2, ∆) for some finite set of formulas ∆ (see Definition 3.2.4).
In particular:

(1) If k is NTP2, then K̄ is NTP2 (as every ordered abelian group is NIP by
[GS84], thus κinp(Γ) <∞ and NTP2 follows by Lemma 3.4.2).

(2) If k and Γ are strong (of finite burden), then K̄ is strong (resp. of finite
burden).

The “in particular” part follows by 3.3.8.
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Example 3.8.7. (1) Hahn series over pseudo-finite fields are NTP2.
(2) In particular, let K =

∏
p primeQp/U with U a non-principal ultra-filter.

Then k is pseudo-finite, so has IP by [Dur80]. And Γ has SOP of course.
It is known that the valuation rings of Qp are definable in the pure field
language uniformly in p (see e.g. [Ax65]), thus the valuation ring is
definable in K in the pure field language, so K has both IP and SOP in
the pure field language. By Theorem 3.8.6 it is strong of finite burden,
even in the larger Denef-Pas language.

Corollary 3.8.8. [Shed] If k and Γ are strongly dependent, then K is strongly
dependent.

Proof. By Delon’s theorem [Del81], if k is NIP, then K is NIP. Conclude by
Theorem 3.8.6 and Fact 3.4.8. �

We start the proof with a couple of easy lemmas about the behavior of v(x)
and ac(x) on indiscernible sequences which are easy to check.

Lemma 3.8.9. Let (ci)i∈I be indiscernible. Consider function (i, j) 7→ v(cj−ci)
with i < j. It satisfies one of the following:

(1) It is strictly increasing depending only on i (so the sequence is pseudo-
convergent).

(2) It is strictly decreasing depending only on j (so the sequence taken in the
reverse direction is pseudo-convergent).

(3) It is constant (we’ll call such a sequence “constant”).

Contrary to the usual terminology we do not exclude index sets with a maximal
element.

Lemma 3.8.10. Let (ci)i∈I be an indiscernible pseudo-convergent sequence.
Then for any a there is some h ∈ Ī ∪ {+∞,−∞} (where Ī is the Dedekind clo-
sure of I) such that (taking c∞ such that I_ c∞ is indiscernible):
For i < h: v(c∞ − ci) < v(a − c∞),v(a − ci) = v(c∞ − ci) and ac(a − ci) =

ac(c∞ − ci).
For i > h: v(c∞ − ci) > v(a − c∞), v(a − ci) = v(a − c∞) and ac(a − ci) =

ac(a− c∞).

Notice that in fact there is a finite set of formulas ∆ such that these lemmas
are true for ∆-indiscernible sequences. Fix it from now on, and let δ = R(κ+ 2, ∆)
for κ = κk × κΓ with κk = κ1inp(k) and κΓ = κ1inp(Γ).

Lemma 3.8.11. In K, there is no inp-pattern
(
φα(x, yα), d̄α, kα

)
α<δ

with mu-
tually indiscernible rows such that x is a singleton and φα(x, yα) = χα(v(x −
y), yΓα)∧ ρα(ac(x− y), y

k
α), where χα ∈ LΓ and ρα ∈ Lk.

Proof. Assume otherwise, and let dαi = cαid
Γ
αid

k
αi where cαi ∈ K corre-

sponds to y, dΓαi ∈ Γ corresponds to yΓα and dkαi ∈ k corresponds to ykα. By the
choice of δ, there is a ∆-indiscernible sub-sequence of (cα0)α<δ of length κ+2. Take
a sub-array consisting of rows starting with these elements – it is still an inp-pattern
of depth κ+2 – and replace our original array with it. Let c−∞ and c∞ be such that
c−∞ _ (cα0)α<κ _ c∞ is ∆-indiscernible and

(
d̄α

)
α<κ

is a mutually indiscernible
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array over c−∞c∞ (so either find c∞ by compactness if κ is infinite, or just let it
be cκ−1,0 and replace our array by

(
d̄α

)
α<κ−1

). Let a |= {φα(x, dα0)}α<κ+1.

Case 1. (cα0) is pseudo-convergent. Let h ∈ {−∞} ∪ κ + 1 ∪ {∞} be as given
by Lemma 3.8.10.

Case 1.1. Assume 0 < h. Then v(a − c00) = v(c∞ − c00), ac(a − c00) =
ac(c∞ − c00). But then actually c∞ |= φ(x, d00), and by indiscernibility of the
array over c∞, c∞ |= {φ(x, d0i)}i<ω — a contradiction.

Case 1.2 : Thus v(a − cα0) = v(a − c∞), ac(a − cα0) = ac(a − c∞) and
v(a− c∞) < v(c∞ − cα0) for all 0 < α < κ+ 1.

Let χ ′α(x ′, eΓαi) := χα(x
′, dΓαi)∧x

′ < v(c∞−cαi) with eΓαi = d
Γ
αi∪v(c∞−cαi).

Finally, for α < κΓ let fΓαi =
⋃
β<κk

eκk×α+β,i and pα(x ′, fΓαi) =
{
χ ′β(x

′, eΓκk×α+β,i)
}
β<κk

.
As
(
fΓαi
)
is a mutually indiscernible array in Γ ,

{
pα(x

′, fΓα0)
}
α<κΓ

is realized by
v(a − c∞) and κ1inp(Γ) = κΓ , there must be some α < κΓ and aΓ ∈ Γ such that
(unwinding) aΓ |=

{
χ ′β(x

′, eΓκk×α+β,i)
}
β<κk,i<ω

.
Analogously letting χ ′β(x

′, ekβi) := ρκk×α+β(x
′, dkκk×α+β,i), noticing that (e

k
βi)β<κk,i<ω

is an indiscernible array in k and κk = κinp(k), there must be some aρ ∈ k and
β < κk such that aρ |= {χ ′β(x

′, ekβi)}i<ω.
Finally, take a ′ ∈ K with v(a ′ − c∞) = aΓ ∧ ac(a ′ − c∞) = aρ and let

γ = κk × α+ β. As aΓ < v(c∞ − cγi) it follows that v(a ′ − cγi) = v(a ′ − c∞) and
ac(a ′ − cγi) = ac(a

′ − c∞). But then a ′ |= {φγ(x, dγi)}i<ω – a contradiction.
Case 2: (cα0 ) is decreasing - reduces to the first case by reversing the order of

rows.
Case 3: (cα0 ) is constant.
If v(a − cα0) < v(c∞ − cα0) (= v(cβ0 − cα0) for β 6= α) for some α, then

v(a− cα0) = v(a− cβ0) = v(a− c∞) for any β, and ac(a− cα0) = ac(a− c∞) for
all α’s and it falls under case 1.2.

Next, there can be at most one α with v(a − cα0) > v(c∞ − cα0) (if also
v(a − cβ0) > v(c∞ − cβ0) for some β > α then v(cβ0 − cα0) = v(a − cα0) >
v(c∞ − cα0), a contradiction). Throw the corresponding row away and we are left
with the case v(a − cα0) = v(c∞ − cα0) = v(a − c∞) for all α < κ. It follows by
indiscernibility that v(a−c∞) = v(c∞−cαi) for all α, i. Notice that it follows that
ac(a− cα0) 6= ac(c∞ − cα0) and ac(a− cα0) = ac(a− c∞) + ac(c∞ − cα0).

Let ρ ′α(x ′, ekαi) := ρα(x
′ − ac(c∞ − cαi), d

k
αi) ∧ x ′ 6= ac(c∞ − cαi) with

ekαi = dkαi ∪ ac(c∞ − cαi). Notice that ac(a − c∞) |=
{
ρ ′α(x

′, ekα0)
}

and that(
ekαi
)
is a mutually indiscernible array in k. Thus there is some α < κ and

ak |=
{
ρ ′α(x

′, ekαi)
}
i<ω

.
Take a ′ ∈ K such that v(a ′ − c∞) = v(a − c∞) ∧ ac(a ′ − c∞) = ak. By

the choice of ak we have that v(a ′ − c∞) = v(a − c∞) = v(c∞ − cαi) and that
ac(a ′ − c∞) 6= ac(c∞ − cαi), thus v(a ′ − cαi) = v(a − c∞) and ac(a ′ − cαi) =
ak + ac(c∞ − cαi). It follows that a ′ |= {φα(x, dαi)}i<ω — a contradiction. �

Lemma 3.8.12. In K, there is no inp-pattern
(
φα(x, yα), d̄α, kα

)
α<δ

such that

x is a singleton and φα(x, yα) = χα(v(x − y1), ..., v(x − yn), y
Γ
α) ∧ ρα(ac(x −

y1), ..., ac(x− yn), y
k
α), where χα ∈ LΓ and ρα ∈ Lk.
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Proof. We prove it by induction on n. The base case is given by Lemma
3.8.11. So assume that we have proved it for n−1, and let

(
φα(x, yα), d̄α, kα

)
α<δ

be an inp-pattern with φα(x, yα) = χα(v(x − y1), ..., v(x − yn), y
Γ
α) ∧ ρα(ac(x −

y1), ..., ac(x− yn), y
k
α) and dαi = c1αi...c

n
αid

Γ
αid

k
αi.

So let a |= {φα(x, dα0)}α<δ. Fix some α < δ.
Case 1: v(a− c1α0) < v(c

n
α0 − c

1
α0).

Then v(a− c1α0) = v(a− cnα0) and ac(a− c1α0) = ac(a− cnα0). We take

φ ′α(x, d
′
αi) =

(
χα(v(x− c

1
αi), ..., v(x− c

1
αi), d

Γ
αi)∧ v(x− c

1
α0) < v(c

n
αi − c

1
αi)
)

∧ρα(ac(x− c
1
αi), ..., ac(x− c

1
αi), d

ρ
αi)

and d ′αi = dαi ∪ v(cnαi − c1αi).
Case 2: v(a− c1α0) > v(c

n
α0 − c

1
α0).

Then v(a− cnα0) = v(c
n
α0 − c

1
α0) and ac(a− cnα0) = ac(c

n
α0 − c

1
α0). Take

φ ′α(x, d
′
αi) =

(
χα(v(x− c

1
αi), ..., v(c

n
α0 − c

1
α0), d

Γ
αi)∧ v(x− c

1
α0) > v(c

n
αi − c

1
αi)
)

∧ρα(ac(x− c
1
αi), ..., ac(c

n
α0 − c

1
α0), d

ρ
αi)

and d ′αi = dαi ∪ v(cnαi − c1αi) ∪ ac(cnα0 − c1α0).
Case 3: v(a − cnα0) < v(c

n
α0 − c

1
α0) and Case 4: v(a − cnα0) > v(c

n
α0 − c

1
α0)

are symmetric to the cases 1 and 2, respectively.
Case 5: v(a− c1α0) = v(a− cnα0) = v(c

n
α0 − c

1
α0).

Then ac(a− cnα0) = ac(a− c1α0) − ac(c
n
α0 − c

1
α0). We take

φ ′α(x, d
′
αi) =

(
χα(v(x− c

1
αi), ..., v(c

n
α0 − c

1
α0), d

Γ
αi)∧ v(x− c

1
α0) = v(c

n
αi − c

1
αi)
)

∧
(
ρα(ac(x− c

1
αi), ..., ac(c

n
α0 − c

1
α0), d

ρ
αi)∧ ac(x− c

1
α0) 6= ac(cnαi − c1αi)

)
and d ′αi = dαi ∪ v(cnαi − c1αi) ∪ ac(cnα0 − c1α0).

In any case, we have that {φ ′α(x, d ′αi)}i<ω is inconsistent, {φβ(x, dβ,0)}β<α ∪

{φ ′α(x, d
′
α0)}∪{φβ(x, dβ0)}α<β<δ is consistent, and

(
d̄β

)
β<α
∪
{
d̄ ′α

}
∪
(
d̄β

)
α<β<δ

is a mutually indiscernible array. Doing this for all α by induction we get an inp-
pattern of the same depth involving strictly less different v(x−yi)’s – contradicting
the inductive hypothesis. �

Finally, we are ready to prove Theorem 3.8.6.

Proof. By the cell decomposition of Pas [Pas90], every formula φ(x, c̄) is
equivalent to one of the form

∨
i<n(χi(x) ∧ ρi(x)) where χi =

∧
χij(v(x − c

i
j), d̄

i
j)

with χij(x, d̄
i
j) ∈ L(Γ) and ρi =

∧
ρij(ac(x−c

i
j), ē

i
j) with ρ

i
j(x, ē

i
j) ∈ L(k). By Lemma

3.8.1, if there is an inp-pattern of depth κ with x ranging over K, then there has
to be an inp-pattern of depth κ and of the form as in Lemma 3.8.12, which is
impossible. It is sufficient, as Γ and k are stably embedded with no new induced
structure and are fully orthogonal. �

Problem 3.8.13.
(1) Can the bound on κinp(K) given in Theorem 3.8.6 be improved?
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(2) Determine the burden of K =
∏
p primeQp/U in the pure field language.

In [DGL11] it is shown that each of Qp is dp-minimal, so combined with
Fact 3.4.8 it has burden 1. However K is not inp-minimal, as both v and
ac are definable in the pure field language, and the residue field is infinite,
so {v(x) = vi}, {ac(x) = ai} shows that the burden is at least 2.





CHAPTER 4

Externally definable sets and dependent pairs

This chapter is a joint work with Pierre Simon and is published in the Israel
Journal of Mathematics, 2012, DOI: 10.1007/s11856-012-0061-9 [CS10].

We prove that externally definable sets in first order NIP theories have honest
definitions, giving a new proof of Shelah’s expansion theorem. Also we discuss a
weak notion of stable embeddedness true in this context. Those results are then
used to prove a general theorem on dependent pairs, which in particular answers a
question of Baldwin and Benedikt on naming an indiscernible sequence.

4.1. Introduction

This paper is organised in two main parts, the first studies externally definable
sets in first order NIP theories and the second, using those results, proves depen-
dence of some theories with a predicate, under quite general hypothesis. We believe
both parts to be of independent interest. A third section gives some examples of
dependent pairs and relates results proved here to ones existing in the literature.

Honest definitions. Let M be a model of a theory T . An externally definable
subset of Mk is an X ⊆ Mk that is equal to φ(Mk, d) for some formula φ and
d in some N � M. In a stable theory, by definability of types, any externally
definable set coincides with someM-definable set. By contrast, in a random graph
for example, any subset in dimension 1 is externally definable.

Assume now that T is NIP. A theorem of Shelah ([Shed]), generalising a result
of Poizat and Baisalov in the o-minimal case ([BP98]), states that the projection
of an externally definable set is again externally definable. His proof does not give
any information on the formula defining the projection. A slightly clarified account
is given by Pillay in [Pil07].

In section 1, we show how this result follows from a stronger one: existence of
honest definitions. An honest definition of an externally definable set is a formula
φ(x, d) whose trace onM is X and which implies allM-definable subsets containing
X. Then the projection of X can be obtained simply by taking the trace of the
projection of φ(x, d).

Combining this notion with an idea from [Gui11], we can adapt honest defini-
tions to make sense over any subsetA instead of a modelM. We obtain a property of
weak stable-embeddedness of sets inNIP structures. Namely, consider a pair (M,A),
where we have added a unary predicate P(x) for the set A. Take c ∈M and φ(x, c) a
formula. We consider φ(A, c). If A is stably embedded, then this set is A-definable.
Guingona shows that in an NIP theory, this set is externally A-definable, i.e., co-
incides with ψ(A,d) for some ψ(x, y) ∈ L and d ∈ A ′ where (M ′, A ′) � (M,A).
We strengthen this by showing that one can find such a φ(x, d) with the additional

97
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property that ψ(x, d) never lies, namely (M ′, A ′) |= ψ(x, d)→ φ(x, c). In particu-
lar, the projection of ψ(x, d) has the same trace on A as the projection of φ(x, c).
This is the main tool used in Section 2 to prove dependence of pairs.

Dependent pairs. In the second part of the paper we try to understand when
dependence of a theory is preserved after naming a new subset by a predicate. We
provide a quite general sufficient condition for the dependence of the pair, in terms
of the structure induced on the predicate and the restriction of quantification to
the named set.

This question was studied for stable theories by a number of people (see [CZ01]
and [BB04] for the most general results). In the last few years there has been a large
number of papers proving dependence for some pair-like structures, e.g. [BDO11],
[GH11], [Box11], etc. We apologise for adding yet another result to the list.
However, our approach differs in an important way from the previous ones, in that
we work in a general NIP context and do not make any assumption of minimality
of the structure (by asking for example that the algebraic closure controls relations
between points). In particular, in the case of pairs of models, we obtain that if M
is dependent, N �M and (N,M) is bounded (see Section 2 for a definition), then
(N,M) is dependent.

Those results seem to apply to most, if not all, of the pairs known to be depen-
dent. It also covers some new cases, in particular answering a question of Baldwin
and Benedikt about naming an indiscernible sequence.

The setting. We will not make a blanket assumption that T is NIP, so we work
a priori with a general first order theory T in a language L. We use standard
notation. We have a monster model M. If A is a set of parameters, L(A) denotes
the formulas of L with parameters from A. If φ(x) is some formula, and A a subset
of M, we will write φ(A) for the set of tuples a ∈ A|x| such that φ(a) holds. If A is
a set of parameters, by φ(x)→A ψ(x), we mean that for every a ∈ A, φ(a)→ ψ(a)
holds. Also φ(x)→p(x) ψ(x) stands for φ(x)→p(M) ψ(x).

We will often consider pairs of structures. So if our base language is L, we
define the language LP where we add to L a new unary predicate P(x). If M is
an L-structure and A ⊆ M, by the pair (M,A) we mean the LP extension of M
obtained by setting P(a)⇔ a ∈ A. Throughout the paper P(x) will always denote
this extra predicate.

As usual alt(φ) is the maximal number n such that there exists an indiscernible
sequence (ai)i<n and c satisfying φ(ai, c) ⇔ i is even. Standardly φ(x, y) is
dependent if and only if alt(φ) is finite. For more on the basics of dependent
theories see e.g. [Adl08].

Acknowledgments. We are grateful to Itay Kaplan and the referee for suggest-
ing a number of improvements to the paper, and to Itaï Ben Yaacov and Manuel
Bleichner for pointing out some typos and deficiencies.

4.2. Externally definable sets and honest definitions

Recall that a partial type p(x) is said to be stably embedded if any definable
subset of p(x) is definable with parameters from p(M). It is well known that if p(x)
is stable, then p(x) is stably embedded (see e.g. [OP07]). We are concerned with
an analogous property replacing stable by dependent.
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We say that a formula φ(x, c) is NIP over a (partial) type p(x) if there is no
indiscernible sequence (ai)i<ω of realisations of p such that φ(ai, c) holds if and
only if i is even. We say that φ(x, y) is NIP over p(x) if φ(x, c) is NIP over p(x)
for every c.

The following is the fundamental observation. We assume here that we have two
languages L ⊆ L ′, and we work inside a monster model M that is an L ′-structure.
The language L ′ could be LP for example.

Proposition 4.2.1. Let p(x) be a partial L ′-type and φ(x, c) ∈ L(M) be NIP
over p(x). Then for each small A ⊆ p(M) there is θ(x) ∈ L(p(M)) such that

1) θ(x) ∩A = φ(x, c) ∩A
2) θ(x)→p(x) φ(x, c)
3) φ(x, c) \ θ(x) does not contain any A-invariant global L-type consistent with

p(x).

Proof. Let q(x) ∈ SL(M) be A-invariant and consistent with {φ(x, c)}∪ p(x).
We try to choose inductively ai, bi ∈ p(M) and qi ⊆ q, for i < ω such that

- qi(x) = q(x)|Aa<ib<i
- ai |= qi(x) ∪ {φ(x, c)} ∪ p(x) (we can always find one by assumption)
- bi |= qi(x) ∪ {¬φ(x, c)} ∪ p(x).
Assume we succeed. Consider the sequence (di)i<ω where di = ai if i is

even and di = bi otherwise. It is a Morley sequence of q over A, and as such
is L-indiscernible. Furthermore, we have |= φ(di, c) if and only if i is even. This
contradicts φ(x, y) beingNIP over p(x), so the construction must stop at some finite
stage i0. Then qi0(x) →p(x) φ(x, c) and by compactness there is ψq(x) ∈ qi0 (so
ψq ∈ L(p(M))) such that ψq(x) →p(x) φ(x, c). So we see that the set of all such
ψq’s covers the compact space of global L-types invariant over A and consistent
with {φ(x, c)} ∪ p(x) (so in particular all realised types of elements of A such that
φ(a, c)). Let (ψj)j<n be a finite subcovering, then taking θ(x) =

∨
j<nψj(x) does

the job. �

Definition 4.2.2. [Externally definable set] Let M be a model, an externally
definable set of M is a subset X of Mk for some k such that there is a formula
φ(x, y) and d ∈M with φ(M,d) = X. Such a φ(x, d) is called a definition of X.

We can now prove a form of weak stable embeddedness for NIP formulas.

Corollary 4.2.3. [Weak stable-embeddedness] Let φ(x, y) be NIP. Given
(M,A) and c ∈ M there are (M ′, A ′) � (M,A) and θ(x) ∈ L(A ′) such that
φ(A, c) = θ(A) and θ(x)→A ′ φ(x, c).

Proof. Notice that φ(x, y) is still NIP in any expansion of the structure. In
particular in the LP-structure (M,A). Now apply Proposition 4.2.1 with L ′ = LP
and p(x) = {P(x)}. �

Problem 4.2.4. Do we get uniform weak stable embeddedness ? In other
words, is it possible to choose θ depending just on φ, or at least just on φ and
Th(M,A) ?

Corollary 4.2.5. Let f :M→M be an externally definable function, that is
the trace on M of an externally definable relation which happens to be a function
on M. Then there is an M-definable partial function g : M→M with g|M = f.
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Proof. Let φ(x, y; c) induce f on M, c ∈ N � M. By Corollary 4.2.3 we
find (N ′,M ′) � (N,M) and θ(x, y) ∈ L(M ′) satisfying θ(M2) = φ(M2, c) and
θ(x, y) →M ′ φ(x, y; c). As the extension of pairs is elementary and M ′ |= T , it
follows that θ(x, y) is a graph of a global partial function. �

Definition 4.2.6. [Honest definition] Let X ⊆ Mk be externally definable.
Then an honest definition of X is a definition φ(x, d) of X, d ∈M such that:

M |= φ(x, d)→ ψ(x) for every ψ(x) ∈ L(M) such that X ⊆ ψ(M).

In Section 2, we will need the notion of an honest definition over A which is
defined at the beginning of that section.

Proposition 4.2.7. Let T be NIP. Then every externally definable set X ⊂Mk

has an honest definition.

Proof. Let M ≺ N and φ(x) ∈ L(N) be a definition of X, and let (N ′,M ′) �
(N,M) be |N|+-saturated (in LP). Let θ(x) ∈ L(M ′) as given by Corollary 4.2.3,
so (N ′,M ′) |= (∀x ∈ P) θ(x) → φ(x). If ψ(x) ∈ L(M) with X ⊆ ψ(M) then
(N ′,M ′) |= (∀x ∈ P)φ(x)→ ψ(x). Combining, we get (N ′,M ′) |= (∀x ∈ P) θ(x)→
ψ(x). But since M ′ |= T and θ(x), ψ(x) ∈ L(M ′) we have finally M ′ |= θ(x) →
ψ(x). �

We illustrate this notion with an o-minimal example inspired by [BP98].
We let M0 be the real closure of Q and let ε > 0 be an infinitesimal element.

Let M be the real closure of M0(ε). Let π be the usual transcendental number,
and finally let N be the real closure of M(π).

Lemma 4.2.8. Let 0 < b ∈ N be infinitesimal, then there is n ∈ N such that
b < ε1/n.

Proof. We define a valuation v on Q(π, ε) by setting v(x) = 0 for all x ∈ Q(π)
and v(ε) = 1. We also define a valuation onN with the following standard construc-
tion: let O ⊂ N be the convex closure of Q and M be the ring of infinitesimals.
Then O is a valuation ring, namely every element of N or its inverse lies in it.
It has M as unique maximal ideal. There is therefore a valuation v ′ on N such
that v ′(x) ≥ 0 on O and v ′(x) > 0 on M. Renaming the value group, we can set
v ′(ε) = 1. Then v ′ extends the valuation v. As N is in the algebraic closure of
Q(ε, π), by standard results on valuation theory (see for example [EP05], Theorem
3.2.4), the value group of v ′ is in the divisible hull of the value group of v.

