Mathematik II für Informatiker — Sommer 2016 Übungsblatt 9

Dozent: PD Dr. Markus Junker. Assistent: Dr. Juan Diego Caycedo.

1. S_3 als lineare Gruppe. Geben Sie einen injektiven Gruppenhomorphismus

$$S_3 \to \mathrm{GL}_2(\mathbb{R})$$

an.

Hinweis: Fassen Sie S_3 als Symmetriegruppe eines gleichseitigen Dreiecks auf.

2. **Das Zentrum der** GL_n . Sei K ein Körper und $GL_n(K)$ die Gruppe der invertierbaren $n \times n$ -Matrizen über K. Beweisen Sie:

$$Z(GL_n(K)) = \left\{ \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda \end{pmatrix} \middle| \lambda \in K^* \right\}.$$

Hinweis: Untersuchen Sie die Vertauschungsbedingung für die Vertauschung mit geeigneten Elementarmatrizen explizit. (Eine Elementarmatrix ist die Matrix zu einer elementaren Umformung.)

- 3. Zyklische Gruppen. Sei G eine Gruppe und $g \in G$ ein Element. Zeigen Sie
 - (a) $\langle g^k, g^l \rangle = \langle g^{ggT(k,l)} \rangle$,
 - (b) $\langle q^k \rangle \cap \langle q^l \rangle = \langle q^{\text{kgV}(k,l)} \rangle$.

Dabei bezeichnet $\langle x_1, \ldots, x_n \rangle$ die von $\{x_1, \ldots, x_n\}$ erzeugte Untergruppe von G.

Bitte wenden!

- 4. **Untergruppen.** Betrachte die (nicht kommutative) Gruppe D_4 der Symmetrien eines Quadrats (Rotationen und Spiegelungen, welche das Quadrat in sich überführen). Das Gruppengesetz ist durch die Hintereinanderausführung von Abbildungen gegeben. Sei σ die Rotation um 90 Grad (gegen den Uhrzeigersinn) und τ die Spiegelung an der x-Achse. Diese Elemente erzeugen D_4 :
 - 1 Identität
 - σ Rotation um 90 Grad
 - σ^2 Rotation um 180 Grad
 - σ^3 Rotation um 270 Grad
 - τ Spiegelung um die x-Achse
 - $\sigma\tau$ Spiegelung an der Hauptdiagonalen
 - $\sigma^2 \tau$ Spiegelung an der y-Achse
 - $\sigma^3 \tau$ Spiegelung an der Nebendiagonalen

Hier haben wir z.B. " $\sigma\tau$ "für die Hintereinanderausführung $\sigma\circ\tau$ geschrieben. Dies bedeutet, dass **zuerst** τ **und dann** σ ausgeführt wird.

Es gelten die Relationen $\sigma^4 = 1$, $\tau^2 = 1$ und $\tau \sigma \tau = \sigma^3$. Mit Hilfe dieser lassen sich alle Ausdrücke in σ und τ wieder auf eine der 8 Formen in der Tabelle bringen.

Bestimmen Sie alle 10 Untergruppen von D_4 und geben Sie die Ordnungen der Elemente an.

Abgabe bis Fr. 1.7.2016, 12:00 in die Kästen im EG des Instituts für Informatik, Geb. 51.