Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: B.Sc. Christoph Bier

Blatt 1

Aufgabe 1 (Direct products). Let $\mathfrak{A}_1, \mathfrak{A}_2$ be *L*-structures. Define an *L*-structure $\mathfrak{A}_1 \times \mathfrak{A}_2$ with universe $A_1 \times A_2$ such that the natural epimorphisms $\pi_i : \mathfrak{A}_1 \times \mathfrak{A}_2 \longrightarrow \mathfrak{A}_i$ for i = 1, 2 satisfy the following universal property: given any *L*-structure \mathfrak{D} and homomorphisms $\varphi_i : \mathfrak{D} \longrightarrow \mathfrak{A}_i, i = 1, 2$ there is a unique homomorphism $\psi : \mathfrak{D} \longrightarrow \mathfrak{A}_1 \times \mathfrak{A}_2$ such that $\pi_i \circ \psi = \varphi_i, i = 1, 2$, i.e., this is the product in the category of *L*-structures with homomorphisms.

Aufgabe 2. Let $f: \mathfrak{A} \to \mathfrak{A}$ be an embedding. Prove the following: There is an extension $\mathfrak{A} \subseteq \mathfrak{B}$ together with an automorphism g of \mathfrak{B} extending f. We can find B as the union of the chain $A \subseteq g^{-1}(A) \subseteq g^{-2}(A) \subseteq \cdots$. The pair (\mathfrak{B}, g) is uniquely determined by this choice of B.

Aufgabe 3. Let \mathfrak{A} be an *L*-structure with finite domain *A*. Show that the number of *L*-structures on *A* isomorphic to \mathfrak{A} equals the quotient

number of permutations of A: number of automorphisms of \mathfrak{A} .

Hint: Think of group actions.

Aufgabe 4. Let $\mathfrak{A}, \mathfrak{B}$ be *L*-structures. Suppose that there exist injective homomorphisms $f : \mathfrak{A} \to \mathfrak{B}$ and $g : \mathfrak{B} \to \mathfrak{A}$. Does it follow that \mathfrak{A} and \mathfrak{B} are isomorphic?

Anwesenheitsaufgabe für die zweite Woche (29.10. - 2.11.)

Aufgabe 5 (Ultraproducts and Łos's Theorem). A filter on a set I is a non-empty set $\mathcal{F} \subseteq \mathfrak{P}(I)$ which does not contain the empty set and is closed under intersections and supersets, i.e., for $A, B \in \mathcal{F}$, we have $A \cap B \in \mathcal{F}$ and if $A \in \mathcal{F}$ and $A \subseteq C \subseteq I$ we have $C \in \mathcal{F}$. A filter \mathcal{F} is called an *ultrafilter* if for every $A \in \mathfrak{P}$ we have $A \in \mathcal{F}$ or $I \setminus A \in \mathcal{F}$. (By Zorn's Lemma, any filter can be extended to an ultrafilter.)

For a family $(\mathfrak{A}_i \mid i \in I)$ of *L*-structures and \mathcal{F} an ultrafilter on *I* we define the *ultraproduct* $\prod_{i \in I} \mathfrak{A}_i / \mathcal{F}$ as follows. On the Cartesian product $\prod_{i \in I} \mathfrak{A}_i$, the ultrafilter \mathcal{F} defines an equivalence relation $\sim_{\mathcal{F}}$ by

$$(a_i)_{i \in I} \sim_{\mathcal{F}} (b_i)_{i \in I} \Leftrightarrow \{i \in I \mid a_i = b_i\} \in \mathcal{F}_i$$

On the set of equivalence classes $(a_i)_{\mathcal{F}}$ we define an *L*-structure $\prod_{i \in I} \mathfrak{A}_i / \mathcal{F}$.

- For constants $c \in L$, put $c^{\prod_{\mathcal{F}} \mathfrak{A}_i} = (c^{\mathfrak{A}_i})_{\mathcal{F}}$.
- For *n*-ary function symbols $f \in L$ put

$$f^{\Pi_{\mathcal{F}}\mathfrak{A}_i}((a_i^1)_{\mathcal{F}},\ldots,(a_i^n)_{\mathcal{F}})) = (f^{\mathfrak{A}_i}(a_i^1,\ldots,a_i^n))_{\mathcal{F}}.$$

• For *n*-ary relation symbols $R \in L$ put

$$R^{\Pi_{\mathcal{F}}\mathfrak{A}_i}((a_i^1)_{\mathcal{F}},\ldots,(a_i^n)_{\mathcal{F}})) \Leftrightarrow \{i \in I \mid R^{\mathfrak{A}_i}(a_i^1,\ldots,a_i^n)\} \in \mathcal{F}.$$

- 1. Show that the ultraproduct $\prod_{i \in I} \mathfrak{A}_i / \mathcal{F}$ is well-defined.
- 2. Prove Łos's Theorem: for any L-formula φ we have

$$\Pi_{i\in I}\mathfrak{A}_i/\mathcal{F}\models\varphi((a_i^1)_{\mathcal{F}},\ldots,(a_i^n)_{\mathcal{F}})\Leftrightarrow\{i\in I\mid\mathfrak{A}_i\models\varphi(a_i^1,\ldots,a_i^n)\}\in\mathcal{F}.$$

3. For every $i \in I$, the set

$$\mathcal{F}_i = \{J \subseteq I : i \in J\}.$$

is an ultrafilter on I. Ultrafilters of this form are said to be *principal*. Show that for every $i_0 \in I$, the ultraproduct $\prod_{i \in I} \mathfrak{A}_i / \mathcal{F}_{i_0}$ is isomorphic to \mathfrak{A}_{i_0} .

- 4. Show that if I is a finite set, then all ultrafilters on I are principal.
- 5. Let I be an infinite set. The *Fréchet filter* on I is the set of all subsets J of I such that $I \setminus J$ is finite. Prove that an ultrafilter on I is non-principal if and only if it contains the Fréchet filter.
- 6. Think about ultraproducts of your favourite structures.

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/