Let b ∈ N be a positive infinitesimal. By the previous argument v ′(b) is
rational, so there is n ∈ N such that v ′(b) > v ′(ε1/n). Then v ′(b/(ε1/n)) > 0, so
b/(ε1/n) is infinitesimal and in particular b < ε1/n. �

Let A = {x ∈ M : x < π}. So A is an externally definable initial segment of
M. Consider the externally definable set X = {(x, y) ∈ M2 : x ∈ A ∧ y /∈ A}. Let
φ(x, y; t) = (x < t∧y > t). Then φ(x, y;π) is a definition of X. However it is not an
honest definition because it is not included in theM-definable set {(x, y) : y−x > ε}.
We actually show more.

Claim 1: There is no honest definition of X with parameters in N.
Proof: Assume that χ(x, y) is such a definition. Consider c = inf{y−x : y−x >

0 ∧ χ(x, y)}. Then c ∈ N. For every 0 < ε ∈ M infinitesimal, we have c > ε by
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the same argument as above. By the previous lemma, there is 0 < e ∈ Q such that
c > e. This is absurd as χ(x, y) ⊇ X.

Let p be the global 1-type such that for a ∈ M, p ` x > a if and only if there
is b ∈ A ⊂M such that a < b. Thus p is finitely satisfiable in M. Let a0 = π and
a1 |= p|N. Consider the formula ψ(x, y;a0, a1) = (x < a1 ∧ y > a0).

Claim 2: The formula ψ is an honest definition of X.
Proof: Let θ(x, y) ∈ L(M) be a definable set. Assume that X ⊆ θ(M2) and for

a contradiction thatM |= (∃x, y)ψ(x, y;a0, a1)∧¬θ(x, y). As p is finitely satisfiable
in M, there is u0 ∈ M such that |= (∃x, y)x < u0 ∧ y > a0 ∧ ¬θ(x, y). Consider
theM-definable set {v : (∃x, y)x < u0∧y > v∧¬θ(x, y)}. By o-minimality, this set
has a supremum m ∈M∪ {+∞}. We know m ≥ a0, so necessarily there is v0 ∈M,
v0 /∈ A such thatM |= (∃x, y)x < u0∧y > v0∧¬θ(x, y). This contradicts the fact
that X ⊆ θ(M2).

We therefore see that if φ(x, y;a) is a formula andM a model, then one cannot
in general obtain an honest definition of φ(M2;a) with the same parameter a. We
conjecture that one can find such an honest definition with parameters in a Morley
sequence of any coheir of tp(a/M).

As an application, we give another proof of Shelah’s expansion theorem from
[She09].

Proposition 4.2.9. (T is NIP) Let X ⊆Mk be an externally definable set and
f an M-definable function. Then f(X) is externally definable.

Proof. Let φ(x, c) be an honest definition of X. We show that θ(y, c) =
(∃x)(φ(x, c) ∧ f(x) = y) is a definition of f(X). First, as φ(x, c) is a definition
of X, we have f(X) ⊆ θ(M,c). Conversely, consider a tuple a ∈ Mk \ f(X). Let
ψ(x) = (f(x) 6= a). Then X ⊆ ψ(M). So by definition of an honest definition,
M |= φ(x, c)→ ψ(x). This implies that M |= ¬θ(a, c). Thus θ(M,c) ⊆ f(X).

In fact one can check that θ(y, c) is an honest definition of f(X). �

Corollary 4.2.10. [Shelah’s expansion theorem] Let M |= T , be NIP and let
MSh denote the expansion ofM where we add a predicate for all externally definable
sets of Mk, for all k. Then MSh has elimination of quantifiers in this language
and is NIP.

Proof. Elimination of quantifiers follows from the previous proposition, taking
f to be a projection. As T is NIP, it is clear that all quantifier free formulas ofMSh

are dependent. It follows that MSh is dependent. �

Note that there is an asymmetry in the notion of an honest definition. Namely
if θ(x) is an honest definition of some X ⊂ M, then ¬θ(x) is not in general an
honest definition of M \ X. We do not know about existence of symmetric honest
definitions which would satisfy this. All we can do is have an honest definition
contain one (or indeed finitely many) uniformly definable family of sets. This is the
content of the next proposition.

Proposition 4.2.11. (T is NIP) Let X ⊆ Mk be externally definable. Let
ζ(x, y) ∈ L. Define Ω = {y ∈M : ζ(M,y) ⊆ X}. Assume that

⋃
y∈Ω ζ(M,y) = X.

Then there is a formula θ(x, y) and d ∈M such that:
(1) θ(x, d) is an honest definition of X,
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(2) M |= ζ(x, c)→ θ(x, d) for every c ∈ Ω,
(3) For any c1, .., cn ∈ Ω, there is d ′ ∈ M such that θ(M,d ′) ⊆ X, and

ζ(x, ci)→ θ(x, d ′) holds for all i.

Proof. Let M ≺ N where N is |M|+-saturated. Consider the set Y ⊂ M
defined by

y ∈ Y⇐⇒(∀x ∈M)(ζ(x, y)→ x ∈ X).
By Corollary 4.2.10, this is an externally definable subset of M, so there is ψ(x) ∈
L(N) a definition of it. Let also φ(x) ∈ L(N) be a definition of X. Let (N,M) ≺
(N ′,M ′) be an elementary extension of the pair, sufficiently saturated. Applying
Proposition 4.2.1 with p(y) = {P(y)}, A = M we obtain a formula α(y, d) ∈
L(M ′) such that α(M,d) = ψ(M) and N ′ |= α(y, d) →P(y) ψ(y). Set θ(x, d) =
(∃y)(α(y, d)∧ ζ(x, y)). We check that θ(x, d) satisfies the required properties.

First, let a ∈M ′ such that N ′ |= θ(a, d). Then as M ′ ≺ N ′, there is y0 ∈M ′
such that α(y0, d) ∧ ζ(a, y0). By construction of α(y, d), this implies that N ′ |=
ψ(y0). So by definition of ψ(y), N ′ |= φ(a), so N ′ |= θ(x, d) →P(x) φ(x). Now,
assume that a ∈ X. By hypothesis, there is y0 ∈ Ω such that M |= ζ(a, y0). Then
ψ(y0) holds, and as y0 ∈M, N ′ |= α(y0, d). Therefore N ′ |= θ(a, d). This proves
that θ(x, d) is an honest definition of X.

Next, if c ∈ Ω, then N ′ |= α(c, d), so N ′ |= ζ(x, c)→ θ(x, d).
Finally, let c1, ..., cn ∈ Ω. Then N ′ |= (∃d ∈ P)(

∧
ζ(x, ci) →P(x) θ(x, d)) ∧

(θ(x, d) →P(x) φ(x)). By elementarity, (N,M) also satisfies that formula. This
gives us the required d ′. �

Note in particular that the hypothesis on ζ(x, y) is always satisfied for ζ(x, y) =
(x = y). As an application, we obtain that large externally definable sets contain
infinite definable sets.

Corollary 4.2.12. (T is NIP) Let X ⊆Mk be externally definable, then if one
of the two following conditions is satisfied, X contains an infinite M-definable set.

(1) X is infinite and T eliminates the quantifier ∃∞.
(2) |X| ≥ iω.

Proof. Let θ(x, y) be the formula given by the previous proposition with
ζ(x, y) = (x = y). If the first assumption holds, then there is n such that for
every d ∈ M, if θ(M,d) has size at least n, it is infinite. Take c1, ..., cn ∈ X and
d ′ ∈ M given by the third point of 4.2.11. Then θ(M,d ′) is an infinite definable
set contained in X.

Now assume that |X| ≥ iω. By NIP, there is ∆ a finite set of formulas and n
such that if (ai)i<ω is a ∆-indiscernible sequence and d ∈ M, there are at most n
indices i for which ¬(θ(ai, d)↔ θ(ai+1, d)). By the Erdös-Rado theorem, there is
a sequence (ai)i<ω1 in X which is ∆-indiscernible. Define ci = aω.i for i = 0, .., n
and let d ′ be given by the third point of Proposition 4.2.11. Then θ(x, d ′) must
contain an interval 〈ai : ω × k ≤ i ≤ ω × k+ 1〉 for some k ∈ {0, .., n − 1}. In
particular it is infinite. �

This property does not hold in general. For example in the random graph, for
any κ it is easy to find a modelM and A ⊂M, |A| ≥ κ such that everyM-definable
subset of A is finite, while A itself is externally definable.

Also, taking M = (N + Z, <) and X = N shows that |X| has to be bigger than
ℵ0 in 4.2.12 in general.
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Problem 4.2.13. Is it possible to replace iω by ℵ1 in 4.2.12?

4.3. On dependent pairs

Setting. In this section, we assume that T is NIP. We consider a pair (M,A)
with M |= T . If φ(x, a) is some formula of LP(M), then an honest definition of
φ(x, a) over A is a formula θ(x, c) ∈ LP, c ∈ P(M) such that θ(A, c) = φ(A,a) and
|= (∀x ∈ P)(θ(x, c)→ φ(x, a)).

(Note that if M |= T , φ(x, c) ∈ L(M) and X = φ(M,c), then an honest defini-
tion of φ(x, c) over M in the pair (M,M) which happens to be an L-formula is an
honest definition of X in the sense of Definition 4.2.6.)

We say that an LP-formula is bounded if it is of the form Q0y0 ∈ P...Qnyn ∈
Pφ(x, y0, ..., yn) where Qi ∈ {∃,∀} and φ(x, ȳ) is an L-formula, and let LbddP be
the collection of all bounded formulas. We say that TP is bounded if every formula
is equivalent to a bounded one.

Recall that a formula φ(x, y) ∈ LP is said to be NIP over P(x) if there is no
LP-indiscernible (equivalently L-indiscernible if φ ∈ L) sequence (ai)i<ω of points
of P and y such that φ(ai, y)⇔ i is even. If this is the case, then Proposition 4.2.1
applies and in particular there is an honest definition of φ(x, a) over P for all a.

We say that T (or TP) is NIP over P if every L (resp. LP) formula is.
Given a small subset of the monster A and a set of formulas Ω (possibly with

parameters) we let Aind(Ω) be the structure with domain A and a relation added
for every set of the form An ∩ φ(x̄), where φ(x̄) ∈ Ω.

Notice that Aind(Lbdd
P

) eliminates quantifiers, while Aind(L) not necessarily
does. However Aind(Lbdd

P
) and Aind(L) are bi-interpretable.

Lemma 4.3.1. Assume that ϕ(xy, c) ∈ LP has an honest definition ϑ(xy, d) ∈
LP over A. Then θ(x, d) = (∃y ∈ P)ϑ(xy, d) is an honest definition of φ(x, c) =
(∃y ∈ P)ϕ(xy, c) over A.

Proof. For a ∈ P, θ(a, d)⇒ ϑ(ab, d) for some b ∈ P⇒ ϕ(ab, c) (as ϑ(xy, d)
is honest and ab ∈ P) ⇒ φ(a, c).

For a ∈ A, φ(a, c) ⇒ ϕ(ab, c) for some b ∈ A ⇒ ϑ(ab, d) (as ϑ(A,d) =
ϕ(A, c)) ⇒ θ(a, d). �

We will be using λ-big models (see [Hod93, 10.1]). We will only use that if
N is λ-big, then it is λ-saturated and strongly λ-homogeneous (that is, for every
ā, b̄ ∈ N<λ such that (N, ā) ≡ (N, b̄) there is an automorphism of N taking ā to
b̄) (see [Hod93, 10.1.2 + Exercise 10.1.4]). Every modelM has a λ-big elementary
extension N.

Lemma 4.3.2. 1) If N �M, M is ω-big, N is |M|+-big, and a, b ∈M<ω then
tpL(a) = tpL(b)⇔ tpLP

(a) = tpLP
(b) in the sense of the pair (N,M).

2) Let φ(x, y) ∈ LP, (M,A) ω-big, (ai)i<ω ∈ Mω be LP-indiscernible, and
let θ(x, d0) be an honest definition for φ(x, a0) over A (where d0 is in P of the
monster model). Then we can find an LP-indiscernible sequence (di)i<ω ∈ Pω

such that θ(x, di) is an honest definition for φ(x, ai) over A.

Proof. 1) We consider here the pair (N,M) as an LP-structure, where P(x)
is a new predicate interpreted in the usual way. Let σ ∈ AutL(M) be such that
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σ(a) = b. As N is big, it extends to σ ′ ∈ AutL(N), with σ ′(M) = M. But then
actually σ ′ ∈ AutLP

(N) (since it preserves all L-formulas and P).
2) Let (N,B) � (M,A) be |M|+-big. We consider the pair of pairs Th((N,B), (M,A))

in the language LP,P ′ , with P ′(N) = M. By 1) the sequence (ai)i<ω is LP,P ′-
indiscernible. The fact that θ(x, d0) is an honest definition of φ(x, a0) over A is
expressible by the formula

(d0 ∈ P)∧ ((∀x ∈ P ′ ∩P) θ(x, d0) ≡ φ(x, a0))∧ ((∀x ∈ P)θ(x, d0)→ φ(x, a0)).

By LP,P ′ -indiscernibility, for each i, we can find di such that the same formula
holds of (ai, di). Then using Ramsey, for any finite ∆ ⊂ LP, we can find an infinite
subsequence (ai, di)i∈I, I ⊆ ω that is ∆-indiscernible. As (ai) is indiscernible, we
can assume I = ω. Then by compactness, we can find the di’s as required. �

We will need the following technical lemma.

Lemma 4.3.3. Let (M,A) |= TP be ω-big and assume that Aind(LP) is NIP.
Let (ai)i<ω ∈Mω be LP-indiscernible, (b2i)i<ω ∈ Aω and ∆((xi)i<n; (yi)i<n) ∈

LP be such that ∆((xi)i<n; (ai)i<n) has an honest definition over A by an LP-
formula, and |= ∆(b2i0 , ..., b2in−1

;a2i0 , ..., a2in−1
) for any i0, ..., in−1 < ω.

Then there are i0, ..., in−1 ∈ ω with ij ≡ j (mod2) and (bij)j≡1(mod2),<n ∈ P
such that |= ∆(bi0 , ..., bin−1

;ai0 , ..., ain−1
).

Proof. To simplify notation assume that n is even. Let

∆ ′((x2i)2i<n; (yi)i<n) = (∃x1x3...xn−1 ∈ P)∆((xi)i<n; (yi)i<n).

By assumption and Lemma 4.3.1 ∆ ′((x2i)2i<n; (ai)i<n) has an honest definition
over A by some LP-formula, say θ((x2i)2i<n, d) with d ∈ P. Since Aind(LP) is NIP,
let N = alt(θ) inside P.

Choose even i0, i2, ..., in−2 ∈ ω such that ij+2 − ij > N and consider the se-
quence (āi)0<i<N with āi = ai0ai0+iai2ai2+i...ain−2

ain−2+i. It is LP-indiscernible
(and extends to an infinite LP-indiscernible sequence). By Lemma 4.3.2 we can find
an LP-indiscernible sequence (di)i<N, di ∈ P such that θ((x2i)2i<n;di) is an hon-
est definition for ∆ ′((x2i)2i<n; āi). By assumption θ((bi2j)2j<n;di) holds for all
even i < N. But then since N = alt(θ) inside P, it must hold for some odd i ′ < N.
By honesty this implies that ∆ ′((bi2j)2j<n; āi ′) holds, and decoding we find some
(bi2j+i ′)2j<n ∈ P

n
2 as wanted. �

Now the main results of this section.

Theorem 4.3.4. Assume T is NIP and TP is NIP over P. Then every bounded
formula is NIP.

Proof. We prove this by induction on adding an existential bounded quantifier
(sinceNIP formulas are preserved by boolean operations). So assume that φ(x, y) =
(∃z ∈ P)ψ(xz, y) has IP, where ψ(xz, y) ∈ LbddP is NIP. Then there is an ω-big
(M,A) |= TP and an LP-indiscernible sequence (ai)i<ω ∈ Mω and c ∈ M such
that φ(ai, c) ⇔ i = 0(mod 2). Then we can assume that there are b2i ∈ A such
that (a2ib2i) is LP-indiscernible and |= ψ(a2ib2i, c).

Notice that from TP being NIP over P it follows that Aind(LP) is NIP and that
every LP-formula has an honest definition overA. For δ ∈ LP take ∆δ((xi)i<n; (yi)i<n)
to be an LP-formula saying that (xiyi)i<n is δ-indiscernible. Applying Lemma
4.3.3, we obtain i0, ..., in ∈ ω with ij ≡ j (mod 2) and (bij)j≡1(mod 2),<n ∈ P such
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that (aikbik)k<n is δ-indiscernible. Since |= ¬(∃z ∈ P)ψ(a2i+1z, c) for all i, we see
that ψ(aikbik , c) holds if and only if k is even. Taking n and δ large enough, this
contradicts dependence of ψ(xz, y). �

Corollary 4.3.5. Assume T is NIP, Aind(L) is NIP and TP is bounded. Then
TP is NIP.

Proof. Since Aind(Lbdd
P

) is interpretable in Aind(L) the hypothesis implies
that Aind(Lbdd

P
) is NIP. Thus, if ā = (ai)i<n is a sequence inside P then any

∆(x̄, ā) has an honest definition over A (although we don’t yet know that ∆(x̄, ȳ) is
NIP over P, we do know that ∆(x̄, ā) is NIP over P, so Proposition 4.2.1 applies).
We can then use the same proof as in 4.3.4 to ensure that TP is NIP over P, and
finally apply Theorem 4.3.4 to conclude. �

Corollary 4.3.6. Assume T is NIP, and let (M,N) be a pair of models of T
(N ≺M). Assume that TP is bounded, then TP is NIP.

Proof. Nind(L) is dependent, and so the hypotheses of Corollary 4.3.5 are
satisfied. �

Note that the boundedness assumption cannot be dropped, because for example
a pair of real closed fields can have IP, and also there is a stable theory such that
some pair of its models has IP ([Poi83]).

4.4. Applications

In this section we give some applications of the criteria for the dependence of
the pair.

4.4.1. Naming an indiscernible sequence. In [BB00] Baldwin and Benedikt
prove the following.

Fact 4.4.1. (T is NIP) Let I ⊂ M be an indiscernible sequence indexed by a
dense complete linear order, small in M (that is every p ∈ S<ω(I) is realised in
M). Then

1) Th(M, I) is bounded ([BB00, Theorem 3.3]),
2) (M, I) ≡ (N, J) if and only if EM(I) = EM(J) ([BB00, Theorem 8.1]),
3) The LP-induced structure on P is just the equality (if I is totally transcen-

dental) or the linear order otherwise ([BB00, Corollary 3.6]).

It is not stated in the paper in exactly this form because the bounded formula
from [BB00, Theorem 3.3] involves the order on the indiscernible sequence. How-
ever, it is not a problem. If the sequence I = (ai) is not totally indiscernible, then
the order is L-definable (maybe after naming finitely many constants). Namely, we
will have φ(a0, ..., ak, ak+1, ..., an) ∧ ¬φ(a0, ..., ak+1, ak, ..., an) for some k < n
and φ ∈ L (as the permutation group is generated by transpositions). But then
the order on I is given by y1 < y2 ↔ φ(a ′0...a

′
k−1, y1, y2, a

′
k+2, ..., a

′
n), for any

a ′0...ak−1Ia
′
k+2...a

′
n indiscernible (and we can find such a ′0...ak−1a

′
k+2...a

′
n in M

by the smallness assumption). If I is an indiscernible set, then the stable coun-
terpart of their theorem [BB00, 3.3] applies giving a bounded formula using just
the equality (as the proof in [BB00, Section 4] only uses that for an NIP for-
mula φ(x, y) and an arbitrary c, {ai : φ(ai, c)} is either finite or cofinite, with size



106 4. EXTERNALLY DEFINABLE SETS AND DEPENDENT PAIRS

bounded by alt(φ)).

The following answers Conjecture 9.1 from that paper.

Proposition 4.4.2. Let (M, I) be a pair as described above, obtained by naming
a small, dense, complete indiscernible sequence. Then TP is NIP.

Proof. By 1) and 3) above, all the assumptions of Corollary 4.3.5 are satisfied.
�

It also follows that every unstable dependent theory has a dependent expansion
with a definable linear order.

Recall the following definition (one of the many equivalent) from [Shed].

Definition 4.4.3. [Shed, Observations 2.1 and 2.10] T is strongly (resp. strongly+)
dependent if for any infinite indiscernible sequence (āi)i∈I with āi ∈Mω, I a com-
plete linear order, and finite tuple c there is a finite u ⊂ I such that for any two
i1 < i2 ∈ u, (i1, i2) ∩ u = ∅ the sequence (āi)i∈(i1,i2) is indiscernible over c (resp.
c ∪ (āi)i∈(−∞,i1]∪[i2,∞)).

T is dp-minimal (resp. dp+-minimal) when for a singleton c there is such a u
of size 1.

For a general NIP theory, the property described in the definition holds, but
with u ⊂ I of size |T |, instead of finite. We can take u to be the set of critical
points of I defined by: i ∈ I is critical for a formula φ(x;y1, ..., yn, c) ∈ L if there
are j1, ..., jn 6= i such that φ(ai;aj1 , ..., ajn , c) holds, but in every open interval of
I containing i, we can find some i ′ such that ¬φ(ai ′ ;aj1 , ..., ajn , c) holds. One can
show (see [Adl08, Section 3]) that given such a formula φ(x;y1, .., yn, c), the set
of critical points for φ is finite. Also T is strongly+ dependent if and only if for
every finite set c of parameters, the total number of critical points for formulas in
L(c) is finite.

Unsurprisingly dp-minimality is not preserved in general after naming an indis-
cernible sequence. By [Goo10, Lemma 3.3] in an ordered dp-minimal group, there
is no infinite definable nowhere-dense subset, but of course every small indiscernible
sequence is like this.

There are strongly dependent theories which are not strongly+ dependent, for
example p-adics ([Shed]). In such a theory, strong dependence is not preserved by
naming an indiscernible sequence.

Proposition 4.4.4. Let T be not strongly + dependent, witnessed by a dense
complete indiscernible sequence (āi)i∈I of finite tuples. Let P name that sequence
in a big saturated model. Then TP is not strongly dependent.

Proof. So let (āi)i∈I, c witness failure of strong+ dependence. By dependence
of T , let u ⊂ I be chosen as above. Notice that for every φ(x;y1, ..., yn, c) , the
finite set of its critical points in I is LP-definable over c (and possibly finitely many
parameters, using order on I in the non-totally indiscernible case, and just the
equality otherwise). As in our situation u is infinite, we get infinitely many different
finite subsets of (āi)i∈I definable over c, in TP. As (āi)i∈I is still indiscernible in
TP by Fact 4.4.1, 3), this contradicts strong dependence. �
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Problem 4.4.5. Is strong+ dependence preserved by naming an indiscernible
sequence ?

4.4.2. Dense pairs and related structures. Van den Dries proves in [vdD98]
that in a dense pair of o-minimal structures, formulas are bounded. This is gen-
eralised in [Ber] to lovely pairs of geometric theories of P-rank 1. From Theorem
4.3.6, we conclude that such pairs are dependent.

This was already proved by Berenstein, Dolich and Onshuus in [BDO11] and
generalised by Boxall in [Box11]. Our result generalises [BDO11, Theorem 2.7],
since the hypothesis there (acl is a pregeometry and A is “innocuous”) imply bound-
edness of TP. To see this take any two tuples a and b and assume that they have
the same bounded types. Let a ′ ∈ P be such that aa ′ is a P-independent tuple.
Then by hypothesis, we can find b ′ such that tpLbdd

P
(bb ′) = tpLbdd

P
(aa ′). Now the

fact that aa ′ is P-independent can be expressed by bounded formulas. In particular
bb ′ is also P-independent. So by innocuous, tpLP

(aa ′) = tpLP
(bb ′) and we are

done.
It is not clear to us if Boxall’s hypothesis imply that formulas are bounded.

(However, note that in the same paper Boxall applies his theorem to the structure
of R with a named subgroup studied by Belegradek and Zilber, where we know that
formulas are bounded.)

The paper [BDO11] gives other examples of theories of pairs for which for-
mulas are bounded, including dense pairs of p-adic fields and weakly o-minimal
theories, recast in the more general setting of geometric topological structures.

Similar theorems are proved by Günaydin and Hieronymi in [GH11]. Their
Theorem 1.3 assumes that formulas are bounded along with other hypothesis, so is
included in Theorem 4.3.6. They apply it to show that pairs of the form (R, Γ) are
dependent, where Γ ⊂ R>0 is a dense subgroup with the Mann property. We refer
the reader to [GH11] for more details.

In this same paper the authors also consider the case of tame pairs of o-minimal
structures. This notion is defined and studied in [vdDL95]. Let T be an o-minimal
theory. A pair (N,M) of models of T is tame if M ≺ N and for every a ∈ N which
is in the convex hull of M, there is st(a) ∈ M such that |a − st(a)| < b for every
b ∈ M>0. It is proved in [vdDL95] that formulas are bounded is such a pair, so
again it follows from Theorem 4.3.6 that TP is dependent. Note that Günaydin and
Hieronymi prove this using their Theorem 1.4 involving quantifier elimination in
a language with a new function symbol. This theorem does not seem to factorise
trivially through 4.3.5. They also prove in that same paper that the pair (R, 2Z) is
dependent.

Let C be an elliptic curve over the reals, defined by y2 = x3 + ax + b with
a, b ∈ Q, and let P ⊆ Q2 name the set of its rational points. This theory is studied
in [GnH11], where it is proved in particular that

Fact 4.4.6. 1) Th(R,C(Q)) is bounded (follows from [GnH11, Theorem 1.1])
2) Aind(LP) is NIP (follows from [GnH11, Proposition 3.10])

Applying Corollary 4.3.5 we conclude that the pair is dependent.





CHAPTER 5

Externally definable sets and dependent pairs II

This chapter is a joint work with Pierre Simon and is submitted to the Trans-
actions of the American Mathematical Society as “Externally definable sets and
dependent pairs II” [CS12].

We continue investigating the structure of externally definable sets in NIP theo-
ries and preservation of NIP after expanding by new predicates. Most importantly:
types over finite sets are uniformly definable; over a model, a family of non-forking
instances of a formula (with parameters ranging over a type-definable set) can be
covered with finitely many invariant types; we give some criteria for the bounded-
ness of an expansion by a new predicate in a distal theory; naming an arbitrary
small indiscernible sequence preserves NIP, while naming a large one doesn’t; there
are models of NIP theories over which all 1-types are definable, but not all n-types.

5.1. Introduction

A characteristic property of stable theories is the definability of types. Equiv-
alently, every externally definable set is internally definable. In unstable theories
this is no longer true. However, as was observed early on by Shelah (e.g. [She09]),
the class of externally definable sets in NIP theories satisfies some nice properties
resembling those in the stable case (e.g. it is closed under projection). In this
chapter we continue the investigation of externally definable sets in NIP theories
started in Chapter 4.

As it was established there, every externally definable set X = φ(x, b) ∩A has
an honest definition, which can be seen as the existence of a uniform family of
internally definable subsets approximating X. Formally, there is θ(x, z) such that
for any finite A0 ⊆ X there is some c ∈ A satisfying A0 ⊆ θ(A, c) ⊆ A. The
first section of this paper is devoted to establishing the existence of uniform honest
definitions. By uniform we mean that θ(x, z) can be chosen depending just on
φ(x, y) and not on A or b. We achieve this assuming that the whole theory is NIP,
combining careful use of compactness with a strong combinatorial result of Alon-
Kleitman [AK92] and Matousek [Mat04]: the (p, k)-theorem. As a consequence
we conclude that in an NIP theory types over finite sets are uniformly definable
(UDTFS). This confirms a conjecture of Laskowski.

In the next section we consider an implication of the (p, k)-theorem for fork-
ing in NIP theories. Combined with the results on forking and dividing in NIP
theories from Chapter 1, we deduce the following: working over a model M, let
{φ(x, a) : a |= q(y)} be a family of non-forking instances of φ(x, y), where the pa-
rameter a ranges over the set of solutions of a partial type q. Then there are finitely
many global M-invariant types such that each φ(x, a) from the family belongs to
one of them.

109
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In Section 3 we return to the question of naming subsets with a new predi-
cate. In Chapter 4 we gave a general condition for the expansion to be NIP: it is
enough that the theory of the pair is bounded, i.e. eliminates quantifiers down to
the predicate, and the induced structure on the predicate is NIP. Here, we try to
complement the picture by providing a general sufficient condition for the bound-
edness of the pair. In the stable case the situation is quite neatly resolved using the
notion of nfcp. However nfcp implies stability, so one has to come up with some
generalization of it that is useful in unstable NIP theories. Towards this purpose we
introduce dnfcp, i.e. no finite cover property for definable sets of parameters, and
its relative version with respect to a set. We also introduce dnfcp’ – a weakening of
dnfcp with separated variables. Using it, we succeed in the distal, stably embedded,
case: if one names a subset of M which is small, uniformly stably embedded and
the induced structure satisfies dnfcp’, then the pair is bounded.

In section 4 we look at the special case of naming an indiscernible sequence.
On the one hand, we complement the result in Chapter 4 by showing that naming a
small indiscernible sequence of arbitrary order type is bounded and preserves NIP.
On the other hand, naming a large indiscernible sequence does not.

In the last section we consider models over which all types are definable. While
in general even o-minimal theories may not have such models, many interesting NIP
theories do (RCF, ACVF, Th(Qp), Presburger arithmetic...). In practice, it is often
much easier to check definability of 1 types, as opposed to n-types, so it is natural
to ask whether one implies the other. Unfortunately, this is not true – we give an
NIP counter-example. Can anything be said on the positive side? Pillay [Pil11]
had established: let M be NIP, A ⊆ M be definable with rosy induced structure.
Then if it is 1-stably embedded, it is stably embedded. We observe that Pillay’s
results holds when the definable set A is replaced with a model, assuming that
it is uniformly 1-stably embedded. This provides a generalization of the classical
theorem of Marker and Steinhorn about definability of types over models in o-
minimal theories. We also remark that in NIP theories, there are arbitrary large
models with “few” types over them (i.e. such that |S(M)| ≤ |M|

|T |).

5.2. Preliminaries

5.2.1. VC dimension, co-dimension and density. Let F be a family of
subsets of some set X. Given A ⊆ X, we say that it is shattered by F if for every
A ′ ⊆ A there is some S ∈ F such that A ∩ S = A ′.

A family F is said to have finite VC-dimension if there is some n ∈ ω such
that no subset of X of size n can be shattered by F. In this case we let VC(F) be
the largest integer n such that some subset of X of size n is shattered by it.

The VC co-dimension of F is the largest integer n for which there are S1, ..., Sn ∈
F such that for any u ⊆ n there is bu ∈ X satisfying bu ∈ Si ⇔ i ∈ u. It is well
known that coVC(F) < 2VC(F)+1.

5.2.2. NIP and alternation. We are working in a monster model M of a
complete first-order theory T .

Recall that a formula φ(x, y) is NIP if there are no (at)t∈ω and (bs)s⊆ω such
that φ(at, bs)⇔ t ∈ s. Equivalently, for any indiscernible sequence (at)t∈I and b,
there can be only finitely many t0 < ... < tn ∈ I such that φ(ati , b) ⇔ i is even.
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The following is a very important refinement of this statement, see e.g. [Adl08,
Theorem 14].

Let (at)t∈I be an indiscernible sequence and let E be a convex equivalence
relation on I. If t̄ = (ti)i<κ and s̄ = (si)i<κ are tuples of elements from I, we will
write t̄ ∼E s̄ if t̄ and s̄ have the same quantifier-free order type and tiEsi for all
i < κ.

Fact 5.2.1. Let (at)t∈I be an indiscernible sequence and let b be any finite
tuple. Let φ(x0, ..., xn;y) be NIP. Then there is a convex equivalence relation E on
I with finitely many classes such that for any (si)i≤n ∼E (ti)i≤n from I we have
φ(as0 , ..., asn ;b)↔ φ(at0 , ..., atn ;b).

Remark 5.2.2. In particular, if I is a complete linear order and φ(x0, ..., xn;y)
is NIP, then all φ-types over I are definable, possibly after adding finitely many
elements extending I on both sides. Why? If I is totally indiscernible, then all
φ-types over it are in fact definable using just equality. If it is not, then there is
some formula giving the order on the sequence, and by Fact 5.2.1, φ-types over I
are definable using this order (see Chapter 4, Section 3.1).

In a natural way we define the VC dimension of a formula in a model M as
VC(φ(x, y)) = VC {φ(M,a) : a ∈Mn}. Notice that this value does not depend on
the model, so we’ll talk about VC dimension of φ in T . Similarly we define VC
co-dimension.

It was observed early on by Laskowski that φ(x, y) is NIP if and only if it has
finite VC dimension, if and only if it has finite VC co-dimension [Las92]. We also
recall an early result of Shelah about counting types over finite sets.

Fact 5.2.3. [Shelah/Sauer] The following are equivalent:
(1) φ(x, y) is NIP.
(2) There are k, d ∈ ω such that for all finite A, |Sφ(A)| ≤ d · |A|k.

Then one defines the VC density of φ to be the infimum of all reals r such that
for some d, |Sφ(A)| ≤ d · |A|r for all finite A.

5.2.3. Invariant types. Let p(x) be a global type over a monster model M,
invariant over some small submodel M. Then one naturally defines p(ω)(x) ∈
Sω(M), the type of a Morley sequence in it (see [HP11, Section 2] for details).

Fact 5.2.4. Let T be NIP. Assume that p(x), q(x) are global types invariant
over a small model M. If p(ω)|M = q(ω)|M, then p = q.

We will use the following lemma, see [Sim11a, Lemma 2.18] for a proof.

Lemma 5.2.5. Assume that T is NIP. Let a be given and q(x) ∈ S(A ′) be
invariant over C ⊂ A ′. Then there is D of size ≤ |C| + |x| + |a| + |T | such that
C ⊆ D ⊆ A ′ and for any b, b ′ ∈ A ′ realizing q(x)|D, tp(ab/D) = tp(ab ′/D).

5.2.4. (p,k)-theorem. We will need the following theorem from [Mat04].

Fact 5.2.6. [(p, k)-theorem] Let F be a family of subsets of some set X. Assume
that the VC co-dimension of F is bounded by k. Then for every p ≥ k, there is an
integer N such that: for every finite subfamily G ⊂ F, if G has the (p, k)-property
meaning that among any p subsets of G some k intersect, then there is an N-point
set intersecting all members of G.
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Remark 5.2.7. Although the theorem is stated this way in [Mat04],N depends
only on p and k and not on the family F. To see this, assume that for every N, we
had a family FN on some set XN of VC co-dimension bounded by k and for which
the (p, k) theorem fails for this N. Then consider X to be the disjoint union of the
sets XN and F the union of the families FN. Then clearly F has VC co-dimension
bounded by k and the theorem fails for it. Also, it follows from the proof.

5.2.5. Expansions and stable embeddedness. Let A be a subset ofM |= T
and let LP = L∪{P(x)}, where P(x) is a new unary predicate. We define the structure
(M,A) as the expansion of M to an LP-structure where P(M) = A. Recall that
Th(M,A) is P-bounded if every LP formula is equivalent to one of the form

Q1y1 ∈ P ...Qnyn ∈ Pφ(x, ȳ),

where Qi ∈ {∃,∀} and φ is an L-formula. We may just say bounded when it
creates no confusion.

Given A ⊆ M |= T and a set of formulas F, possibly with parameters, we let
Aind(F) be the structure in the language L(T)∪

{
Dφ(x)(x) : φ(x) ∈ F

}
with Dφ(x)

interpreted as the set φ(A). When F = L, we may omit it. Given A ⊆ M and a
tuple b ∈M, let A[b] be shorthand for Aind(F) with F = {φ(x, b) : φ ∈ L}.

A set A ⊂M is called small if for every finite b ∈M, every finitary type over
Ab is realized in M. Finally, a set A ⊂ M is stably embedded if for every φ(x, y)
and c ∈M there is ψ(x, z) and b ∈ A such that φ(A, c) = ψ(A, b). We say that it
is uniformly stably embedded if ψ can be chosen depending just on φ, and not on c.
A definable set is stably embedded if and only if it is uniformly stably embedded,
by compactness.

5.3. Uniform honest definitions

5.3.1. Uniform honest definitions.
We recall the following result about existence of honest definitions for externally

definable sets in NIP theories established in Chapter 4.

Fact 5.3.1. [Honest definition] Let T be NIP and let M be a model of T and
A ⊆M any subset. Let φ(x, a) have parameters inM. Then there is an elementary
extension (M ′, A ′) of the pair (M,A) and a formula θ(x, b) ∈ L(A ′) such that
φ(A,a) = θ(A, b) and θ(A ′, b) ⊆ φ(A ′, a).

It can be reformulated as existence of a uniform family of internally definable
subsets approximating our externally definable set.

Corollary 5.3.2. LetM, A and φ(x, a) be as above. Then there is θ(x, t) such
that for any finite subset A0 ⊆ φ(A,a), there is b ∈ A such that A0 ⊆ θ(A, b) ⊆
φ(A,a).

Proof. Immediately follows from Fact 5.3.1 because the extension (M,A) ≺
(M ′, A ′) is elementary and the condition on b can be stated as a single formula in
the theory of the pair. Note that conversely this implies Fact 5.3.1 by compactness.

�

It is natural to ask whether θ can be chosen in a uniform way depending just
on φ, and not on A and a (Question 1.4 from Chapter 4). The aim of this section
is to answer this question positively.

First, compactness gives a weak uniformity statement.
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Proposition 5.3.3. Fix a formula φ(x, y). For every formula θ(x, t) (in the
same variable x, but t may vary), fix an integer nθ. Then there are finitely many
formulas θ1(x, t1), ..., θk(x, tk) such that the following holds:

For every M |= T and A ⊂ M, for every a ∈ M there is i ≤ k such that
for every subset A0 ⊆ φ(A,a) of size at most nθi , there is b ∈ A satisfying
A0 ⊆ θi(A, b) ⊆ φ(A,a).

Proof. Consider the theory T ′ in the language L ′ = L∪ {P(x), c} saying that if
(M,A) |= T ′ (where A = P(M)), thenM |= T and for every θ ∈ L, there is a subset
A0 of φ(A, c) of size at most nθ for which there does not exist a b ∈ A satisfying
A0 ⊆ θ(A, b) ⊆ φ(A,a). By Corollary 5.3.2, T ′ is inconsistent. By compactness,
we find a finite set of formulas as required. �

Combining this with the (p, k)-theorem we get the full result.

Theorem 5.3.4. Let T be NIP and φ(x, y) given. Then there is a formula
χ(x, t) such that for every set A of size ≥ 2, tuple a and finite subset A0 ⊆ A, there
is b ∈ A satisfying:

(1) φ(A0, a) = χ(A0, b),
(2) χ(A, b) ⊆ φ(A,a).

Proof. By the usual coding tricks, using |A| ≥ 2, it is enough to find a finite
set of formulas {χi}i<n such that for every finite set, one of them works.

For every formula θ(x, t), let nθ be its VC dimension. Proposition 5.3.3 gives
us a finite set {θ1, ..., θk} of formulas. Using the previous remark, we may assume
k = 1 and write θ(x, t) = θ1(x, t). Let N be given by Fact 5.2.6 taking p = k = nθ
(using Remark 5.2.7).

Let A0 ⊆ A ⊆ M |= T and a ∈ M be given, A0 is finite. Set B ⊆ A|t|

be the set of tuples b ∈ A|t| such that θ(A, b) ⊆ φ(A,a). Consider the family
F = {θ(d, B) : d ∈ φ(A0, a)} of subsets of B. This is a finite family, and by
hypothesis the intersection of any k members of it is non-empty. Therefore the
(p, k)-theorem applies and gives us N tuples b1, ...., bN ∈ B such that {b1, ..., bN}
intersects any set in F. Unwinding, we see that φ(A0, a) =

∨
i≤N θ(A0, bi) and∨

i≤N θ(A, bi) ⊆ φ(A,a). So taking χ(x, t1...tN) =
∨
i≤N θ(x, ti) works. �

5.3.2. UDTFS.
Recall the following classical fact characterizing stability of a formula.

Fact 5.3.5. The following are equivalent:
(1) φ(x, y) is stable.
(2) There is θ(x, z) such that for any A and a, there is b ∈ A satisfying

φ(A,a) = θ(A, b).
(3) There are m,n ∈ ω such that |Sφ(A)| ≤ m · |A|n for any set A.

Definition 5.3.6. We say that φ(x, y) has UDTFS (Uniform Definability of
Types over Finite Sets) if there is θ(x, z) such that for every finite A and a there
is b ∈ A such that φ(A,a) = θ(A, b). We say that T satisfies UDTFS if every
formula does.

Remark 5.3.7. If φ(x, y) has UDTFS, then it is NIP (by Fact 5.2.3).

Comparing Fact 5.3.5 and Fact 5.2.3 naturally leads to the following conjecture
of Laskowski: assume that φ(x, y) is NIP, then it satisfies UDTFS. It was proved
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for weakly o-minimal theories in [JL10] and for dp-minimal theories in [Gui10].
An immediate corollary of Theorem 5.3.4 is that if the whole T is NIP, then every
formula satisfies UDTFS.

Theorem 5.3.8. Let T be NIP. Then it satisfies UDTFS.

Proof. Follows from Theorem 5.3.4 taking A0 = A. �

Remark 5.3.9. This does not fully answer the original question as our argu-
ment is using more than just the dependence of φ(x, y) to conclude UDTFS for
φ(x, y). Looking more closely at the proof of Fact 5.3.1, we can say exactly how
much NIP is needed. Depending on the VC dimension of φ, there is a finite set
∆φ of formulas for which we have to require NIP consisting of formulas of the form
ψ(x1, ..., xk) = ∃y

∧
iφ(xi, y)

ε(i), where k is at most VC(φ) + 1.

UDTFS implies that in the statement of the (p, k)-theorem for sets inside an
NIP theory consistent pieces are uniformly definable.

Corollary 5.3.10. Let T be NIP. For any φ(x, y) there is ψ(y, z) and k ≤
N < ω such that: for every finite A, if {φ(x, a) : a ∈ A} is k-consistent, then there
are c0, ..., cN−1 ∈ A such that A =

⋃
i<Nψ(A, ci) and {φ(x, a) : a ∈ ψ(A, ci)} is

consistent for every i < N.

5.3.3. Strong honest definitions and distal theories.

Definition 5.3.11. A theory T is called distal if it satisfies the following prop-
erty: Let I+b+ J be an indiscernible sequence, with I and J infinite. For arbitrary
A, if I+ J is indiscernible over A, then I+ b+ J is indiscernible over A.

The class of distal theories was introduced in [Sim11a], in order to capture
the class of dependent theories which do not contain any “stable part”. Examples
of distal theories include ordered dp-minimal theories and Qp.

We will say that p(x), q(y) ∈ S(A) are orthogonal if p(x) ∪ q(y) determines a
complete type over A.

Proposition 5.3.12. [Strong honest definition] Let T be distal, A ⊂ M and
a ∈M arbitrary. Let (M ′, A ′) � (M,A) be |M|+-saturated. Then for any φ(x, y)
there are θ(x, z) and b ∈ A ′ such that |= θ(a, b) and θ(x, b) ` tpφ(a/A).

Proof. Let (M ′, A ′) � (M,A) be κ = |M|
+-saturated, we show that p =

tpL(a/A ′) is orthogonal to any L-type q ∈ S(A ′) finitely satisfiable in a subset of
size < κ. So take such a q, finitely satisfiable in C ⊂ A ′. By Lemma 5.2.5, there is
some D of size < κ, C ⊆ D ⊂ A ′, such that for any two realizations I, I ′ ⊂ A ′ of
q(ω)|D, we have tpL(aI/C) = tpL(aI ′/C). Take some I |= q(ω)|D in A ′ (exists by
saturation of (M ′, A ′) and finite satisfiability) and J |= q(ω)|M.

Claim. I+ J is indiscernible over aC.

Proof. As q(ω)|M is finitely satisfiable in C, by compactness and saturation
of (M ′, A ′) there is J ′ |= q(ω)|aDI in A ′.

If I + J is not aC-indiscernible, then I ′ + J ′ is not aC-indiscernible for some
finite I ′ ⊂ I. As both I ′ + J ′ and J ′ realize q(ω)|D in A ′, it follows that J ′ is not
indiscernible over aC – a contradiction. �
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Now, if b ∈M is any realization of q, then I+ b+ J is C-indiscernible. By the
claim and distality, I+b is aC-indiscernible. It follows that tp(b/Ca) is determined
by tp(a/A ′). As we can always take a bigger C, tp(b/A ′a) is determined, so p is
orthogonal to q as required.

Consider the set Sfs(A ′, A) of L-types over A ′ finitely satisfiable in A. It is a
closed subset of SL(A ′). By compactness, there is θ(x, b) ∈ p(x) such that for any
a ′ |= θ(x, b) and any c |= q(y) ∈ Sfs(A ′, A), |= φ(a, c)↔ φ(a ′, c). This applies, in
particular, to every c ∈ A and thus θ(x, b) ` tpφ(a/A). �

Remark 5.3.13. In fact, the argument is only using that every indiscernible
sequence in A ′ is distal.

Theorem 5.3.14. The following are equivalent:
(1) T is distal.
(2) For any φ(x, y) there is θ(x, z) such that: for any A, a and a finite C ⊆ A,

there is b ∈ A such that |= θ(a, b) and θ(x, b) ` tpφ(a/C)

Proof. (1)⇒(2): It follows from Proposition 5.3.12 that we have: For any
finite C ⊂ A, there is b ∈ A such that |= θ(a, b) and θ(x, b) ` tpφ(a/C). Similarly
to the proof of Theorem 5.3.4, we can choose θ depending just on φ.

(2)⇒(1): Let I + d + J be an indiscernible sequence, with I and J infinite.
Assume that I+ J is indiscernible over A, and we show that I+d+ J is indiscernible
over A.

Let a be a finite tuple from A and φ(x, y0...yn...y2n) ∈ L, and let θ(x, z) be
as given for φ by (2). Without loss of generality |= φ(a, b0...bn...b2n) holds for
all b0 < ... < b2n ∈ I + J. Let I0 ⊂ I be finite. Then for some b ⊂ I0, |= θ(a, b)
and θ(a, b) ` tpφ(a/I0). If we take I0 to be large enough compared to |z|, then
there will be some b0 < ... < bn < ... < b2n such that {bi}i≤2n ∩ b = ∅. As
we have |= ∀x θ(x, b) → φ(x, b0...bn...b2n), by indiscernibility of I + d + J for any
{b ′i}i≤2n,i6=n in I+ J there is a corresponding b ′ in I+ J such that |= ∀x θ(x, b ′)→
φ(x, b ′0...d...b

′
2n). As |= θ(a, b

′) holds by indiscernibility of I+ J over a, it follows
that |= φ(a, b0...d...b2n) holds – as wanted. �

Remark 5.3.15. It follows from this theorem that types over finite sets in
distal theories admit uniform definitions of a special “coherent” form as considered
in [ADH+11, Section 7.1].

5.4. (p,k)-theorem and forking

We recall some properties of dividing and forking in NIP theories.

Fact 5.4.1. Let T be NIP.
(1) If M |= T , then φ(x, a) divides over M ⇔ it forks over M ⇔ the set

{φ(x, a ′) : a ≡M a ′ ∈M} is inconsistent.
(2) For any φ(x, y), the set {a : φ(x, a) forks over M} is type-definable over

M.
(3) If (ai)i<ω is indiscernible over M and φ(x, a0) does not fork over M,

then {φ(x, ai)}i<ω does not fork over M.
(4) φ(x, a) does not fork over M ⇔ there is a global M-invariant type p with

φ(x, a) ∈ p.
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Proof. (1) and (2) are by Chapter 1, Theorem 1.1 and Chapter 1, Remark
3.33, (4) is from [Adl08]. Finally, (3) is well-known and follows from (4). Indeed,
if φ(x, a0) does not fork over M then it is contained in some global type p(x)
invariant over M. But then by invariance {φ(x, ai)}i<ω ⊆ p(x), thus does not fork
over M. �

Definition 5.4.2. LetM be a small model. We say that (φ(x, y), q(y)) (where
φ ∈ L(M) and q is a partial type over M) is a non-forking family over M if for
every a |= q(y), the formula φ(x, a) does not fork over M.

Notice that by Fact 5.4.1(2), if (φ(x, y), q(y)) is a non-forking family, then
there is some formula ψ(y) ∈ q such that (φ(x, y), ψ(y)) is a non-forking family.

Proposition 5.4.3. Let (φ(x;y), q(y)) be a non-forking family over M, then
there are finitely many global M-invariant types p1, ..., pn−1 such that for every
a |= q(y), there is i < n with pi ` φ(x;a).

Proof. Let M ≺ N be such that N is |M|+-saturated.
Consider the set X = {x ∈M : tp(x/N) is M-invariant}, it is type-definable

over N by {φ(x, a)↔ φ(x, b) : a, b ∈ N, a ≡M b, φ ∈ L}. Let F def
= {Y ⊆ X : Y =

X∩φ(x, a), a ∈ q(N)}, and notice that the dual VC-dimension of F is finite, say k
(as φ(x, y) is NIP).

Assume that for any p < ω, F does not satisfy the (p, k)-property. As by Fact
5.4.1(2) the set {(a0...ak−1) : φ(x, a0...ak−1) forks over M} is type-definable, by
Ramsey, compactness and Fact 5.4.1(4) we can find an M-indiscernible sequence
(ai)i<ω ⊆ q(N) such that

∧
i<kφ(x, ai) forks over M, contradicting Fact 5.4.1(3)

and the assumption on q.
Thus F satisfies the (p, k)-property for some p. Let n be as given by Fact 5.2.6

and define

Q(x0, ..., xn−1)
def
= {xi ∈ X}i<n ∪

{∨
i<n

φ(xi, a) : a ∈ q(N)

}
.

As every finite part of Q is consistent by Fact 5.2.6, there are b0...bn−1 realizing

it, take pi
def
= tp(bi/N). �

Remark 5.4.4. If q(x) is a complete type then this holds with n = 1, just by
taking some M-invariant p0(x) containing φ(x, a).

However, we cannot hope to replace invariant φ-types by definable φ-types in
the proposition.

Example 5.4.5. Let T be the theory of a complete discrete binary tree with
a valuation map. Let M0 be the prime model, and take c an element of valuation
larger than Γ(M0). Let d be the smallest element in M0. Let φ(x;y, z) say “if
z = d, then val(x) > val(y), if z 6= d, then x > y” (where > is the order in the
tree). Let ψ(y, z) = “z = d”. Then (φ,ψ) is a non-forking family over M, however
there is no definable φ-type consistent with φ(x; c, d).

Remark 5.4.6. In [CS11] it is proved that if T is a VC-minimal theory with
unpacking and M |= T , then φ(x, a) does not fork over M if and only if there is a
global M-definable type p(x) such that φ(x, a) ∈ p. The previous example shows
that the same result cannot hold in a general NIP theory.
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Problem 5.4.7. Assume φ(x, a) does not fork over M. Is there a formula
ψ(y) ∈ tp(a/M) such that {φ(x, a) : |= ψ(a)} is consistent (and thus does not fork
over M)?

5.5. Sufficient conditions for boundedness of TP

In Chapter 4 we have demonstrated the following result.

Fact 5.5.1. (1) Let (M,A) be bounded. If M is NIP and Aind is NIP,
then (M,A) is NIP.

(2) Let (M,A) be bounded and A ≺M. If M is NIP then (M,A) is NIP.

However, a general sufficient condition for the boundedness of an expansion by
a predicate for NIP theories is missing. In the stable case, a satisfactory answer is
given in [CZ01]. Recall:

Definition 5.5.2. (1) T satisfies nfcp (no finite cover property) if for any
φ(x, y) there is k < ω such that for any A, if {φ(x, a)}a∈A is k-consistent,
then it is consistent.

(2) We say that M |= T satisfies nfcp over A ⊂ M if for any φ(x, y, z) there
is k < ω such that for any A ′ ⊆ A and b ∈ M, if {φ(x, a, b)}a∈A ′ is
k-consistent, then it is consistent.

And then one has:

Fact 5.5.3. Let T be stable.
(1) [CZ01, Proposition 2.1] Assume that A ⊂ M |= T is small and M has

nfcp over A. Then (M,A) is bounded.
(2) [CZ01, Proposition 4.6] In fact, “nfcp over A” can be relaxed to “Aind is

nfcp”.

In this section we present results towards a possible generalization for unstable
NIP theories.

5.5.1. Dnfcp (nfcp for definable sets of parameters).

Definition 5.5.4. We say that M satisfies dnfcp over A ⊆ M if for any
φ(x, y, z) there is k ∈ ω such that: for any b ∈ M, if {φ(x, a, b) : a ∈ A} is k-
consistent, then it is consistent.

We remark that dnfcp over A is an elementary property of the pair (M,A).

Lemma 5.5.5. (1) nfcp over A ⇒ dnfcp over A.
(2) If T is stable and M |= T , then nfcp ⇔ nfcp over M ⇔ dnfcp over M.

Proof. (1) Clear.
(2) Assume that T is stable. Then nfcp and nfcp over M are easily seen to be

equivalent. Assume that T has fcp, then by Shelah’s nfcp theorem [She90, Theorem
4.4] there is a formula E(x, y, z) such that E(x, y, c) is an equivalence relation for
every c and for each k ∈ ω there is ck such that E(x, y, ck) has more than k, but
finitely many equivalence classes. Taking φ(x, y, z) = ¬E(x, y, z) andM big enough
we see that {φ(x, a, ck) : a ∈M} is k-consistent, but inconsistent. �

Lemma 5.5.6. If every formula of the form φ(x, y, z) with |x| = 1 is dnfcp over
A, then T is dnfcp over A.
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Proof. Assume we have proved that all formulas with |x| ≤ m are dnfcp,
and we prove it for |x| = m + 1. So assume that for every n < ω we have some
cn ∈ M such that {φ(x0...xm, a, cn)}a∈A is n-consistent, but not consistent. Let
ψ(x1...xm, yi...yl, z) = ∃x0

∧
i≤lφ(x0...xm, yi, z), of course still {ψ(x̄, ā, cn)}ā∈A

is bn/lc-consistent, so consistent for n large enough by the inductive assump-
tion. Let b1...bm realize it. Then consider Γ = {θ(x0, a, cnb1...bm)}a∈A where
θ(x0, a, cnb1...bm) = φ(x0b1...bm, a, cn). It is l-consistent. Again by the induc-
tive assumption, if l was chosen large enough, there is some b0 realizing Γ , but then
b0...bm |= {φ(x0...xm, a, cn)}a∈A - a contradiction. �

Example 5.5.7. DLO has dnfcp over models.

The following criterion for boundedness follows from the proof of [CZ01].

Theorem 5.5.8. Let A ⊂M be small and uniformly stably embedded. Assume
that M has dnfcp over A. Then (M,A) is bounded.

The problem with dnfcp is that it does not seem possible to conclude dnfcp
over A from properties of the induced structure on A. To remedy this, we introduce
a weaker variant with separated variables.

Definition 5.5.9. We say thatM satisfies dnfcp ′ over A ⊆M if for any φ(x, y)
and ψ(y, z), there is k < ω such that for any b ∈ M, if {φ(x, a) : a ∈ ψ(A, b)} is
k-consistent, then it is consistent. We say that T has dnfcp ′ if for any M ≺ N, N
has dnfcp ′ over M.

Remark 5.5.10. Let (M,A) be a pair, and assume that A is small and Aind is
saturated. Then if formulas are bounded, M has dnfcp ′ over A.

Proof. By assumption ∃y∀a ∈ P, ψ(a; z)→ φ(a;y) is equivalent to a bounded
formula θ(z), for any φ and ψ. If dnfcp ′ does not hold, then there is a consis-
tent bounded type satisfying ¬θ(z) and for all n, ∀a1, ..., an ∈ P ∃y,

∧
ψ(ai; z) →

φ(ai;y). As Aind is saturated, it is resplendent, and we can find a type over A
which satisfies this bounded type. By smallness of A in M, this type is realized by
some c ∈M. Then again by smallness, there is b ∈M such that ψ(a; c)→ φ(a;b)
for all a ∈ A. This contradicts the hypothesis on θ. �

We can now prove some preservation result.

Lemma 5.5.11. Let T be NIP, A ⊆M |= T and assume that Th
(
Aind(LP)

)
has

dnfcp ′. Then M has dnfcp ′ over A.

Proof. Let φ(x, y) and ψ(y, b) be given. Let θφ(y, s) be a uniform honest
definition for φ and θψ(y, t) a uniform honest definition for ψ (by Theorem 5.3.4).
Let (M ′, A ′) � (M,A) be a sufficiently saturated elementary extension, then nat-
urally A ′ind(LP) � Aind(LP). There is cψ ∈ A ′ such that ψ(A, b) = θψ(A, cψ).

Let χ(s) be the formula ∃d∀y ∈ Pθφ(y, s) → φ(d, y) and let k ∈ ω be as
given for θφ(y, s) ∧ χ(s), θψ(y, t) by dnfcp ′ of Aind(LP) for it. Assume that
{φ(x, a) : a ∈ ψ(A, b)} is k-consistent, then {θφ(a, s)∧ χ(s) : a ∈ θψ(A, cψ)} is
k-consistent (let d |= {φ(x, ai)}i<k, and choose cφ ∈ A such that {ai}i<k ⊆
θφ(A, cφ) ⊆ φ(d,A)). As Aind(LP) is dnfcp ′, we conclude that it is consis-
tent. In particular, for any n ∈ ω and a0, ..., an ∈ θψ(A, cψ) = ψ(A, b), there
is cφ ∈ A such that

∧
i<n θφ(ai, cφ) ∧ χ(cφ), thus unwinding there is some

d |= {φ(x, ai)}i<n. �
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5.5.2. Boundedness of the pair for distal theories. We now aim at giving
an analog of Theorem 5.5.3 for distal theories and stably embedded predicates.

First, we improve Lemma 5.5.11.

Lemma 5.5.12. Let T be distal, A ⊆M |= T and assume that Th
(
Aind(L)

)
has

dnfcp ′. Then M has dnfcp ′ over A.

Proof. Follow the proof of Lemma 5.5.11, except that we define χ(s) as
∃x∀yθφ(y, s)→ φ(d, y), which we can by strong honest definitions (Lemma 5.3.14).

�

Let A0 be a small subset ofM0, and take a |T |+-saturated (M,A) � (M0, A0).

Lemma 5.5.13. Assume that T is distal and M has dnfcp ′ over A. Let a ∈
M,ζ(x, y) ∈ L and q(y) ∈ S(A) be an a-definable type. Then the following are
equivalent:

(1) There is b |= q in M such that |= ζ(a, b).
(2) There is b |= q in M such that |= ζ(a, b).

Proof. By LP-saturation of (M,A) and definability of q(y) over a, it is enough
to find such a b realizing the φ(y, z)-part of q(y). Assume that it is definable by
dφ(z, a). Let θ(y, t) be given by Proposition 5.3.12 for φ, and let dθ(t, a) define the
θ-part of q. By dnfcp ′, the fact that dφ(z, a), dθ(t, a) define a consistent φ, θ-type
qa over P is expressible by a bounded formula ψ1(a) saying:

∀z1...zn ∈ P∀t1...tn ∈ P ∃y

∧
i≤n

φ(y, z)↔ dφ(z, a) ∧
∧
i≤n

θ(y, t)↔ dθ(t, a)

 ,
where n is given by dnfcp ′ for φ ′(y, z1z2t1t2) = φ(y, z1)∧¬φ(y, z2)∧θ(y, t1)∧

¬θ(y, t2) and ψ ′(z1z2t1t2, α) = dφ(z1, α)∧ ¬dφ(z2, α)∧ dθ(t1, α)∧ ¬dθ(t2, α).
Observe that for any d ∈ dθ(A,a), M |= ∃bθ(b, d)∧ ζ(a, b) (as q(y)∧ ζ(a, y)

is consistent). It can be expressed by a bounded formula ψ2(a).
Let a0 ∈M0 be such that (M0, A0) |= ψ1(a0)∧ψ2(a0). Assume that there is

a finite C ⊆ A0 such that qa0(y)|C∧ζ(a0, y) is inconsistent. Let d ∈ dθ(A0, a0) be
as given by Theorem 5.3.14. Then find some b ∈M0 such that |= θ(b, d)∧ζ(a0, b)
(by ψ2(a0)). By the hypothesis on θ, we have b |= qa0 |C – a contradiction.

So qa0(y) ∧ ζ(a0, y) is consistent, and it follows by smallness of A0 in M0

that (M0, A0) |= ∀xψ1(x)∧ψ2(x)→ ∃b |= qx(y)∧ ζ(x, y). It follows that (M,A)
satisfies the same sentence, and unwinding we conclude. �

Theorem 5.5.14. Let T be distal, A ⊆ M is small and (uniformly) stably
embedded, and Aind has dnfcp ′. Then TP is bounded.

Proof. By Lemma 5.5.12,M has dnfcp ′ over A. Take (M,A) a |T |
+-saturated

elementary extension of the pair. Let a, a ′ ∈ M be such that A[a] ≡ A[a ′]. We
have to show that tpLP

(a) = tpLP
(a ′). We do a back-and-forth. Take b ∈M.

Case 1: b ∈ A. As A[a] ≡ A[a ′], by LP-saturation we can find b ′ ∈ P such that
A[ab] ≡ A[a ′b ′].

Case 2: b ∈M \A. By stable embeddedness and Case 1, we may assume that
tp(ab/A) is a-definable. It is enough to find b ′ ∈ M \ A such that tp(b ′, a ′) =
tp(b, a) and tp(ab ′/A) is defined over a ′ the same way tp(ab/A) is over a. Now
the previous lemma (and saturation) applies and gives such a b ′. �



120 5. EXTERNALLY DEFINABLE SETS AND DEPENDENT PAIRS II

5.6. Naming indiscernible sequences, again

We recall briefly the story of the question. In [BB00] Baldwin and Benedikt
had established the following.

Fact 5.6.1. Let T be NIP. Let I ⊂M be a small indiscernible sequence indexed
by a dense complete linear order. Then Th (M, I) is bounded and the LP-induced
structure on I is just the linear order.

We have demonstrated (Chapter 4, Proposition 3.2) that in this case (M, I)
is still NIP. In this section we are going to complement the picture by resolving
some of the remaining questions: naming a small indiscernible sequence of arbitrary
order type preserves NIP, while naming a large indiscernible sequence may create
IP.

5.6.1. Naming an arbitrary small indiscernible sequence.

Lemma 5.6.2. Let I be small inM and N �M such that I is small in N. Then
(M, I) and (N, I) are elementary equivalent.

Proof. We do a back and forth starting with the identity mapping from I
to I, and inductively choosing A = {ai}i<ω ⊂ M and B = {bi}i<ω ⊂ N such
that tpL(AI) = tpL(BI). Assume we have chosen {ambm : m < n} and we pick
an ∈M. Consider p(x,AI) = tpL(an/AI). By the inductive assumption, p(x, BI) is
consistent. Let bn ∈ N realize it (possible by smallness). In the end, in particular,
AI ≡qf−LP BI. �

Assume that D is an L-definable set which is uniformly stably embedded in the
sense of T (and T eliminates quantifiers in a relational language L), let P name a
subset of D. Now let (N,P) be a saturated model of the pair.

A formula is D-bounded if it is equivalent to one of the form ψ(x̄) = Q1z1 ∈
D...Qnzn ∈ D

∨
i<mφi(x̄, z̄)∧χi(x̄, z̄), where φi(x̄, z̄) is a qf-L-formula and χi(x̄, z̄)

is a qf-P-formula (follows from the relationality of L).

Lemma 5.6.3. Let a, a ′ ∈ N have the same D-bounded type, then a ≡LP a ′.

Proof. We do a back-and -forth. Assume that a ≡LD−bdd

a ′, and let b ∈ N
be arbitrary.

Case 1. b ∈ D: Consider p(x, a) = tpLD−bdd(ba). For any finite p0(x, a) ⊆
p(x, a) we have |= ∃x ∈ Dp0(x, a), which is a D-bounded formula, thus |= ∃x ∈
Dp0(x, a

′), and by saturation of N there is b ′ ∈ D satisfying ab ≡LD−bdd

a ′b ′.
Case 2. b /∈ D: Possibly adding some points inD using (1), we may assume that

tpL(ab/D) is L-definable over c = a∩D. Take some b ′ ∈ N such that ab ≡L a ′b ′,
then tpL(a ′b ′/D) is L-definable over c ′ = a ′ ∩ D using the same formulas. We
want to check that ab ≡LD−bdd

a ′b ′. Let ψ(x̄) be a D-bounded formula, say
ψ(x̄) = Q1z1 ∈ D...Qnzn ∈ D

∨
i<mφi(x̄, z̄)∧ χi(x̄, z̄). Then we have:

|= Q1x1 ∈ D...Qnxn ∈ D
∨
i<mφi(ab, x̄)∧χi(ab, x̄)⇔ |= Q̄x̄ ∈ D

∨
i<m dφi(c, x̄)∧

χ
′

i(x̄) (as we know the truth values of P(x) on ab) ⇔ |= Q̄x̄ ∈ D
∨
i<m dφi(c

′, x̄)∧

χ
′

i(x̄) (as c ≡L
D−bdd
P c ′) ⇔ |= Q1x1...Qnxn

∨
i<mφi(a

′b ′, x̄)∧ χi(a
′b ′, x̄) (as the

truth values of P(x) on a ′b ′ are the same by the choice of b ′ and assumption on
a ′). �

Lemma 5.6.4. Assume that Th(Dind, P) is bounded. Then Th(M,P) is bounded.
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Proof. Let (N,P) be saturated. Assume that P[a] ≡ P[a ′] and let b be given.
If b ∈ D, then we find a b ′ ∈ D such that P[ab] ≡ P[a ′b ′] by the assumption

that (D,P) is bounded and saturation.
If b /∈ D, then we take the same b ′ as in (2) of the previous lemma and conclude

that bb ′ ≡LD−bdd
P aa ′ in the same way (using that c ≡LP−bdd

P c ′ ⇒c ≡LD−bdd
P c ′),

which is sufficient (clearly, if two tuples have the same D-bounded LP-type, then
they have the same P-bounded LP-type). �

Lemma 5.6.5. In the situation as above, if T is NIP and (D,P) with the induced
quantifier-free structure is NIP, then TP is NIP.

Proof. AsDind(LqfP ) is NIP, it follows thatDind(LD−bdd
P ) is NIP. Conclude as

in Corollary 2.5 in Chapter 4 (and even easier asD is actually stably embedded). �

Theorem 5.6.6. Let (M, I) be small and M be NIP. Then (M, I) is NIP.

Proof. Let (M, I) be small. By Lemma 5.6.2 we may assume thatM is
(
2|I|
)+

-
saturated. Let I ⊆ J ⊂M, where J is a dense complete indiscernible sequence such
that (M, J) is still small. Name J by D, and let T ′ be a Morleyzation of TD. Then
by Fact 5.6.1, T ′ is NIP and D is stably embedded. Thus formulas in T ′P are D-
bounded by Lemma 5.6.3. It is easy to check directly that (Jind, I) is bounded, thus
T ′P is P-bounded by Lemma 5.6.4. Conclude by Fact 5.5.1 (as the structure induced
on I is still NIP). �

5.6.2. Large indiscernible sequence producing IP. Take L = {<,E} and
T saying that < isDLO and E is an equivalence relation with infinitely many classes,
all of which are dense co-dense with respect to <. It is easy to check by back-and-
forth that this theory eliminates quantifiers and that it is NIP. Let M/E denote
the imaginary sort of E-equivalence classes.

Let D be an equivalence class, pick some x0 ∈ M outside of it and take P to
name D ∩ (−∞, x0). Consider the formula

φ(x) = ∃y∀s < y∃t ∈ P, yEx∧ s < t < y∧ (¬∃u > y, u ∈ P).

Then φ(x) picks out exactly the points equivalent to x0. Easily, that formula
is not equivalent to a D-bounded one (simply because all imaginary elements of
equivalence classes different from D have exactly the same type over D).

Now consider the following formula:

S(x1, x2) = ∃y1, y2, y1Ex1 ∧ y2Ex2 ∧ L0(y1)∧ R0(y2)∧ (∀y1 < z < y2,¬P(z))

where L0(y) = ∃t ∈ P ∀s ∈ P, t < y∧ (s > t→ y < s) and same for R0(y), but
reversing the inequalities.

Claim 5.6.7. (1) Let D be an equivalence class. Then any increasing
sequence contained in D is indiscernible.

(2) Let G be an arbitrary countable graph. Then we can choose P ⊆ D such
that (M/E, S) ∼= G.

Proof. (1) is immediate by the quantifier elimination.
(2) By induction, for every edge e1e2 ∈ (M/E)2 that we want to put, chose a

pair of representatives a1, a2 ∈ Q such that the interval (a1, a2) is disjoint from all
the previously chosen intervals. Let P name the set of points in D outside of the
union of these intervals. �
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In particular we can choose P so that TP interprets the random graph.

Remark 5.6.8. We also observe that naming two small indiscernible sequences
at once can create IP. This time we name sequences which satisfy ¬xEy for any
two points x and y in them. So pick any small I0. Let A = A[I0] = {t ∈ M/E :
∃x ∈ I0, xEt}. Then A gets an order <0 form I0 induced by <. Fix <1 any other
order on A. Then we can find another sequence I1 such that A[I1] = A and the
order induced on A by I1 is <1. With two linear orders, we can code pseudo-finite
arithmetic as in [SS11]. In particular we have IP.

5.7. Models with definable types

Classically,

Fact 5.7.1. T is stable ⇔ for every M |= T , |S(M)| ≤ |M|
|T | ⇔ for every

M |= T , all types over it are definable ⇔ there is a saturated M |= T with all types
over it definable.

We start by observing that if T is NIP, then it has models of arbitrary size with
few types over them.

Proposition 5.7.2. Let T be NIP. For any κ ≥ |T | there is a model M with
|M| = κ such that |S(A)| ≤ |A||T | for every A ⊆M.

Proof. If T is stable then every model of size κ works. Otherwise assume T
is unstable and let I = (aα)α<κ be linearly ordered by < (x, y) ∈ L. Let TSk be a
Skolemization of T , and let M = Sk(I), |M| ≤ κ+ |T |.

We show that SL(M) ≤ κ|T |. Consider

L̃ := {φ(x, f(ȳ)) : φ ∈ L and fis an LSk-definable function}.

Notice that every ψ(x, y) ∈ L̃ is NIP. But then (by Remark 5.2.2) for every ψ ∈ L̃,
every ψ-type over I is <-definable, in particular |SL̃(I)| ≤ |I||T |.

Given p, q ∈ SL(M) choose some p ′, q ′ ∈ SL̃(M) with p ⊆ p ′, q ⊆ q ′. It is
easy to see that p ′|I = q ′|I ⇒ p = q (for any a ∈M and φ ∈ L we have φ(x, a) ∈ p⇐⇒φ(x, f(b̄)) ∈ p ′|I where b̄ ⊆ I and f(b̄) = a), thus |SL(M)| ≤ |SL̃(I)| ≤ κ|T |. �

Remark 5.7.3. Slightly elaborating on the argument, we may construct such
anM which is in addition gross (M is called gross if every infinite subset definable
with parameters from M is of cardinality |M|, see [LP04]).

In general one cannot find a model such that all types over it are definable (for
example, take RCF and add a new constant for an infinitesimal). However, some
interesting NIP theories have models with all types over them definable.

Example 5.7.4. (1) R as a model of RCF (and this is the only model of
RCF with all types definable).

(2) In ACVF there are arbitrary large models with all types definable (maxi-
mally complete fields with R as a value group).

(3) (Z,+, <) is a model of Presburger arithmetic with all types definable (but
there are no larger models).

(4) (Qp,+,×, 0, 1) (by [Del89]).
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When looking at a particular example, it is usually much easier to check that
1-types are definable, rather than n-types, and one can ask if this is actually the
same thing.

Definition 5.7.5. Let A be a set. We say that it is (n,m)-stably embedded if
every subset of An which can be defined as φ(A,a) with |a| ≤ m, can actually be
defined as ψ(A, b) with b ∈ A. We say that it is uniformly (n,m)-stably embedded
if ψ can be chosen depending just of φ (and not on a). A compactness argument
shows that for a definable set A, it is (n,m)-stably embedded if and only if it
is uniformly (n,m)-stably embedded. Obviously, (∞, n)-stable embeddedness is
equivalent to definability of n-types over A.

Of course, (n,m)-stable embeddedness implies (n ′,m ′)-stable embeddedness
for n ′ ≤ n,m ′ ≤ m.

Proposition 5.7.6. Let T be NIP and assume that M is (∞, n)-stably embed-
ded. Then it is (n,∞)-stably embedded.

Proof. By definability, every type p ∈ Sn(M) has a unique heir.
Claim 1: If p ∈ Sn(M) has a unique heir, then it has a unique coheir.
Let p ′(x) be the unique global heir of p. Let p1(x) be a global coheir of p,

and (ai)i<ω a Morley sequence in it over M. Given m̄ ∈ M and noticing that
tp(a0/a1...anM) is an heir over M (so is contained in a global heir as M |= T) we
have that |= φ(a0, ..., an, m̄) if and only if φ(x, a1...anm̄) ∈ p ′(x). Thus by Fact
5.2.4, p has a unique global coheir.

Claim 2: Every p ∈ Sn(A) has a unique coheir⇔ A is (n,∞)-stably embedded.⇒: Let φ(x, c) ∈ L(M) and consider p(x) ∈ Sn(A) finitely satisfiable in φ(x, c)∩
A. If it was finitely satisfiable in ¬φ(x, c)∩A as well, then p would have two coheirs,
thus there is some ψp(x) ∈ p(x) with ψp(x)→A φ(x, c). By compactness we have∨
ψpi(x)↔A φ(x, c) for finitely many pi’s.⇐: Let p1, p2 be two global coheirs of p ∈ Sn(A), and assume that φ(x, a) ∈

p1,¬ψ(x, a) ∈ p2. Let ψ(x) ∈ L(A) be such that ψ(An) = φ(An, a). It follows
that ψ(x) ∈ p. But this implies that p2 cannot be a coheir as ψ(x) ∧ ¬φ(x, a) is
not realized in A. �

And so it is natural to ask whether (∞, 1)-stable embeddedness of M implies
(∞, n)-stable embeddedness. The answer is yes in stable theories, for the obvious
reason, and yes in o-minimal theories, where by a theorem of Marker and Steinhorn
[MS94], (1, 1) → (∞,∞) for models. However, we show in the next section that
this is not true in NIP theories in general. The question remains open for C-minimal
theories.

5.7.1. Example of (∞, 1) 6→ (∞,m).
5.7.1.1. General construction. Start with a theory T in a language L containing

an equivalence relation E(x, y). Assume T has a model M0 composed of ω-many
E-equivalence classes, each one finite of increasing sizes. So that any modelM of T
contains M0 as a sub-model and all the E-classes disjoint from M0 are infinite.

We consider the language L ′ defined as follows:
• For each relation R(x1, ..., xn) in L, L ′ contains a relation R ′(x1, y1, ..., xn, yn).
• Also L ′ contains an equivalence relation Ẽ(u, v), a binary relation S(u, v)

and a quaternary relation U(u1, v1, u2, v2). The relation S will code a
graph and U will be an equivalence relation on S-edges.
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We build an L ′ structure N0 as follows:
N0 hasω-many Ẽ-equivalence classes, corresponding to the E-equivalence classes

of M0. Let e be an E-class, and let n be its size. Then the corresponding Ẽ class
ẽ in N0 is a finite regular graph, with S as the edge relation, of degree n (every
vertex has degree n) and with no cycles of length ≤ n (such graphs exist, see e.g.
[Bol78, III.1, Theorem 1.4’]). The predicate U is interpreted as an equivalence
relation between edges so that every vertex is adjacent to exactly one edge from
each equivalence class. We fix a bijection π between U-equivalence classes and ele-
ments of the E-class e. This being done, for each relation R(x1, ..., xn) we say that
R ′(x1, y1, ..., xn, yn) holds in N0 if

∧
i≤n S(xi, yi) and if R(π(x1, y1), ..., π(xn, yn))

holds in M0.
Note that any model of T ′ = Th(N0) contains N0 as submodel and its Ẽ-

classes not in N0 are infinite and composed of disjoint unions of trees with infinite
branching. So the graph structure does not interact in any way with the structure
coming from the R ′ relations.

Given a model of T ′ we can recover a model ofM0 by looking at U-equivalence
classes and we obtain in this way every model of T . So there are at least as many
2-types over N0 as there are 1-types over M0. However, the non-realized 1-types
over N0 correspond to imaginary types of non-realized E-classes over M0. See be-
low.

Assume that L contains a constant for every element of M0. Let N |= T ′ and
denote by M the model of T which we get from N. We build a language L ′′ ⊃ L ′:

• We add a constant for every element of N0.
• For every n ∈ ω, we add a relation dn(u, v) which holds if and only if u

and v are at distance n (in the sense of the shortest path in graph S(u, v)).
• For every ∅-definable set φ(x1, ..., xn, y1, ..., ym) ofM0 which is E-congruent

with respect to the variables xi (i.e., for aiEa ′i and bi’s, we have
φ(a1, ..., an, b1, ..., bm)↔ φ(a ′1, ..., a

′
n, b1, ..., bm)) we add a predicate

Wφ(x1, ..., xn, y1, z1, ..., ym, zm) which we interpret as:
N |= Wφ(a1, ..., an, b1, c1, ..., bm, cm) if and only if

∧
i≤m S(bi, ci) and

for some e1, ..., en ∈M with ei in the E-class corresponding to the Ẽ-class
of ai, we have M |= φ(e1, ..., en, π(b1, c1), ..., π(bm, cm)).

Claim 5.7.7. If T eliminates quantifiers in L, then T ′ eliminates quantifiers in
L ′′.

Proof. By easy back-and-forth. �

Corollary 5.7.8. If T is NIP, then T ′ is NIP.

Corollary 5.7.9. Assume that all (imaginary) types of a new E class in M0

are definable, then all 1-types over N0 are definable.

5.7.1.2. An example of M0 with NIP. Let L0 = {≤, E}. We build an L0-
structure M0 as follows:

• The reduct to ≤ is a binary tree with a root (every element has exactly
two immediate successors, there is a unique element with no predecessor).
The tree is of height ω, so every element is at finite distance from the
root.
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• Two elements are E-equivalent if they are at the same distance from the
root.

This theory eliminates quantifiers in the language L obtained from L0 by adding a
constant for every element of M0, a binary function symbol ∧ interpreted as x∧ y
is the maximal element z such that z ≤ x and z ≤ y and for each n a predicate
dn(x, y) saying that the difference between the heights of x and y is n. Note that
those predicates are E-congruent.

Clearly, M0 is NIP, there is a unique imaginary type of a new E-class over M0

and this type is definable. However, not all types over M0 are definable.
So we obtain the required counter-example.

Remark 5.7.10. Together with Proposition 5.7.6 it follows that also (1,∞) 6→
(n,∞) in a general NIP theory. Another example due to Hrushovski witnessing this
is presented in Pillay [Pil11] – a proper dense elementary pair of ACVF’s F1 ≺ F2
with the same residue field and value group. Then F1 is (1,∞)-stably embedded in
F2, but if a ∈ F2 \F1, then the function taking x ∈ F1 to v(x−a) is not F1-definable.

5.7.2. Some positive results. In [Pil11] Pillay had established the follow-
ing.

Fact 5.7.11. Let A be a definable subset of M. Assume that Aind is rosy, M
is NIP over A and A is (1,∞)-stably embedded. Then A is stably embedded.

In fact, one can replace the definable set A with a model, at the price of
requiring that (1,∞)-stable embeddedness is uniform. We explain briefly how to
modify Pillay’s argument.

Theorem 5.7.12. Let A �M. Assume that Aind is rosy,M is NIP over A and
A is uniformly (1,∞)-stably embedded. Then A is uniformly stably embedded.

Proof. Assume that A �M is a counterexample to the theorem. We consider
(M,A) as a pair with P naming A. As A is a model, it follows that Aind eliminates
quantifiers, thus every set definable in Aind is given by the trace of an L-formula.
As there are two languages L and LP around, we make a terminology clarification:
induced structure is always meant to be with respect to L formulas, and (n,m)-
stable embeddedness always means that sets externally definable by L-formulas are
internally definable by L-formulas.

Claim. We may assume that (M,A) is saturated (as a pair in the LP language).

Proof. Just let (N,B) � (M,A) be a saturated extension. Of course, A is
uniformly (n,∞)-stably embedded inM if and only if B is uniformly (n,∞)-stably
embedded in N. Notice that Bind � Aind, thus Bind is rosy. Finally, N is still NIP
over B with respect to L-formulas. �

Claim. Let f : A→ Z be an L(M)-definable function (namely the trace on A
of an L(M)-definable relation which happens to define a function on A), where Z
is some sort in Aeq

ind . Then there is an L(A)-definable relation R(x, y) and k < ω
such that (M,A) |= ∀x ∈ P

(
R(x, f(x))∧ ∃≤ky ∈ P R(x, y)

)
.

Proof. Let the graph of f be defined by f(x, y, e) ∈ L(M). Let κ be large
enough. Working entirely in Aind, assume that we could choose (aibi)i<κ in A
such that bi = f(ai) and bi /∈ aclL

(
(ajbj)j<i ai

)
for all i. Following Pillay’s
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proof of [Pil11, Lemma 3.2] and using saturation of Aind, we may assume that
(aibi) is L-indiscernible and then find (b ′i) in A such that b ′i = bi if and only if i
is even, and tpL

(
(aibi)i<κ

)
= tpL

(
(aib

′
i)i<κ

)
, so still L-indiscernible. But then

(M,A) |= f(ai, b
′
i, e) if and only if i is even – a contradiction to M being NIP over

A with respect to L-formulas.
So, by compactness we find some R(x, y) ∈ L(A) and k < ω such that (M,A) |=

∀x ∈ P R(x, f(x))∧ ∃≤ky ∈ P R(x, y). �

Claim. In the previous claim, we can take k = 1.

Proof. Pillay’s proof of [Pil11, Lemma 3.3] goes through again, with acl, dcl
and forking all considered inside of the L-induced structure on A (which is saturated
and eliminates quantifiers). �

Finally, we conclude by induction on the dimension of the externally definable
sets. So let X = An+1∩φ(x0, ..., xn, xn+1, c) be given, and assume inductively that
A is uniformly (n,∞)-stably embedded (the base case given by the assumption).
For any a ∈ A, let Xa = An ∩ φ(x0, ..., xn, a, c). By the inductive assumption,
there is some ψ(x0, ..., xn, z) such that for any a ∈ A, Xa = An ∩ ψ(x0, ..., xn, b)
for some b ∈ A. By Shelah’s expansion theorem, the function f : A→ Z sending a
to [b]ψ (the canonical parameter of ψ(x0, ..., xn, b)) is externally definable. Thus,
by the previous claim, it is actually definable with parameters from A. It follows
that X is defined by ψ(x0, ..., xn, f(xn+1)). �

As an application, we obtain a new proof of a theorem of Marker and Steinhorn
[MS94].

Corollary 5.7.13. Let T be o-minimal and M |= T . Assume that the order
on M is complete. Then all types over M are uniformly definable.



CHAPTER 6

On non-forking spectra

This chapter is a joint work with Itay Kaplan and Saharon Shelah as is submit-
ted to the Transactions of the American Mathematical Society as “On non-forking
spectra” [CKS12].

Non-forking is one of the most important notions in modern model theory cap-
turing the idea of a generic extension of a type (which is a far-reaching generalization
of the concept of a generic point of a variety).

To a countable first-order theory we associate its non-forking spectrum — a
function of two cardinals κ and λ giving the supremum of the possible number of
types over a model of size λ that do not fork over a sub-model of size κ. This is a
natural generalization of the stability function of a theory.

We make progress towards classifying the non-forking spectra. On the one hand,
we show that the possible values a non-forking spectrum may take are quite limited.
On the other hand, we develop a general technique for constructing theories with a
prescribed non-forking spectrum, thus giving a number of examples. In particular,
we answer negatively a question of Adler whether NIP is equivalent to bounded
non-forking.

In addition, we answer a question of Keisler regarding the number of cuts a
linear order may have. Namely, we show that it is possible that ded κ < (ded κ)ω.

6.1. Introduction

The notion of a non-forking extension of a type (see Definition 6.2.3) was intro-
duced by Shelah for the purposes of his classification program to capture the idea
of a “generic” extension of a type to a larger set of parameters which essentially
doesn’t add new constraints to the set of its solutions. In the context of stable
theories non-forking gives rise to an independence relation enjoying a lot of natural
properties (which in the special case of vector spaces amounts to linear indepen-
dence and in the case of algebraically closed fields to algebraic independence) and is
used extensively in the analysis of models. In a subsequent work of Shelah [She80],
Kim and Pillay [Kim98, KP97] the basic properties of forking were generalized to
a larger class of simple theories. Recent work of the first and second authors shows
that many properties of forking still hold in a larger class of theories without the
tree property of the second kind (Chapter 1).

Here we consider the following basic question: how many non-forking extensions
can there be? More precisely, given a complete first-order theory T , we associate to
it its non-forking spectrum, a function fT (κ, λ) from cardinals κ ≤ λ to cardinals
defined as:

fT (κ, λ) = sup
{
Snf(N,M) |M � N |= T, |M| ≤ κ, |N| ≤ λ

}
,

127
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where Snf (A,B) = {p ∈ S1(A) |p does not fork over B } (counting 1-types rather
than n-types is essential, as the value may depend on the arity, see Section 6.5.8).

This is a generalization of the classical question “how many types can a the-
ory have?”. Recall that the stability function of a theory is defined as fT (κ) =
sup {S (M) |M |= T, |M| = κ }. It is easy to see that fT (κ, κ) = fT (κ). This func-
tion has been studied extensively by Keisler [Kei76] and the third author [She71],
where the following fundamental result was proved:

Fact 6.1.1. For any complete countable first-order theory T , fT is one of the
following: κ, κ+ 2ℵ0 , κℵ0 , ded (κ), ded (κ)ℵ0 , 2κ.

Where ded (κ) is the supremum of the number of cuts that a linear order of
size κ may have (see Definition 6.6.1). While this result is unconditional, in some
models of ZFC, some of these functions may coincide. Namely, if GCH holds,
ded (κ) = ded (κ)ℵ0 = 2κ. By a result of Mitchell [Mit73], it was known that for
any cardinal κ with cof κ > ℵ0 consistently ded (κ) < 2κ. In 1976, Keisler [Kei76,
Problem 2] asked whether ded (κ) < ded (κ)ℵ0 is consistent with ZFC. We give a
positive answer in Section 6.6.

The aim of this paper is to classify the possibilities of fT (κ, λ). The philosophy
of “dividing lines” of the third author suggests that the possible non-forking spectra
are quite far from being arbitrary, and that there should be finitely many possible
functions, distinguished by the lack (or presence) of certain combinatorial config-
urations. We work towards justifying this philosophy and arrive at the following
picture.

Theorem 6.1.2. Let T be countable complete first-order theory. Then for λ�
κ, fT (κ, λ) can be one of the following, in increasing order (meaning that we have
an example for each item in the list except for (11), and “???” means that we don’t
know if there is anything between the previous and the next item, while the lack of
“???” means that there is nothing in between):

(1) κ
(2) κ+ 2ℵ0
(3) κℵ0
(4) ded κ
(5) ???
(6) (ded κ)ℵ0

(7) 22
κ

(8) λ
(9) λℵ0
(10) ???
(11) λ<iℵ1

(κ)

(12) ded λ

(13) ???
(14) (ded λ)ℵ0

(15) ???
(16) 2λ

In particular, note that the existence of an example of fT (κ, λ) = 22
κ

answers
negatively a question of Adler [Adl08, Section 6] whether NIP is equivalent to
bounded non-forking.

The restriction λ� κ is in order to make the statement clearer. It can be taken
to be λ ≥ iℵ1 (κ). In fact we can say more about smaller λ in some cases. In the
class of NTP2 theories (see Section 6.4), we have a much nicer picture, meaning
that there is a gap between (6) and (16).

In the first part of the paper, we prove that the non-forking spectra cannot
take values which are not listed in the Main Theorem. The proofs here combine
techniques from generalized stability theory (including results on stable and NIP
theories, splitting and tree combinatorics) with a two cardinal theorem for Lω1,ω.
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The second part of the paper is devoted to examples.
We introduce a general construction which we call circularization. Roughly

speaking, the idea is the following: modulo some technical assumptions, we start
with an arbitrary theory T0 in a finite relational language and an (essentially)
arbitrary prescribed set of formulas F. We expand T by putting a circular order on
the set of solutions of each formula in F, iterate the construction and take the limit.
The point is that in the limit all the formulas in F are forced to fork, and we have
gained some control on the set of non-forking types. This construction turns out
to be quite flexible: by choosing the appropriate initial data, we can find a wide
range of examples of non-forking spectra previously unknown.

6.2. Preliminaries

Our notation is standard: κ, λ, µ are cardinals; α,β, . . . are ordinals; M,N, . . .
are models; M is always a monster model of the theory in question; B[κ] is the set of
subsets of B of size ≤ κ; T is a complete countable first-order theory; for a sequence
ā = 〈ai | i < α 〉, EM (ā/A) denotes its Ehrenfeucht-Mostowski type over A.

6.2.1. Basic properties of forking and dividing.
We recall the definition of forking and dividing (e.g. see Chapter 1, Section 2 for

more details).

Definition 6.2.1. (Dividing) Let A be be a set, and a a tuple. We say that
the formula ϕ (x, a) divides over A if and only if there is a number k < ω and
tuples {ai |i < ω } such that

(1) tp (ai/A) = tp (a/A).
(2) The set {ϕ (x, ai) | i < ω } is k-inconsistent (i.e. every subset of size k is

not consistent).
In this case, we say that a formula k-divides.

Remark 6.2.2. From Ramsey and compactness it follows that ϕ (x, a) divides
over A if and only if there is an indiscernible sequence over A, 〈ai |i < ω 〉 such that
a0 = a and {ϕ (x, ai) | i < ω } is inconsistent.

Definition 6.2.3. (Forking) Let A be be a set, and a a tuple.
(1) Say that the formula ϕ (x, a) forks over A if there are formulas ψi (x, ai)

for i < n such that ϕ (x, a) `
∨
i<nψi (x, ai) and ψi (x, ai) divides over

A for every i < n.
(2) Say that a type p forks over A if there is a finite conjunction of formulas

from p which forks over A.

It follows immediately from the definition that if a partial type p (x) does not
fork over A then there is a global type p ′ (x) ∈ S (M) extending p (x) that does not
fork over A.

Lemma 6.2.4. Let (A,≤) be a κ+-directed order and let f : A→ κ. Then there
is a cofinal subset A0 ⊆ A such that f is constant on A0.

Proof. Assume not, then for every α < κ there is some aα ∈ A such that
f(a) 6= α for any a ≥ aα. By κ+-directedness there is some a ≥ aα for all α < κ.
But then whatever f(a) is, we get a contradiction. �
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Lemma 6.2.5. Assume that p(x) ∈ S(A) does not fork over B. Then there is
some B0 ⊆ B such that |B0| ≤ |A|+ |T | and p(x) does not fork over B0.

Proof. Let κ = |A|+ |T |, and assume the converse. Then p (x) forks over every
C ⊆ B with |C| ≤ κ. That is, for every C ∈ B[κ] there are pC ⊆ p with |pC| < ω,
ψC0 (x, y0) , . . . , ψ

C
mC−1 (x, ymC) ∈ L and kC < ω such that for some dC0 , ..., d

C
mC−1,

pC (x) `
∨
i<mC

ψCi
(
x, dCi

)
and each of ψCi

(
x, dCi

)
is kC-dividing over C. As B[κ]

is κ+-directed under inclusion and |p (x)| ≤ κ, it follows by Lemma 6.2.4 that for
some finite p0 ⊆ p, {ψi | i < m } and k this holds for every C ∈ B[κ]. But then by
compactness p0(x) forks over B — a contradiction. �

6.2.2. The non-forking spectra.

Definition 6.2.6. (1) For a countable first-order T and infinite cardinals
κ ≤ λ, let

fT (κ, λ) = sup
{
Snf(N,M) |M � N |= T, |M| ≤ κ, |N| ≤ λ

}
,

where Snf (A,B) = {p ∈ S1(A) |p does not fork over B }. We call this func-
tion the non-forking spectrum of T .

(2) For n > 1, we may also define fnT (κ, λ) and Snfn similarly where we replace
1-types with n-types.

All the proofs in Section 6.3 remain valid for fT replaced by fnT .

Remark 6.2.7. A special case fT (κ, κ) is the well-known stability function
fT (κ) because Snf (N,N) = S (N) (Because every type over a model M does not
fork over M).

Some easy observations:

Lemma 6.2.8. For all κ ≤ λ,
(1) fT (κ) ≤ fT (κ, λ)
(2) κ ≤ fT (κ, λ) ≤ 2λ
(3) If fT (κ, λ) ≥ µ and κ ≤ κ ′ then fT (κ ′, λ) ≥ µ.
(4) fnT (κ, λ) ≤ fn+1T (κ, λ)

For set theoretic preliminaries, see Section 6.6.

6.3. Gaps

In the following series of subsections, we exclude all the possibilities for fT
which are not in our list (except when “???” is indicated).

6.3.1. On (1) – (4).

Definition 6.3.1. Recall that a theory T is called stable if fT (κ) ≤ κℵ0 for
all κ (see [She90, Theorem II.2.13] for equivalent definitions).

Remark 6.3.2. If T is stable then every type over a model M has a unique
non-forking extension to any model containing M, so fT (κ) = fT (κ, λ) for all
λ ≥ κ ≥ ℵ0.

If T is unstable, then fT (κ) ≥ ded (κ) for all κ (see [She90, Theorem II.2.49]),
so fT (κ, λ) ≥ ded (κ) for all λ ≥ κ.
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Proposition 6.3.3. The following holds:
(1) If fT (κ, λ) > κ for some λ ≥ κ then fT (κ, λ) ≥ κ+ 2ℵ0 for all λ ≥ κ.
(2) If fT (κ, λ) > κ+ 2ℵ0 for some λ ≥ κ then fT (κ, λ) ≥ κℵ0 for all λ ≥ κ.
(3) If fT (κ, λ) > κℵ0 for some λ ≥ κ then fT (κ, λ) ≥ ded (κ) for all λ ≥ κ.

Proof. (3): Suppose fT (κ, λ) > κℵ0 for some λ ≥ κ. Then T is unstable, then
by Remark 6.3.2 and so fT (κ, λ) ≥ ded (κ) for all λ ≥ κ.

(1): Suppose fT (κ, λ) > κ for some λ ≥ κ. Without loss of generality T is
stable. So fT (κ) = fT (κ, λ) > κ. By Fact 6.1.1, fT (κ) ≥ κ + 2ℵ0 for all κ, and we
are done.

(2): Similar to (1). �

6.3.2. The gap between (6) and (7).

Definition 6.3.4. (1) A formula ϕ (x, y) has the independence property
(IP) if there are
{ai | i < ω } and {bs | s ⊆ ω } in M such that ϕ (ai, bs) holds if and only if
i ∈ s for all i < ω and s ⊆ ω.

(2) A theory T is NIP (dependent) if no formula ϕ (x, y) has IP.

See [Adl08] for more about NIP.

Fact 6.3.5. If T is NIP andM |= T then the |S (M)| ≤ (ded |M|)
ℵ0 [She71] and

if M ≺ N and p ∈ S (M) then p has at most (ded |M|)
ℵ0 non-forking extensions

(e.g. follows from the proof of [Adl08, Theorem 42], noticing that |Sω (M)| ≤
(ded |M|)

ℵ0). It follows that
∣∣∣Snf (N,M)

∣∣∣ ≤ (ded |M|)
ℵ0 .

A generalization of a result due to Poizat [Poi81].

Proposition 6.3.6. Assume that fT (κ, λ) > (ded κ)ℵ0 for some λ ≥ κ. Then
fT (κ, λ) ≥ 2min{λ,2κ} for all λ ≥ κ.

Proof. By Fact 6.3.5, some formula ϕ (x, y) in T has IP.
Recall that a set S ⊆ P (κ) is called independent if every finite intersection

of elements of S or their complements is non-empty. By a theorem of Hausdorff
there is such a family of size 2κ. Fix some κ and µ ≤ 2κ, and let S be a family of
independent subset of κ, such that |S| = µ.

Let A = {ai | i < κ } be such that bs |=
{
ϕ (x, ai)

if i∈s
| i < κ

}
for every s ⊆ κ.

LetM be a model of size κ containing A and N of size µ containingM∪ {bs | s ∈ S }.
Now for every D ⊆ S, there is an ultrafilter on κ containing D, and let pD ∈ S (N)
be

{ψ (x, c) | c ∈ N, ψ ∈ L, {a ∈M |ψ (a, c) } ∈ D } ,

so it is finitely satisfiable in A. Notice that if D1 6= D2 then pD1 6= pD2 , as
ϕ (x, bs) ∈ pD1 ∧ ¬ϕ (x, bs) ∈ pD2 for any s ∈ D1 \D2. Thus Snf (N,M) ≥ 2µ.

If λ ≤ 2κ, then let µ = λ and we have that fT (λ, κ) ≥ 2λ.
If λ > 2κ, then let µ = 2κ, so fT (κ, λ) ≥ 22

κ

and we are done. �

Note that in the Main Theorem we assumed that λ ≥ 22κ , so in this case we
have fT (κ, λ) ≥ 22

κ

.
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6.3.3. The gap between (7) and (8).
We recall the basic properties of splitting.

Definition 6.3.7. Suppose A ⊆ B are sets. A type p (x) ∈ S (B) splits over A
if there is some formula ϕ (x, y) such and b, c ∈ B such that tp (b/A) = tp (c/A)
and ϕ (x, b)∧ ¬ϕ (x, c) ∈ p.

Fact 6.3.8. (See e.g. [Adl08, Sections 5, 6]) Let M ≺ N be models

(1) The number of types in S (N) that do not split overM is bounded by 22
|M|

.
(2) If N is |M|

+-saturated and p ∈ S (N) splits over M then there is an M-
indiscernible sequence 〈ai | i < ω 〉 in N such that ϕ (x, a0)∧¬ϕ (x, a1) ∈
p for some ϕ.

(3) If T is NIP, and p ∈ Snf (N,M), then p does not split over M.

Definition 6.3.9. A non-forking pattern of depth θ over a set A consists of an
array {āα |α < θ } where āα = 〈aα,i | i < ω 〉 and formulas {ϕα (x, y) |α < θ } such
that

• āα0 is indiscernible over {āα |α < α0 } ∪A.
• {ϕα (x, aα,0)∧ ¬ϕα (x, aα,1) |α < θ } does not fork over A.

Definition 6.3.10. For an infinite cardinal κ, let gT (κ) be the smallest cardinal
θ such that there is no non-forking pattern of depth θ over some model of size κ.

Remark 6.3.11. It is clear that gT (κ ′) ≥ gT (κ) whenever κ ′ ≥ κ. In addition,
from Lemma 6.2.5 it follows that if gT (κ) > θ then gT (θ+ℵ0) > θ.

Lemma 6.3.12. If gT (κ) > θ then there is M of size κ such that for any λ we
can find a non-forking pattern {āα, ϕα |α < θ } such that in addition:

• āα = 〈aα,i | i < λ 〉
• {ϕα (x, aα,0) |α < θ }∪{¬ϕα (x, aα,i) |α < θ, 0 < i < λ } does not fork over
M.

Proof. By assumption we have some non-forking pattern {āα, ϕα |α < θ } over
someM of size κ. By compactness, we may assume that āα is of length λ for all α <
θ. Let p (x) ∈ S (M) be a non-forking extension of {ϕα (x, aα,0)∧ ¬ϕα (x, aα,1) |α < θ }.
By omitting some elements from each sequence āα and maybe changing ϕα to ¬ϕα
we may assume

{ϕα (x, aα,0) |α < θ } ∪ {¬ϕα (x, aα,i) |α < θ, 0 < i < λ } ⊆ p.
�

Proposition 6.3.13. The following are equivalent:
(1) For some κ, gT (κ) > 1.
(2) For every λ ≥ κ ≥ ℵ0, fT (κ, λ) = 2λ if λ ≤ 2κ and fT (κ, λ) ≥ λ otherwise.
(3) For some λ ≥ κ, fT (κ, λ) > 22

κ

.

Proof. (1) implies (2): By remark 6.3.11, we may assume that κ = ℵ0.
By Lemma 6.3.12 there is some countable M such that for any λ there is some
b̄ = 〈bi | i < λ 〉 such that {ϕ (x, b0)}∪ {¬ϕ (x, bi) | i < λ } does not fork overM. So,
for every i < λ, pi (x) =

{
ϕ (x, bj)

if j=i
| i ≤ j < λ

}
does not fork over M.

Taking some model N ⊇ b̄ of size λ we can expand each pi to some qi ∈
Snf (N,M). Notice that for any i < j < λ, qi 6= qj as ¬ϕ (x, aj) ∈ pi, but
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ϕ (x, aj) ∈ pj. So we conclude that Snf (N,M) ≥ λ. By Lemma 6.2.8, we get that
fT (κ, λ) ≥ λ for every λ ≥ κ.

Note that by Fact 6.3.5, we know that T is not NIP, so if λ ≤ 2κ, then by
Proposition 6.3.6 fT (κ, λ) = 2λ.

(2) implies (3) is clear.
(3) implies (1): LetM ≺ N witness that fT (κ, λ) > 22

κ

. By Fact 6.3.8(1), there
is some p ∈ Snf (N,M) that splits over M.

Let N ′ � N be |M|+-saturated and p ′ ∈ Snf (N ′,M), a non-forking extension
of p. By Fact 6.3.8(2) we find an indiscernible sequence ā = 〈ai | i < ω 〉 in N ′ and
a formula ϕ (x, a0)∧ ¬ϕ (x, a1) ∈ p — and we get (1). �

6.3.4. The gap between (8) and (9).

Lemma 6.3.14. For any cardinals λ and θ, if θ is regular or λ ≥ 2<θ then(
λ<θ

)<θ
= λ<θ.

Proof. By [She86, Observation 2.11 (4)], if λ ≥ 2<θ, then λ<θ = λν for some
ν < θ. So

(
λ<θ

)<θ
= (λν)

<θ
= λ<θ. If θ is regular, then, letting λ ′ = λ<θ, since

λ ′ ≥ 2<θ, (λ ′)<θ = (λ ′)
ν for some ν < θ so

(λ ′)
<θ

= (λ ′)
ν
=
(
λ<θ

)ν
=

∑
µ<θ

λµ

ν =
∑
µ<θ

(λµ·ν) = λ<θ = λ ′.

�

Lemma 6.3.15. Suppose fT (κ, λ) > λ<θ, and λ ≥
∑
µ<θ 2

2κ+µ then gT (κ) > θ.

Proof. Let λ ′ = λ<θ. By Lemma 6.3.14, (λ ′)<θ = λ ′. So, we have fT (κ, λ ′) ≥
fT (κ, λ) > λ

<θ = (λ ′)
<θ, so we may replace λ with λ ′ and assume λ<θ = λ.

Let (N,M) be a witness to fT (κ, λ) > λ. For every u ⊆ N of size < θ, let
Mu ⊆ M be a (κ+ |u|)

+-saturated model of size ≤ 2|u|+κ containing M ∪ u. Let
N0 =

⋃
u∈N[<θ] Mu. So N0 ⊇ N, and |N0| ≤ λ · 2<θ+κ = λ. Repeating the

construction with respect to (N0,M), construct N1, and more generally Ni for
i ≤ θ, taking union in limit steps. So |Nθ| ≤ λ · θ = λ and for every subset
u ⊆ Nθ such that |u| < θ, there is some model M ∪ u ⊆ Mu ⊆ Nθ which is
(κ+ |u|)

+-saturated.
Fix p (x) ∈ Snf (Nθ,M). We try to choose by induction on α < θ, formulas

ϕpα (x, y) and sequences āpα = 〈apα,i | i < ω 〉 in Nα+1 such that āpα is indiscernible
over

{
āpβ |β < α

}
∪M and ϕpα (x, apα,0) ∧ ¬ϕpα (x, a

p
α,1) ∈ p. If we succeed, then

we found a non-forking pattern of depth θ over M as desired. Otherwise, we are
stuck in some αp < θ. Let Ap =

⋃{
āpβ |β < αp

}
.

Let F ⊆ Snf (Nθ,M) be a set of size > λ such that for p 6= q ∈ F, p|N 6= q|N.
As the size of the set {Ap |p ∈ F } is bounded by λ<θ = λ there is some A and
α such that, letting S = {p ∈ F |Ap = A∧ αp = α }, |S| > λ. Let M0 ⊆ Nα be
some model containing A ∪M of size κ + |A|. Suppose p ∈ S and p|Nα splits over
M0. Then there is some (κ+ |A|)

+-saturated model N ′ ⊆ Nα+1 containing M0

such that p|N ′ splits over M0. By Fact 6.3.8(2), we can find an M0-indiscernible
sequence 〈apα,i | i < ω 〉 in N ′ ⊆ Nα+1 such that ϕ (x, apα,0) ∧ ¬ϕ (x, apα,1) ∈ p —
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contradicting the choice of α. So, for every p ∈ S, p|Nα does not split over M0.
But then by the choice of F and Fact 6.3.8(1), |S| ≤ 22κ+|A|

— contradiction. �

Lemma 6.3.16. If gT (κ) > θ then fT (κ, λ) ≥ λ〈θ〉tr for all λ ≥ κ +
∑
µ<θ µ

(see Definition 6.6.3).

Proof. Fix λ ≥ κ + θ. By Lemma 6.3.12, there is some non-forking pattern
{āα, ϕα |α < θ } over a modelM of size κ such that āα = 〈aα,i | i < λ 〉 and p (x) =
{ϕα (x, aα,0) |α < θ } ∪ {¬ϕα (x, aα,i) |α < θ, 0 < i < λ } does not fork over M. By
induction on β ≤ θ we define elementary mappings Fη, η ∈ λβ, with dom(Fη) =
Aβ =M ∪ {āα |α < β }:

• F∅ is the identity on M.
• If β is a limit ordinal, then let Fη =

⋃
α<β Fη�α.

• If β = α + 1, let Fη0 be an arbitrary extension of Fη to Aα+1. For
i < λ, Fηi be an arbitrary elementary mapping extending Fη such that
Fηi (aα,j) = Fη0 (aα,i+j). This could be done by indiscerniblity.

Let pη = Fη (p). So,
• pη (x) does not fork over M — as Fη is an elementary map fixing M.
• If η 6= ν ∈ λθ, then pη 6= pν. To see it, let α = min {β < θ |η � β 6= ν � β }

and suppose α = β + 1, ρ = η � β = ν � β. Assume η (β) = i < j =
ν (β) and 0 < k < λ is such that i + k = j. Then ϕ (x, aα,0) ∈ p ⇒
ϕ (x, Fν (aα,0)) ∈ pν. Similarly, ¬ϕ (x, aα,k) ∈ p ⇒ ¬ϕ (x, Fη (aα,k)) ∈
pη. But,

Fν (aα,0) = Fρj (aα,0) = Fρ0 (aα,j) = Fρ0 (ai+k) = Fρi (aα,k) = Fη (aα,k) ,

so pη 6= pν.
Let T ⊆ λ<θ be a tree of size ≤ λ such that if x ∈ T and y < x then y ∈ T . Let
B =

⋃
{Fη (āα) |α < lg (η)∧ η ∈ T } ∪M, so |B| ≤ λ+ κ+

∑
α<θ |α| = λ. Let N be

some model containing B of size λ. Thus,
∣∣∣Snf (N,M)

∣∣∣ is at least the number of

branches in T of length θ. By the definition of λ〈θ〉tr we are done. �

Proposition 6.3.17. If fT (κ, λ) > λ for some λ ≥ 22κ , then fT (κ, λ) ≥ λℵ0
for all λ ≥ κ.

Proof. By Lemma 6.3.15, taking θ = ℵ0, gT (κ) > ℵ0 and then by Remark
6.3.11, gT (ℵ0) > ℵ0. By Lemma 6.3.16, fT (ℵ0, λ) > λ〈ℵ0〉 for all λ but λ〈ℵ0〉 =
λℵ0 (see Remark 6.6.4). By Remark 6.2.8, fT (κ, λ) ≥ fT (ℵ0, λ) ≥ λℵ0 so we are
done. �

6.3.5. On (10).

Proposition 6.3.18. If fT (κ, λ) > λµ for some λ ≥ 22κ+µ , then fT (κ, λ) ≥
λ〈µ

+〉tr for all λ ≥ κ ≥ µ+.

Proof. By Lemma 6.3.15, gT (κ) > µ+. By Lemma 6.2.5, gT (µ+) > µ+. By
Lemma 6.3.16, fT (µ+, λ) ≥ λ〈µ

+〉tr for all λ ≥ ℵn+1, and so by Lemma 6.2.8 ,
fT (κ, λ) ≥ λ〈µ

+〉tr for any λ ≥ κ ≥ µ+. �

Corollary 6.3.19. If fT (κ, λ) > λℵn for some λ ≥ 22κ+ℵn , then fT (κ, λ) ≥
λ〈ℵn+1〉tr for all λ ≥ κ ≥ ℵn+1.
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This corollary says that morally there are gaps between λ and λℵ0 , λℵ0 and
λℵ1 etc.

6.3.6. On the gap between (11) and (12).
The following fact follows from the proof of Morley’s two cardinal theorem. For

details, see [Kei71, Theorem 23].

Fact 6.3.20. Suppose ψ ∈ Lω1,ω, < is a binary relation, P and Q are predicates
in L and ψ implies that “< is a linear order on Q”. If for every countable ordinal
ε there is a structure B such that

• B |= ψ
• There is an embedding of the order iε

(∣∣PB∣∣) into (QB, <B).
Then for every cardinal λ there is some structure B such that

• B |= ψ
•
∣∣PB∣∣ = ℵ0

• there is an embedding of (λ,<) into
(
QB, <B

)
.

Lemma 6.3.21. Let M ≺ N and a ∈ N. Then the following are equivalent:
(1) ϕ (x, a) forks over M.
(2) The following holds in N:∨

{ψ0,...,ψm−1}⊆L
∨
ki<ω,i<m

∧
∆⊆Lfinite

∧
n<ω ∀c0, . . . , cn−1 ∈M∃ȳ0, . . . ,∃ȳm−1(

ϕ (x, a) `
∨
i<nψ (x, yi,0)∧

∧
i<m,j<n

(
yi,j ≡∆c̄ yi,0

)
∧
∧
i<m, s∈n[ki] ∀x

(
¬
∧
j∈sϕ (x, yi,j)

))
where ȳi = 〈yi,j | j < n 〉 for i < m and c̄ = 〈ci | i < n 〉.

Proof. By compactness. �

Lemma 6.3.22. If gT (κ) > µ > ℵ0, then there is a non-forking pattern
{ϕα, āα |α < µ } such that ϕα = ϕ for some formula ϕ.

Proof. By pigeon-hole. �

Proposition 6.3.23. If for all ε < ℵ1, there is some κ such that gT (κ) >
iε (κ) then gT (ℵ0) =∞.

Proof. By Lemma 6.3.22, for every ε < ℵ1 there is some formula ϕε and
a non-forking pattern {ϕε, ā

ε
α |α < iε (κ) } over a model Mε of size κ. We may

assume that ϕε = ϕ for all ε < ℵ1.
Let ψ be the following Lω1,ω sentence in the language

{P (x) , S (x) , Q (α) , < (α,β) , R (x, α) , <R (x, y, α)} ∪ L (T)
saying:

(1) S |= T
(2) P is an L-elementary substructure of S.
(3) S ∩Q = ∅
(4) The universe is S ∪Q.
(5) Q is infinite and< is a linear order on Q.
(6) For each α ∈ Q, R (−, α) is infinite and contained in S and <R (−,−, α)

is discrete linear order with a first element on R (−, α).
(7) For each α ∈ Q, R (−, α) is an L-indiscernible sequence over P∪

⋃
j<i R (−, α)

ordered by <R (−,−, α).
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(8) The set {ϕ (x, yα,0)∧ ¬ϕ (x, yα,1) |α ∈ Q } does not fork over P (in the
sense of L), where yα,0 and yα,1 are the first elements in the sequence
R (−, α).

Note that (6) can be expressed in Lω1,ω by Lemma 6.3.21.
As the assumptions of Fact 6.3.20 are satisfied, for each λ we find a model B of

ψ such that:
•
∣∣PB∣∣ = ℵ0

• There is an embedding h of (λ,<) into
(
QB, <B

)
.

For all α < λ let āα be an infinite sub-sequence of R (B, h (α)) and let M = P (B).
By (1) – (8), it follows that {ϕ, āα |α < λ } is a non-forking pattern of depth λ over
M — as wanted. �

Corollary 6.3.24. (1) If for all ε < ℵ1, there is some κ such that
gT (κ) > iε (κ) then fT (λ, κ) ≥ ded (λ) for all λ ≥ κ.

(2) If for every ε < ℵ1 there is some λ ≥ iε (κ) such that fT (λ, κ) > λ<iε(κ)

then fT (λ, κ) ≥ ded (λ) for all λ ≥ κ.
(3) If fT (λ, κ) > λ<iℵ1

(κ) for some λ ≥ iℵ1 (κ), then fT (λ, κ) ≥ ded (λ) for
all λ ≥ κ.

Proof. (1) By Lemma 6.3.23, we know that gT (ℵ0) = ∞. For any λ ≥ κ,
by Lemma 6.3.16 we have that fT (κ, λ) ≥ λ〈θ〉tr for all θ ≤ λ. As ded (λ) =
sup
{
λ〈θ〉tr | θ ≤ λ, is regular

}
by Proposition 6.6.5 (6) we get fT (κ, λ) ≥ ded (λ).

(2) It is enough to show that for every ε < ℵ1, there is some κ such that
gT (κ) > iε (κ). Let ε < ℵ1 be a limit ordinal and θ = iε (κ). Then∑

µ<θ

22
κ+µ

=
∑
α<ε

22
iα(κ)

=
∑
α<ε

iα+2 (κ) = iε (κ) .

By Lemma 6.3.15, gT (κ) > iε (κ). So we can apply (1) to conclude.
(3) follows from (2). �

6.3.7. Further observations.

Proposition 6.3.25. If fT (κ, λ) > λℵ0 for some λ ≥ and λ ≥
∑
µ<θ 2

2κ+µ

then gT (κ) > θ.

6.4. Inside NTP2

NTP2 is a large class of first-order theories containing both NIP and simple
theories introduced by Shelah. For a general treatment, see Chapter 3. In this sec-
tion we show that for theories in this class, the non-forking spectra is well behaved,
i.e. it cannot take values between (6) and (16).

Fact 6.4.1. (see e.g. [HP11]) Let p (x) be a global type non-splitting over a
set A. For any set B ⊇ A, and an ordinal α, let the sequence c̄ = 〈ci | i < α 〉 be
such that ci |= p|Bc<i . Then c̄ is indiscernible over B and its type over B does not
depend on the choice of c̄. Call this type p(α)|B, and let p(α) =

⋃
B⊇A p

(α)|B. Then
p(α) also does not split over A.

Definition 6.4.2. (strict invariance) Let p (x) be a global type. We say that
p is strictly invariant over a set A if p does not split over A, and if B ⊇ A and
c |= p|B then tp (B/cA) does not fork over A.
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Lemma 6.4.3. Let p be a global type finitely satisfiable in A. Then there is
some model M ⊇ A with |M| ≤ |A| + ℵ0 such that p(ω) is strictly invariant over
M.

Proof. Let M0 be some model containing A of size |A| + ℵ0. Construct by
induction an increasing sequence of models Mi for i < ω, such that |Mi| = |M0|

and for every formula ϕ (x, y) over M if ϕ (x, c) ∈ p(ω) for some c, then there is
some c ′ ∈Mi+1 such that ϕ (x, c ′) ∈ p(ω). Let M =

⋃
i<ωMi. �

In lieu of giving a definition of NTP2, we only state the properties which we
will be using from Chapter 1.

Fact 6.4.4. Let T be NTP2 and M |= T , then:
(1) ϕ (x, c) divides over M if and only if ϕ (x, c) forks over M.
(2) Let p (x) is a global type strictly invariant over M and 〈ci | i < ω 〉 |=

p(ω)|M. Then for any formula ϕ (x, c0) dividing overM, {ϕ (x, ci) | i < ω }

is inconsistent.

Improving on Chapter 1, Theorem 4.3 we establish the following:

Theorem 6.4.5. Let T be NTP2. Then the following are equivalent:
(1) fT (κ, λ) > (ded κ)ℵ0 for some λ ≥ κ.
(2) T has IP.
(3) fT (κ, λ) = 2λ for every λ ≥ κ.

Proof. (1) implies (2) follows from Fact 6.3.5 and (3) implies (1) is clear.
(2) implies (3): Fix λ ≥ κ. Let ϕ (x, y) have IP, and ā = 〈ai | i < ω 〉 be an

indiscernible sequence such that ∀U ⊆ ω∃bUϕ (ai, bU) ⇔ i ∈ U. Let p (x) be a
global non-algebraic type finitely satisfiable in ā. By Lemma 6.4.3, there a model
M ⊇ ā be such that |M| ≤ ℵ0 and p(ω) is strictly invariant over M.

Let b̄ = 〈bi | i < λ 〉 realize p(λ)|M. We show that pη (x) =
{
ϕ (x, bi)

if η(i)=1
| i < λ

}
does not divide overM for any η ∈ 2λ. First note that pη (x) is consistent for any η,
as tp

(
b̄/M

)
is finitely satisfiable in ā. But as for any k < ω,

〈(
bk·i, bk·i+1, . . . , bk·(i+1)−1

)
| i < ω

〉
realizes

(
p(k)

)(ω)
, Fact 6.4.4(2) implies that pη (x) |b0...bk−1 does not divide over

M for any k < ω. Thus by indiscernibility of b̄, pη(x) does not divide over M.
Take N ⊇ b̄ ∪M of size λ. By Fact 6.4.4(1) every pη extends to some p ′η ∈

Snf (N,M), thus fT (κ, λ) = 2λ. �

6.5. Examples

6.5.1. Examples of (1) – (6).

Proposition 6.5.1. (1) If T is the theory of equality, then fT (κ, λ) = κ
for all λ ≥ κ.

(2) Let T be the model companion of the theory of countably many unary
relations then fT (κ, λ) = κ+ 2ℵ0 for all λ ≥ κ.

(3) Let T be the model companion of the theory of countably many equivalence
relations then fT (κ, λ) = κℵ0 for all λ ≥ κ.

(4) Let T = DLO. Then fT (κ, λ) = ded (κ) for all λ ≥ κ.
(5) Let T be the model companion of infinitely many linear orders. Then

fT (κ, λ) = ded (κ)ℵ0 .
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Proof. (1) – (3): it is well known that these examples have the corresponding
fT (κ)’s, and that they are stable. It follows from Remark 6.3.2 that they have the
corresponding fT (κ, λ).

(4): It is easy to check that every type has finitely many non-splitting global
extensions, but DLO is NIP so by Fact 6.3.8 every non-forking extension is non-
splitting. Since fT (κ) = ded (κ) for this theory, we are done.

(5): This theory is NIP so fT (κ, λ) ≤ ded (κ)ℵ0 by Fact 6.3.5, and clearly
fT (κ) = (ded κ)ℵ0 . �

6.5.2. Circularization.
We shall first describe a general construction for examples of non-forking spectra

functions.
For this section, a “formula” means an ∅-definable formula unless otherwise

specified. Most formulas we work with are partitioned formulas, ϕ (x̄; ȳ), where the
variables are broken into two distinct sets. We write ϕ instead of ϕ (x̄; ȳ) when the
partition is clear from the context. We let ϕ1 = ϕ and ϕ0 = ¬ϕ. We assume that
our languages relational in this section (so a subset is a substructure).

6.5.2.1. Circularization: Base step.
The dense circular order was used as an example of a theory where forking is not

the same as dividing (see e.g. [Kim96, Example 2.11]). The reason is that with
circular ordering around, it is hard not to fork.

Definition 6.5.2. A circular order on a finite set is a ternary relation obtained
by placing the points on a circle and taking all triples in clockwise order. For an
infinite set, a circular order is a ternary relation such that the restriction to any finite
set is a circular order. Equivalently, a circular order is a ternary relation C such that
for every x, C (x,−,−) is a linear order on {y |y 6= x } and C (x, y, z) → C (y, z, x)
for all x, y, z. Denote the theory of circular orders by TC.

The following definitions are well-known.

Definition 6.5.3. Let K be a class of L-structures (where L is relational).
(1) We say that K has the strong amalgamation property (SAP) if for every

A,B,C ∈ K and embeddings i1 : A → B and i2 : A → C there exist both
a structure D ∈ K and embeddings j1 : B→ D, j2 : C→ D such that
(a) j1 ◦ i1 = j2 ◦ i2 and
(b) j1 (B) ∩ j2 (C) = (j1 ◦ i1) (A) = (j2 ◦ i2) (A).

(2) We say that K has the disjoint embedding property (DEP) if for any
2 structures A,B ∈ K, there exists a structure C ∈ K and embeddings
j1 : B→ C, j2 : A→ C such that j1 (A) ∩ j2 (B) = ∅.

(3) We say that a first-order theory T has these properties if its class of (finite)
models has them.

Note that

Remark 6.5.4. TC is universal and it has DEP and SAP.

Fact 6.5.5. Let T be a universal theory with DEP and SAP in a finite relational
language L, then:

(1) [Hod93, Theorem 7.4.1] It has a model completion T0 which is ω-categorical
and eliminates quantifiers.

(2) [Hod93, Theorem 7.1.8] If A ⊆M |= T0 then acl (A) = A.
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Corollary 6.5.6. Suppose that ϕ (x̄; ȳ) is a formula in L, ā ∈ M |= T0. If
M |= ∃z̄ϕ (z̄; ā)∧ z̄ * ā then

{
t̄ ∈M

∣∣ϕ (t̄; ā)} is infinite.

Definition 6.5.7. For any formula ϕ (x̄; ȳ) in L where x̄ is not empty , let
C [ϕ (x̄; ȳ)] be a new lg (ȳ) + 3 · lg (x̄)-place relation symbol. Denote L [ϕ (x̄; ȳ)] =
L ∪ {C [ϕ (x̄; ȳ)]}.

Definition 6.5.8. Suppose ϕ (x̄; ȳ) is a quantifier free formula in L with x̄ not
empty. Let T [ϕ (x̄; ȳ)] be the theory in L [ϕ (x̄; ȳ)] containing T and the following
axioms:

• For all t̄ in the length of ȳ, the set:

S [ϕ (x̄; ȳ)]
(
t̄
)
:=
{
s̄
∣∣ s̄ ∩ t̄ = ∅∧ lg (s̄) = lg (x̄)∧ϕ

(
s̄; t̄
)}

is circularly ordered by the relation:

C [ϕ (x̄; ȳ)]
(
t̄
)
:=
{
(s̄1, s̄2, s̄3)

∣∣C [ϕ (x̄, ȳ)]
(
t̄, s̄1, s̄2, s̄3

)}
(i.e. C [ϕ (x̄; ȳ)] with index t̄ orders this set in a circular order). Call t̄
the index variables, and s̄ the main variables.

• If C [ϕ (x̄; ȳ)]
(
t̄
)
(s̄1, s̄2, s̄3) then s̄1, s̄2, s̄3 ∈ S [ϕ (x̄; ȳ)]

(
t̄
)
.

Claim 6.5.9. If ϕ is as in the definition, then
(1) T [ϕ] is universal.
(2) T [ϕ] has DEP.
(3) T [ϕ] has SAP.

Proof. As TC is universal, (1) is clear (note that this uses the fact that ϕ is
quantifier free).

(3): Let M ′0, M
′
1 and M ′2 be models of T [ϕ] such that M ′0 = M ′1 ∩M ′2. Let

Mi = M ′i � L for i < 3. By assumption, there is a model M3 |= T such that
M1 ∪M2 ⊆M3. We define M ′3 as an expansion of M3. Let t̄ ∈M3 be a tuple of
length lg (ȳ). Split into cases:

Case 1. t̄ ∈ M ′0. In this case,
(
SM

′
i [ϕ]

(
t̄
)
, CM

′
i [ϕ]

(
t̄
))

are circular orders for

i < 3 and SM
′
1 [ϕ]

(
t̄
)
∩SM ′2 [ϕ]

(
t̄
)
= SM

′
0 [ϕ]

(
t̄
)
so we can amalgamate

them as circular orders and extend it arbitrarily to SM3 [ϕ]
(
t̄
)
, and that

will be CM
′
3 [ϕ]

(
t̄
)
.

Note that in the special case where SM0 [ϕ]
(
t̄
)
= ∅, there are no

restrictions on the place of SMi [ϕ]
(
t̄
)
for i < 3 in this order.

Case 2. t̄ ∈ M1\M2. Then
(
SM

′
1 [ϕ]

(
t̄
)
, CM

′
1 [ϕ]

(
t̄
))

is a circular order. Ex-

tend it so that its domain would be SM3 [ϕ]
(
t̄
)
arbitrarily.

Case 3. t̄ ∈M2\M1 — the same.
Case 4. t̄ /∈M1 and t̄ /∈M2. Then CM

′
3 [ϕ]

(
t̄
)
is any circular order on SM3 [ϕ]

(
t̄
)
.

(2): Similar to (3), but easier. �

Remark 6.5.10. It is follows from the proof of amalgamation, that if M |= T
contains models M0 ⊆Mi ⊆M for i < n such that M0 =Mi ∩Mj for i < j < n
and for eachMi, there is an expansionM ′i to a model of T [ϕ] such thatM ′0 ⊆M ′i
then there is an expansion M ′ of M to a model of T [ϕ] such that M ′i ⊆M ′.

Claim 6.5.11.
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(1) If M |= T , then we can expand it to a model M ′ of T [ϕ].
(2) Moreover: if B ⊆M and there is already an expansion B ′ of B to a model

of T [ϕ], then we can expand M in such a way that B ′ ⊆M ′.
(3) Moreover: suppose that

• A ⊆M
• 〈c̄i | i < n 〉 is a finite sequence of finite tuples from M, such that
c̄i ∩ c̄j ⊆ A, tpqf (c̄i/A) = tpqf (c̄j/A) for all i < j < n.

• M ′0 is an expansion of Ac̄0 to a model of T [ϕ].
Then we can find an expansionM ′ such that the quantifier free types

are still equal in the sense of L [ϕ] and M ′0 ⊆M ′.

Proof. (2): For any t̄ in the length of ȳ, if t̄ ∈ B then we choose a circular
order CM

′
[ϕ]
(
t̄
)
that extends CB

′
[ϕ]
(
t̄
)
on SM [ϕ]

(
t̄
)
. If not, then define it

arbitrarily.
(3): Let Mi = Ac̄i. As c̄0 ≡qf

A c̄i for i < n, there are isomorphisms fi :
M0 → Mi of L that fix A and take c̄0 to c̄i. So fi induces expansions M ′i of Mi,
isomorphic (via fi) to M ′0. As the intersection of any two models Mi is exactly A,
by Remark 6.5.10, there is an expansionM ′ ofM to a model of T [ϕ] that contains
M ′i. In this expansion the quantifier free types will remain the same because fi are
L [ϕ]-isomorphisms. �

Corollary 6.5.12. Suppose that M ′ |= T [ϕ], M ′ � L ⊆ N |= T . Then there
is an expansion of N to a model N ′ of T [ϕ] such that M ′ ⊆ N ′. In particular, if
M ′ |= T [ϕ] is existentially closed, then M ′ � L is an existentially closed model of T .
Denote by T0 [ϕ] the model completion of T [ϕ]. We will call it the ϕ-circularization
of T0. It follows that T0 [ϕ] � L = T0 (for more see [Hod93, Theorem 8.2.4]).

We turn to dividing:

Claim 6.5.13. Assume thatM |= T0 [ϕ], A ⊆M, ā ∈M, SM [ϕ] (ā)∩Alg(x̄) =

∅, and c̄ 6= d̄ ∈ SM [ϕ] (ā). Then the formula ψ
(
z̄; ā, c̄, d̄

)
= C [ϕ]

(
ā, c̄, z̄, d̄

)
2-divides over Aā.

Proof. LetM0 = Aā,M1 =M0c̄d̄ andM2 =M0c̄
′d̄ ′ whereM1∩M2 =M0

and there is an isomorphism f :M1 →M2 that fixes M0 and takes c̄d̄ to c̄ ′d̄ ′.
By SAP, there is a model M3 |= T [ϕ] that contains M1 ∪M2. We wish to

choose it carefully: in the proof of Claim 6.5.9, we saw that there are no constraints
on the amalgamation of CM1 [ϕ] (ā) and CM2 [ϕ] (ā) (because SM0 [ϕ] (ā) = ∅, see
the definition of S [ϕ]). In particular we can put c̄ ′ and d̄ ′ so that in the circular
order we have c̄ → d̄ → c̄ ′ → d̄ ′ → c̄, and in this case there is no z̄ such that
C [ϕ] (ā)

(
c̄, z̄, d̄

)
and C [ϕ] (ā)

(
c̄ ′, z̄, d̄ ′

)
.

Applying the same technique n times, there is a model of T [ϕ] with a sequence〈
c̄i, d̄i |i < n

〉
that contains M1 and satisfies tpqf

(
c̄id̄i/Aā

)
= tpqf

(
c̄d̄/Aā

)
, so

that in the circular order C [ϕ] (ā) the tuples will be ordered as follows: c̄ → d̄ →
c̄1 → d̄1 → . . . → c̄n → d̄n → c̄. Hence, there is a model of T0 [ϕ] and an infinite
such sequence, and this sequence witnesses the 2-dividing of ψ

(
z̄;a, c̄, d̄

)
.

Note that the tuples c̄id̄i were chosen so that the intersection of each pair c̄id̄i,
c̄jd̄j is contained in A. �
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The last sentence justifies the following auxiliary definition which will make life
a bit easier:

Definition 6.5.14. Say that a formula ϕ (x̄, ā) k-divides disjointly over A if
there is an indiscernible sequence 〈āi | i < ω 〉 that witnesses k-dividing and more-
over āi ∩ āj ⊆ A.

Remark 6.5.15. Note that if ϕ (x̄, ā) divides over A, then it divide disjointly
over some B ⊇ A (if I is an indiscernible sequence witnessing dividing, then B =
A ∪

⋂
I).

We shall also need some kind of a converse to the last claim. More precisely,
we need to say when a formula does not divide.

Claim 6.5.16. Suppose
(1) A ⊆M |= T0 [ϕ]
(2) p (x̄) = p1 (x̄) ∪ p2 (x̄) is a complete quantifier-free type over M.
(3) p1 (x̄) is a complete L type over M and p2 (x̄) is a complete {C [ϕ]} type

over M.
(4) p1 (x̄) does not divide over A (as an L-type so also as an L [ϕ]-type).
(5) For all t̄ ∈ Mlg(ȳ), p2 (x̄) �

{
C [ϕ]

(
t̄,−,−,−

)}
does not divide over At̄

(this means all formulas in p2 (x̄) of the form C [ϕ]
(
t̄, z̄1, z̄2, z̄3

)
where x̄

substitutes the z̄’s in some places and in the others there are parameters
from M).

Then p (x̄) does not divide over A.
In particular, if both p1 (x̄), p2 (x̄) do not divide over A, then p (x̄) does not

divide over A.

Proof. Denote x̄ = (x0, . . . , xm−1), p (x̄,M) = p (x̄). We may assume that
p � xi is non-algebraic for all i < m (otherwise, by Fact 6.5.5, (xi = c) ∈ p for some
c ∈ M, so c ∈ A as x = c divides over A, and we can replace xi by c). Suppose
〈Mi | i < ω 〉 is an L [ϕ]-indiscernible sequence over A in some model N ⊇M such
that M0 =M. We will show that

⋃
{p (x̄,Mi) |i < ω } is consistent.

Let c̄ |=
⋃
{p1 (x̄,Mi)} (exists by (4)), and B =

⋃
{Mi |i < ω } and let B ′ =

Bc̄ � L (i.e. forget C [ϕ]). Also let d̄ |= p (x̄) be in some other model N ′ = Md̄ of
T [ϕ].

For t̄ ∈ (Bc̄)
lg(ȳ) we define a circular order on S [ϕ]

(
t̄
)
to make B ′ into a model

U of T [ϕ] extending B such that c̄ |=
⋃

{p (x̄,Mi)}.
Case 1. t̄ *Mic̄ for any i < ω. In this case, there is no information on C [ϕ]

(
t̄
)

in
⋃
{p2 (x̄,Mi)}, so let C [ϕ]

U (
t̄
)
be any circular order on S [ϕ]

(
t̄
)
that

extends the circular order C [ϕ]
B (
t̄
)
(in case t̄ ⊆ B).

Case 2. t̄ ⊆ Mic̄ for some i < ω, but t̄ * Mjc̄ for some other j 6= i. By
indiscernibility, it follows that t̄ 6⊆Mjc̄ for all j 6= i. Let σ :Mic̄→Md̄
be an L-isomorphism. There are two sub-cases:
Case i. t̄∩c̄ 6= ∅. Define C [ϕ]

U (
t̄
)
as any extension of σ−1

(
C [ϕ]

N ′ (
σ
(
t̄
)))

to SU [ϕ]
(
t̄
)
.

Case ii. t̄ ∩ c̄ = ∅. Then C [ϕ]
B (
t̄
)
is already some circular order

on SB [ϕ]
(
t̄
)
. On the other hand, σ−1

(
C [ϕ]

N ′ (
σ
(
t̄
)))

de-

fines some circular order on SMic̄ [ϕ]
(
t̄
)
. The intersection is
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SMi [ϕ]
(
t̄
)
on which they agree, so we can amalgamate the

two circular orders.
Case 3. t̄ ⊆

⋂
Mi. In this case, by (5), p2 (x̄) �

{
C [ϕ]

(
t̄,−,−,−

)}
does not

divide over At̄, so let c̄ ′ |=
⋃{

p2 (x̄,Mi) � C [ϕ]
(
t̄,−,−,−

)
|i < ω

}
.

Let U ′ be the L [ϕ] structure Bc̄ ′. Let f : Bc̄ → Bc̄ ′ fix B and take c̄ to
c̄ ′. Now, CU

′
[ϕ]
(
f
(
t̄
))

induces a circular order on

S = f−1
(
SU
′
[ϕ]
(
f
(
t̄
)))
∩ SB

′
[ϕ]
(
t̄
)
.

Extend it to some circular order on SU [ϕ]
(
t̄
)
and let it be CU [ϕ]

(
t̄
)
.

Case 4. t̄ ⊆
⋂
Mic̄, and t̄∩ c̄ 6= ∅. Let σi :Mic̄→Md̄ be the L-isomorphism fix-

ing
⋂
Mi and taking c̄ to d̄. σi induces a circular order on SMic̄ [ϕ]

(
t̄
)
,

and the intersection of any two SMic̄ [ϕ]
(
t̄
)
and SMjc̄ [ϕ]

(
t̄
)
is S

⋂
Mic̄ [ϕ]

(
t̄
)

on which these circular orders agree. By amalgamation, we have a circu-
lar order on the union

⋃
i S
Mic̄ [ϕ]

(
t̄
)
that we can expand to a circular

order on SU [ϕ]
(
t̄
)
.

�

Claim 6.5.17. Let A ⊆ M |= T0 [ϕ] be |A|
+-saturated and M ′ = M � L.

Suppose that ψ (z̄, ā), a quantifier free L-formula, k-divides disjointly over A in
M ′. Then the same is true in M.

Proof. Suppose that I = 〈āi | i < ω 〉 ⊆ M witnesses k-dividing disjointly of
ψ (z̄, ā) over A in the sense of L. Assume that ā0 = ā.

By Claim 6.5.11 (3) and compactness, we can expand and extendM ′ toM ′′ |=
T0 [ϕ] that will keep the equality of types of the tuples in the sequence. In addition,
the interpretation of the new relation C [ϕ] on Aā remains as it was in M. In
particular, in M ′′, ψ (z̄, ā) still k-divides over A. We may amalgamate a copy of
M ′′ withM over Aā to get a bigger model in which ψ (z̄, ā) still k-divides disjointly
and by saturation this is still true in M. �

6.5.2.2. Circularization: Iterations.
Suppose we have a sequence of theories T =

〈
T∀i | i ≤ ω

〉
and formulas 〈ϕi (x̄i; ȳi) | i < ω 〉

in the finite relational languages 〈Li | i ≤ ω 〉 where:
• T∀0 is a universal theory with SAP and DEP in L0.
• T∀i is a theory in Li for i ≤ ω.
• ϕi (x̄i; ȳi) is a quantifier free formula in Li.
• Li = Li [ϕi (x̄i; ȳi)] and T∀i+1 = T∀i [ϕi (x̄i; ȳi)].
• Lω =

⋃
{Li |i < ω } and T∀ω =

⋃{
T∀i |i < ω

}
.

Proposition 6.5.18. In the situation above, T∀i has a model completion Ti,
Ti ⊆ Ti+1 and Ti ⊆ Tω which is the model completion of T∀ω for all i < ω.

Proof. Follows from Claim 6.5.9 and Claim 6.5.12. �

From now on, we work in T := Tω. Call Tω the ϕ̄-circularization of T0 where
ϕ̄ = 〈ϕi | i < ω 〉. Let M |= T and A ⊆M.

Claim 6.5.19. Suppose ϕ (x̄; ȳ) = ϕi (x̄i; ȳi) for some i < ω. Then for all
ā ∈Mlg(ȳ), ϕ (z̄, ā)∧ (z̄ ∩ (ā ∩A) = ∅) forks over A if and only if it is not satisfied
in A.
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Proof. Denote ā ′ = ā ∩ A, and α (z̄, ā) = ϕ (z̄, ā) ∧ (z̄ ∩ ā ′ = ∅). Obviously
if α is satisfied in A it does not fork over A.

Suppose α is not satisfied in A. Consider the formula ψ (z̄, ā) = ϕ (z̄, ā) ∧

(z̄ ∩ ā = ∅). First we prove that ψ forks. It defines S [ϕ]M (ā), and by assumption
S [ϕ]

M
(ā) ∩ A = ∅. Note that for all c̄ 6= d̄ ∈ SM [ϕ] (ā), since CM [ϕ] (ā) orders

this set in a circular order,

S [ϕ] (ā) (z̄) ` C [ϕ] (ā)
(
c̄, z̄, d̄

)
∨ C [ϕ] (ā)

(
d̄, z̄, c̄

)
∨ z̄ = c̄∨ z̄ = d̄.

If S [ϕ]M (ā) = ∅ we are done. If not, (by Corollary 6.5.6) this set is infinite and
there are such c̄, d̄.

By Claim 6.5.13 and Claim 6.5.17, it follows that C [ϕ] (ā)
(
c̄, z̄, d̄

)
, C [ϕ] (ā)

(
d̄, z̄, c̄

)
divides over Aā. By Corollary 6.5.6, both z̄ = c̄ and z̄ = d̄ divides over Aā. This
means that S [ϕ] (ā) (z̄) = ψ (z̄, ā) forks over A.

Now, α (z̄, ā) ` ψ (z̄, ā)∨
∨
i,j (zi = aj) (where zi, aj run over all the variables

and parameters from ā\A in ϕ). But the formula zi = aj divides over A when
aj /∈ A (By Corollary 6.5.6), so we are done. �

On the other hand, we have:

Claim 6.5.20. Suppose that p (x̄) is a (quantifier free) type over M such that:

• p0 (x̄) = p � L0 does not divide over A.
• pi (x̄) = p � Li+1\Li does not divide over A.

Then p does not divide over A.

Proof. By induction on i < ω we show that p ′i = p � Li does not divide over
A. For i = 0 it is given. For i+ 1 use Claim 6.5.16. �

The following definition is a bit vague

Proposition 6.5.21. Let F be a function defined on the class of all countable
relational first-order languages such that F (L) is a set of quantifier free partitioned
formulas in L. Let T0 be a universal theory in the language L0 satisfying SAP and
DEP. We define:

• For n < ω, let Ln+1 =
⋃

{Ln [ϕ (x̄; ȳ)] |ϕ (x̄; ȳ) ∈ F (Ln) } and Lω =⋃
{Ln |n < ω } .

• For n < ω, let T∀n be a universal theory in Ln defined by induction on
n ≤ ω:
– T∀0 = T0
– T∀n+1 =

⋃{
T∀n [ϕ (x̄; ȳ)] |ϕ ∈ F (Ln)

}
– T∀ω =

⋃{
T∀n |n < ω

}
Then T∀ω has a model completion which we denote by �T0,L0,F. Moreover, it is a
ϕ̄-circularization for some choice of ϕ̄.

Proof. By carefully choosing an enumeration of the formulas in Lω, we can
reconstruct T∀ω, Lω in such a way that in each step we deal with one formula and
it has a model completion by Proposition 6.5.18. �
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6.5.3. Example of (7).

Definition 6.5.22. Let L0 = {=} and T0 be empty. Let F (L) be the set of all
quantifier free partitioned formulas from L. Let T =�T0,L0,F.

Remark 6.5.23. T has IP: Let ϕ (x, y) = (x 6= y). Then C [ϕ] (y; x1, x2, x3)
has IP.

Corollary 6.5.24. For any set A, a type p (x̄) ∈ S (M) does not fork over A if
and only if p is finitely satisfiable in A. In particular, by Fact 6.3.8, fT (κ, λ) ≤ 22

κ

.

Proof. Suppose p (x̄) is a global type that is not finitely satisfiable in A. By
quantifier elimination, there is a quantifier free formula ϕ (x̄; ȳ) and ā ∈ M such
that ϕ (x̄, ā) ∈ p and this formula is not satisfiable in A. If ā ∩ A 6= ∅, and
xi = a ∈ p for some a ∈ ā ∩ A, replace xi by a in ϕ, and change the partition of
the variables so that we get ϕ (z̄, ā) ∧ z̄ ∩ (ā ∩A) = ∅ ∈ p. By Claim 6.5.19, this
formula forks over A and we are done. �

Proposition 6.5.25. We have fT (κ, λ) = 2min{2κ,λ}.

Proof. By the proof of Proposition 6.3.6 and Remark 6.5.23. �

6.5.4. Example of (8). In this section we are going to construct an example
of a theory T with fT (κ, λ) = λ. The idea is to start with the random graph and
circularize it in order to ensure that any non-forking type p ∈ Snf (N,M) can be
R-connected to at most one point of N.

Definition 6.5.26. Suppose L is a relational language which includes a binary
relation symbol R. For a quantifier free L-formula ψ (x̄; ȳ) and atomic formulas
θ0 (x̄; ȳ0), θ1 (x̄, ȳ1), where lg (x̄) > 0, and both x̄ and ȳi occur in them, define the
formula:

ϕθ0,θ1ψ (x̄; ȳ ′) =

ϕθ0,θ1ψ (x̄; ȳ, ȳ0, ȳ1, z0, z1, z2) = θ0 (x̄, ȳ0)∧ θ1 (x̄, ȳ1)∧

ψ (x̄, ȳ)∧∧
i<j<3

R (zi, zj)∧
∧

i<3,y∈ȳȳ0ȳ1

R (zi, y)

ȳ0 6= ȳ1.

So z0, z1, z2 form a triangle and are connected to all other parameters. The
reason for this will be made clearer in the proof of Claim 6.5.28.

Definition 6.5.27. For a countable first-order relational language L containing
a binary relation symbol R, Let F (L) be the set of all formulas of the form ϕθ0,θ1ψ

from L as above. Let L0 = {R} where R is a binary relation symbol. Let T0 say that
R is a graph (symmetric and non-reflexive). Let T =�T0,L0,F.

Claim 6.5.28. Let b ∈ M. Let pb (z) be a non-algebraic type over M in one
variable saying that R (z, a) just when a = b. Then pb isolates a complete type
over M.

Proof. We will show:
(1) pb � L0 is complete.
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(2) If L ⊇ L0 is some subset of Lω and for all atomic formulas θ (z) ∈ L\L0 over
M, pb (z) |= ¬θ (z), then for all ϕ ∈ L used in the circularization (as in
Definition 6.5.26) and atomic formulas θ (z, ȳ) ∈ L [ϕ] \L and c̄ ∈Mlg(ȳ),
pb (z) |= ¬θ (z, c̄).

From (1) and (2) it follows by induction that pb is complete.
(1) is immediate.
(2): Suppose θ (z, ȳ) is an atomic formula in L [ϕ] \L. Then it is of the form

C [ϕ] (. . .) where ϕ = ϕθ0,θ1ψ (x̄; ȳ ′) for some ψ (x̄; ȳ) and θi (x̄; ȳi) from L. Suppose
z appears in θ (z, ȳ) among the index variables. Then by the choice of ϕ, it follows
that θ (z, c̄) implies that z is R-connected to at least two different elements fromM,
and this contradicts the choice of pb (this is why we added the extra parameters
forming an R-triangle in Definition 6.5.26). So assume that z appears only in the
main variables.

Case 1. One of θ0, θ1 is not from L0, say θ0. Since C [ϕ] (ȳ ′, x̄1, x̄2, x̄3) |=∧
ϕ (x̄i, ȳ

′), and pb (z) |= ¬θ0 (. . . z . . .) by induction (this notation
means: substituting some variables of θ0 with z, and putting param-
eters from M elsewhere), pb (z) |= ¬θ (z, c̄).

Case 2. Both θ0, θ1 ∈ L0. Suppose c̄ ∈Mlg(ȳ ′) and show that pb (z) |= ¬C [ϕ] (c̄; . . . z . . .).
There are two possibilities for θi: R (z, y) and z = y. If C [ϕ] (c̄; . . . z . . .)
holds, then we would get that either R (z, c0) ∧ R (z, c1) for some c0 6=
c1 ∈ M, or some equation x = s ′ for s ′ ∈ M is in pb (here we use the
fact that both x and ȳi occur in θ0, θ1) — contradiction.

�

Claim 6.5.29. fT (κ, λ) ≥ λ.

Proof. LetM ≺ N |= T , |M| = κ, |N| = λ. For each b ∈M, let pb be the type
defined in the previous claim. Then pb extends naturally to a global type qb (i.e.
the type over M that is R-connected only to b). This type does not divide over M
(in fact it does not divide over ∅). This is by Claim 6.5.20 and the proof of Claim
6.5.28 (all atomic formulas in Ln have exactly the same truth value for n > 0). �

Claim 6.5.30. fnT (κ, λ) = λ for all n and all λ ≥ 22κ .

Proof. Suppose fnT (κ, λ) > λ. Let M ≺ N |= T where |M| = κ, |N| = λ and∣∣∣Snfn (N,M)
∣∣∣ > λ.

Let {pi (x̄) | i < λ+ } ⊆ Snfn (N,M) be pairwise distinct. By possibly replacing x̄
with a sub-tuple and throwing away some i’s, we may assume that for all i < λ+,
pi |= x̄∩M = ∅. Since λ ≥ 22κ , we may assume that for all i < λ+, pi is not finitely
satisfiable in M.

Then, an easy computation shows that there must be some some i < λ+ such
that pi contains two positive occurrences of atomic formulas θ0 (x̄, ā0) and θ1 (x̄, ā1)
for some ā0 6= ā1 ∈ N. Let p = pi. There is some quantifier free formula ψ (x̄, c̄) ∈
p such that ψ is not realized in M. Let ā be the tuple of parameters 〈c̄, ā0, ā1〉
and let d0, d1, d2 ∈ N be an R-triangle such that R (di, a) for all a ∈ ā. Finally,
let ā ′ = ād∩M and ϕθ0,θ1ψ (x̄; c̄, ā0, ā1, d)∧ x̄∩ ā ′ = ∅ ∈ p forks overM by Claim
6.5.19. �
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6.5.5. Example of (9).
In this subsection we prove the following Proposition:

Proposition 6.5.31. For any theory T , there is a theory T∗ such that fT∗ (κ, λ) =
fT (κ, λ)

ℵ0 for all λ ≥ κ.

Let T be a theory in the language L and assume that T eliminates quantifiers.
For each n < ω, let Ln be a copy of L such that Ln ∩ Lm = ∅ for n < m, and
Ln = {Rn |R ∈ L }. Let 〈Mn |n < ω 〉 be a sequence of models of T . We define a
structure M in the language {Pn (x) , Q (x) , fn : Q→ Pn |n < ω } ∪

⋃
Ln:

(1) M =
⊔
n<ωMn t

(∏
n<ωMn

)
(t means disjoint union).

(2) PMn =Mn, QM =
∏
n<ωMn

(3) If R (x̄) ∈ L (T) then for every n < ω, RMn ⊆
(
PMn
)
lg(x̄) and PMn is the

structure Mn.
(4) fMn : QM → PMn , fMn (η) = η (n) — the projection onto the n-th coordi-

nate.
Let T∗ = Th(M).

Remark 6.5.32. The following properties are easy to check by back-and-forth:
(1) Doing the same construction with respect to any sequence of models
〈Mn |n < ω 〉 of T gives the same T∗.

(2) Moreover, if we have Mn � Nn for all n and do the construction, then
M � N.

(3) T∗ eliminates quantifiers.

Now let M � N |= T with |M| = κ, |N| = λ.

Lemma 6.5.33. Given p (x) ∈ S1 (N) such that Q (x) ∈ p , for each n < ω we
let pn (y) = {ϕ (y) |ϕ ∈ Ln, ϕ (fn (x)) ∈ p }.

(1) p (x) is equivalent to
⋃
n<ω pn (fn (x)).

(2) For each n < ω, let qn (y) be a complete Ln-type over PNn . Then the type(⋃
n<ω qn (fn (x))

)
∪ {Q (x)} is consistent and complete.

(3) Pn is stably embedded and the induced structure on Pn is just the Ln-
structure. Moreover, for any n < ω and L∗-formula ϕ (x̄, ȳ1, ȳ2, z̄) there
is some Ln-formula ψ (x̄, ȳ1, z̄

′) such that for any e c̄1 ∈ Pn, c̄2 ∈⋃
m6=n Pm and d̄ ∈ Q, the set

{
ā ∈ Pn

∣∣∣ |= ϕ(ā, c̄1, c̄2, d̄)} =
⋃{

ā ∈ Pn
∣∣∣ |= ψ(ā, c̄1, fn (d̄))}.

(4) p(x) forks over M if and only if for some n < ω, pn (y) � Ln forks over
PMn (in the sense of T).

Proof. (1), (2) and (3) follows by quantifier elimination and (4) follows from
(1)–(3). �

Proof. (of Proposition 6.5.31). We may assume that T eliminates quantifiers
(by taking its Morleyzation). Consider T∗as above, and let us compute fT∗ (κ, λ).
Let M � N |= T∗.

Let Sn =
{
p ∈ Snf (N,M) |Pn (x) ∈ p

}
.

From Lemma 6.5.33, it follows that |Sn| =
∣∣∣Snf,Ln (PNn , PMn )∣∣∣.

Let SQ =
{
p ∈ Snf (N,M) |Q (x) ∈ p

}
.

From Lemma 6.5.33, it follows that |SQ| =
∏
n<ω

∣∣∣Snf,Ln (PNn , PMn )∣∣∣.
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Let S¬ =
{
p ∈ Snf (N,M) | ¬Q (x) ,∀n < ω (¬Pn (x))

}
.

Since there is no structure on elements outside of all the Pn and Q, |S¬| ≤ |M|.
Note that Snf (N,M) =

⋃
n<ω Sn ∪SQ ∪S¬. From this and Remark 6.5.32(2),

it follows that fT∗ (κ, λ) = fT (κ, λ)
ℵ0 . �

Remark 6.5.34. This analysis easily generalizes to show that fnT∗ (κ, λ) =

fnT (κ, λ)
ℵ0 .

6.5.6. Examples of (12) and (14).
Here we construct an example of a theory T with fT (κ, λ) = ded λ. The idea is
that we start with an ordered random graph, and we circularize in order to ensure
that for any p ∈ Snf (N,M) there is some cut of N such that R (x, a) is in p if any
only if a is in the cut.

(1) Here the language L contains an order relation < which induces the natural
lexicographic order on tuples, so abusing notation, we may write ȳ < z̄.

(2) In this section, we say that two atomic formulas θ1 (x̄; ȳ1) and θ2 (x̄; ȳ2)
are different when the relation symbol in different (rather than just the
variables are different).

(3) Also, when we say atomic formula in the definition below, we mean that
it does not use the order relation <.

Definition 6.5.35. Suppose L is a relational language which includes a binary
relation symbol R, a unary predicate P and an order relation <.

(1) For a quantifier free L-formula ψ (x̄; ȳ) and two different atomic formulas
θ0 (x̄; ȳ0), θ1 (x̄, ȳ1), where lg (x̄) > 0, and both x̄ and ȳi occur in them,
define the formula, define the formula

ϕθ0,θ1ψ (x̄; ȳ ′) =

ϕθ0,θ1ψ (x̄; ȳ, ȳ0, ȳ1, z0, z1) = θ0 (x̄, ȳ0)∧ θ1 (x̄, ȳ1)∧

ψ (x̄, ȳ)∧

z0 < z1 ∧ P (z0)∧ P (z1)∧∧
y∈ȳȳ0ȳ1,i<2

(y 6= zi)∧ R (y, z1)∧ ¬R (y, z0) .

(2) For an L-formula ψ (x̄; ȳ) and an atomic formula θ (x̄; ȳ0) (in which ȳ0
appears) , define the formula

ϕθψ (x̄; ȳ ′) =

ϕθψ (x̄; ȳ, ȳ0, ȳ1, z0, z1) = ¬θ (x̄, ȳ0)∧ θ (x̄, ȳ1)∧

ψ (x̄, ȳ)∧

z0 < z1 ∧ P (z0)∧ P (z1)∧∧
y∈ȳȳ0ȳ1,i<2

(y 6= zi)∧ R (y, z1)∧ ¬R (y, z0)

ȳ0 < ȳ1.

Definition 6.5.36. For a countable first-order relational language L containing
a binary relation symbol R, Let F (L) be the set of all formulas from L of the form
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ϕθ0,θ1ψ or ϕθψ as above. Let L0 = {R,<} where R and < are binary relation symbols.
Let T0 say that R is a graph and that < is a linear order. Let T =�T0,L0,F.

Suppose M |= T .

Claim 6.5.37. Let I be initial segments in M. Let pI (x) be a non-algebraic
type over M saying that x > M, ¬P (x) and R (x, a) just when a ∈ I. Then pI
isolates a complete type over M.

Proof. In fact, pI � L0 is complete, and for all atomic formulas θ (x) /∈ L0
over M, pI |= ¬θ (x). The proof is very similar to the proof of Claim 6.5.28. �

Claim 6.5.38. fT (κ, λ) ≥ ded (λ).

Proof. Let M ≺ N |= T , |M| = κ, |N| = λ. For each cut I in N, let pI be the
type defined in the previous claim. Then pI extends naturally to a global type qI
(i.e. the type over M defined by pI ′ where I ′ = {c ∈M |∃a ∈ I (c < a) }). This type
does not divide over M (in fact it does not divide over ∅) by Claim 6.5.20 and by
the proof of the previous claim (all atomic formulas have exactly the same truth
value in Ln for n > 0). �

Claim 6.5.39. fnT (κ, λ) = ded (λ) for all n and all λ ≥ 22κ .

Proof. Suppose fnT (κ, λ) > ded (λ). Let M ≺ N |= T where |M| = κ, |N| = λ.
Let
{
pi (x̄)

∣∣ i < ded (λ)+
}
⊆ Snf (N,M) is a set of pairwise distinct types. As

in the proof of Claim 6.5.30, we may assume that pi |= x̄∩M = ∅ for all i, and that
pi is not finitely satisfiable in N. Also we may assume that pi � {<} is constant.

Then, by the choice of ϕθ0,θ1ψ , for every i < ded (λ)+ there is at most one atomic
formula of the form θ (x̄; ȳ) such that there is some positive instance θ (x̄, ā) ∈ pi
(if not, suppose θ0 (x̄, ā0) ∧ θ1 (x̄, ā1) ∈ p. There is some quantifier free formula
ψ (x̄, c̄) ∈ pi such that ψ is not realized in M. Let ā be the tuple of parameters
〈c̄, ā0, ā1〉 and let d0, d1, d2 ∈ N be an R-triangle such that R (d, b) for all b ∈ ā.
Finally, let ā ′ = ād ∩M and ϕθ0,θ1ψ (x̄; c̄, ā0, ā1, d)∧ x̄ ∩ ā ′ = ∅ ∈ p forks over M
by Claim 6.5.19).

Similarly, by the choice of ϕθψ, this formula induces a cut I = {ā | θ (x̄, ā) ∈ pi }
.

This formula and the cut it induces determine the type. But this is a contra-
diction to the definition of ded. �

Corollary 6.5.40. There is a theory T∗ such that fT∗ (λ, κ) = ded (λ)ℵ0 .

Proof. By Proposition 6.5.31. �

6.5.7. Example of (16).
As a pleasant surprise to the reader who managed to get this far, the example is
just the theory of the random graph (it is NTP2 and has IP, see Proposition 6.4.5).

6.5.8. Example of f1T (κ, λ) ≤ 22
κ

but f2T (κ, λ) = 2
λ.

Again we use circularizations, but instead of considering all formulas, we consider
only formulas with one variable.

Definition 6.5.41. Let L0 = {=} and T0 be empty. Let F (L) be the set of
all quantifier free partitioned formulas from L of the form ϕ (x; ȳ) where x is a
singleton. Let T =�T0,L0,F.



6.6. ON dedκ < (dedκ)ℵ0 149

Let A ⊆M |= T . By Claim 6.5.19 and as in the proof of Proposition 6.5.25,

Corollary 6.5.42. If p (x) ∈ S1 (M) then p does not fork over A if and only
if it is finitely satisfiable in A. So f1T (κ, λ) ≤ 22

κ

for all

On the other hand, if we consider types in two variables, then there is no reason
for them to fork.

Claim 6.5.43. f2T (κ, λ) ≥ 2λ.
Proof. Suppose |M| = λ, so M = {ai |i < λ }, and A ⊆ M of size κ. Let

q (z) ∈ S1 (M) be any 1-type which is finitely satisfiable in A but not algebraic over
A. For S ⊆ λ, let pS (x, y) be a partial type over M such that

(1) pS � x = q (x), pS � y = q (y).
(2) R (x, y, ai) ∈ pS if and only if i ∈ S.

First, pS is indeed a type. The proof is by induction, i.e. one proves that pS � L0
is a type (which is clear), and that if L is some subset of Lω such that pS � L is a
type and ϕ (x; ȳ) is some partitioned L-formula with lg (x) = 1, then also pS � L [ϕ]
is a type, and this follows from Claim 6.5.11.

Let N ⊇M be an |A|
+-saturated model and q ′ ⊇ q be a global type which is

finitely satisfiable in A. Fix c |= q ′|N and d |= q ′|Nc.
We want to construct a completion rS (x, y) ∈ S2 (N) containing pS which does

not divide over A. We start by rS � x = q ′|N (x), rS � y = q ′N (y) and rS � L0
is any completion of pS � L0. For each atomic formulas θ

(
x, y, t̄

)
over N of the

form C [ϕ]
(
t̄,−,−,−

)
(so t̄ ∈ N) such that ϕ (x, t) ∈ q ′ (x) define θ (x, y) ∈ rS

if and only if θ (c, d) holds. This is a type (by induction again, by Claim 6.5.11
(3), but follow the proof a bit more carefully, and choose the amalgamation of the
circular orders corresponding to t̄ according to the choice of c, d). Let rS by any
completion.

Finally, rS does not divide over A by Claim 6.5.16 (by induction and by the
choice of c, d). �

6.6. On ded κ < (ded κ)ℵ0

6.6.1. On ded (λ).

Definition 6.6.1. Let ded (λ) be the supremum of the set

{|I| | I is a linear order with a dense subset of size ≤ λ } .

Fact 6.6.2. It is well known that λ < ded λ ≤ (ded λ)ℵ0 ≤ 2λ. If ded λ = 2λ,
then ded λ = (ded λ)ℵ0 = 2λ. This is true for λ = ℵ0, or more generally for any λ
such that λ = λ<λ. So in particular this holds for any λ under GCH.

In addition, if ded λ is not attained (i.e. it is a supremum rather than a maxi-
mum), then cof (ded λ) > λ. See also Corollary 6.6.13.

Definition 6.6.3. (1) Given a linear order I and two regular cardinals
θ, µ, we say that S is a (θ, µ)-cut when it has cofinality θ from the left
and cofinality µ from the right.

(2) By a tree we mean a partial order (T,<) such that for every a ∈ T ,
T<a = {x ∈ T | x < a } is well ordered.

(3) For two cardinals λ and µ, let λ〈µ〉tr be

sup {κ | there is some tree T with λ many nodes and κ branches of length µ } .
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Remark 6.6.4. Note that λ〈µ〉tr ≤ λµ and if λ = λ<µ then λ〈µ〉tr = λµ (consider
the tree λ<µ ordered lexicographically).

Proposition 6.6.5. The following cardinalities are the same:
(1) ded (λ)
(2) sup {κ | there is a linear order I of size λ with κ many cuts }
(3) sup {κ | there is a regular µ and a linear orded I of size ≤ λ with κ many (µ, µ) -cuts }
(4) sup {κ | there is a regular µ and a tree T with κ branches of length µ and |T | ≤ λ }
(5) sup {κ | there is a regular µ and a binary tree T with κ branches of length µ and |T | ≤ λ }
(6) sup

{
λ〈µ〉tr |µ ≤ λ is regular

}
Proof. (1)=(2), (4)=(6): obvious.
(2)=(3): By [KSTT05, Theorem 3.9], given a linear order I and two regular

cardinals θ 6= µ the number of (θ, µ)-cuts in I is at most |I|. Given I and a regular
cardinal µ, let Dµ (I) be the set of (µ, µ)-cuts, and let D (I) be the set of all
cuts. Suppose |I| = λ, then |D (I)| = sup {|Dµ (I)| |µ = cof (µ) ≤ λ } holds whenever
|D (I)| > λ. By Fact 6.6.2, ded (λ) = sup{Dµ (I) |µ = cof (µ) ≤ λ, |I| ≤ λ}.

(2)=(4): Follows from [Bau76, Theorem 2.1(a)].
(4)=(5): Obviously (4)≥(5). Suppose T is a tree as in (4). We may assume

T ⊆ λ<µ as a complete sub-tree (i.e. if η ∈ λ<µ and ν is an initial segment
of η, then ν ∈ T). Let (µ× λ ∪ {(µ, 0)} , <) be the lexicographic order ((β, j) <
(α, i) ⇔ [β < α∨ (β = α∧ j < i)]) and let f : λ≤µ → 2≤(µ×λ) be such that for
α ≤ µ and η ∈ λα, f (η) ∈ 2α×λ, and f (η) (β, i) = 1 if and only if η (β) = i. (So
by 2≤(µ×λ) we mean all functions of the form η : {(β, j) < (α, i)} → 2 for some
(α, i) ∈ µ × λ ∪ {(µ, 0)}). It is easy to see that f is a tree embedding and f (T) is
a sub-tree of 2<(µ×λ). So f (T) is a binary tree with λ many nodes, and for each
branch ε : µ→ λ of T (i.e. such that ε � α ∈ T for all α < µ), {f (ε � α) |α < µ } is a
branch of f (T) of height µ. �

Remark 6.6.6. Any tree of size ≤ λ of height < θ is isomorphic to a sub-tree
of λ<θ such that if x ∈ T and y ≤ x then y ∈ T .

6.6.2. Consistency of ded κ < (ded κ)ℵ0 .
In [Kei76], the following fact is mentioned (without proof), attributed to Kunen:

Remark 6.6.7. [Kunen] If κℵ0 = κ then (ded κ)ℵ0 = ded κ.

Proof. Suppose I is a linear order, and J ⊆ I is dense, |J| = κ. Let U be a
non-principal ultrafilter on ω. Then the linear order Iω/U has Jω/U as a dense
subset. Now1, |Jω/U| = κℵ0 = κ and |Iω/U| = |I|

ℵ0 . The remark follows from Fact
6.6.2. �

Answering a question of Keisler [Kei76, Problem 2], we show:

Theorem 6.6.8. It is consistent with ZFC that ded κ < (ded κ)ℵ0 .

Our proof uses Easton forcing, so let us recall:

1If A is infinite then Aω/U has size |A|ℵ0 : let gn : An → A be bijections. Then take f ∈ λω
to f̄ = 〈gn (f (0) , . . . , f (n − 1)) |n < ω 〉, so that if f 6= g then f̄ 6= ḡ from some point onwards, and
in particular, modulo U.
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Theorem 6.6.9. [Easton] LetM be a transitive model of ZFC and assume that
the Generalized Continuum Hypothesis holds in M. Let F be a function (in M)
whose arguments are regular cardinals and whose values are cardinals, such that for
all regular κ and λ:

(1) F (κ) > κ
(2) F (κ) ≤ F (λ) whenever κ ≤ λ.
(3) cof (F (κ)) > κ

Then there is a generic extension M [G] of M such that M and M [G] have the
same cardinals and cofinalities, and for every regular κ, M [G] |= 2κ = F (κ).

See [Jec03, Theorem 15.18].
Easton forcing is a class forcing but we can just work with a set forcing, i.e.

when F is a set. The following is the main claim:

Claim 6.6.10. SupposeM is a transitive model of ZFC that satisfies GCH, and
furthermore:

• κ is a regular cardinal.
• 〈θi | i < κ 〉, 〈µi | i < κ 〉 are strictly increasing sequences of cardinals, θ =

supi<κ θi, µ = supi<κ µi.
• κ < θ0, θi < µ0 for all i < κ.
• θi are regular for all i < κ.

Then, letting P be Easton forcing with F : {θi | i < κ }→ card, F (θi) = µi and G a
generic for P, in M [G], ded θ = µ and the supremum is attained.

Remark 6.6.11. Note that in M [G], we also get by Easton’s Theorem 6.6.9
that 2θi = µi; cof (θ) = cof (µ) = κ < θ and µκ > µ.

Proof. First let us show that ded θ ≥ µ. Recall,
• Add (κ, λ) is the forcing notion that adjoins λ subsets to κ, i.e. it is the

set of partial functions p : κ× λ→ 2 such that |dom (p)| < κ.
• The Easton forcing notion P is the set of all elements in

∏
i<κAdd (θi, µi)

such that the for every regular cardinal γ ≤ κ, and for each p ∈ P, the
support s (p) satisfies |s (p) ∩ γ| < γ.

If G is a generic of P, then the projection of G to i, Gi, is generic in Add (θi, µi).
For i < κ, consider the tree Ti =

(
2<θi

)M. Since M satisfies GCH, M [G] |=
|Ti| = θi. But for all β < µi, we can define a branch ηβ : θi → 2 of Ti by ηβ (α) =
p (α,β) for some p ∈ Gi such that (α,β) ∈ dom (p). If α < θi, then ηβ � α ∈ M
(consider the dense set D = {p ∈ Add (θi, µi) |α× {β} ⊆ dom (p) }), and if β1 6= β2
then ηβ1 6= ηβ2 . Together, by Proposition 6.6.5 we have ded θi = µi = 2θi in
M [G]. Since ded θ ≥ ded θi for all i < κ, we are done.

Now let us show that ded (θ) ≤ µ. Let I be some linear order such that
|I| = θ. For any choice of cofinalities (κ1, κ2), we look at the set of all (κ1, κ2)-cuts
of I, Cκ1,κ2 . Obviously for it to be nonempty, κ1, κ2 ≤ θ, so let us assume that
κ1, κ2 ≤ θi for some i. We map each such cut to a pair of cofinal sequences (from
the left and from the right). Hence we obtain |Cκ1,κ2 | ≤ θκ1+κ2 ≤ θθi . Since
θ ≤ µ0, θθi ≤ µθi0 ≤ 2θ0+θi = µi < µ. The number of regular cardinals below θ is
≤ θ, so we are done. �

Corollary 6.6.12. Suppose GCH holds in M. Choose κ = ℵ0, θi = ℵi+1
and µi = ℵω+i. Then in the generic extension, ℵω+ω = dedℵω < (dedℵω)

ℵ0 .
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In fact, since the Singular Cardinal Hypothesis holds under Easton forcing (see
[Jec03, Exercise 15.12]), (dedℵω)

ℵ0 = ℵω+ω+1.

Corollary 6.6.13. It is consistent with ZFC that cof (ded λ) < λ.

Problem 6.6.14. Is it consistent with ZFC that ded κ < (ded κ)ℵ0 < 2κ?
We remark that our construction is not sufficient for that: in the context of

Claim 6.6.10, (ded θ)κ ≤ 2θ, but 2θ =
∏
i<κ 2

θi ≤
∏
i<κ µi ≤ µκ = (ded θ)κ.
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