Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 10

- **Aufgabe 1.** 1. Suppose \mathfrak{M} is countable and ω -saturated. Show that for all $a, b \in M^n$, if $\operatorname{tp}(a) = \operatorname{tp}(b)$ then there is an automorphism σ of \mathfrak{M} such that $\sigma(a) = b$.
 - 2. Let \mathfrak{M} be countable and ω -saturated. Suppose $X \subseteq M^n$ is invariant under all automorphisms of \mathfrak{M} , i.e. for every automorphism σ of \mathfrak{M} the set $\sigma(X) := \{\sigma(x) : x \in X\}$ is equal to X. Show that there is a collection of types in $S_n(T)$ such that X is the union of their sets of realizations in \mathfrak{M} .
 - 3. Suppose \mathfrak{M} is countable and \aleph_0 -categorical. Show that if $X \subseteq M^n$ is invariant under all automorphisms of \mathfrak{M} , then X is definable.

Aufgabe 2. Let \mathfrak{M} be a structure and assume that for some *n* only finitely many *n*-types are realised in \mathfrak{M} . Then any structure elementarily equivalent to \mathfrak{M} satisfies exactly the same *n*-types.

Aufgabe 3. Prove the following:

- 1. If T is \aleph_0 -categorical, then in any model \mathfrak{M} the algebraic closure of a finite set is finite. (In particular, \mathfrak{M} is *locally finite*, i.e., any substructure generated by a finite subset is finite.)
- 2. There is no \aleph_0 -categorical theory of fields, i.e., if T is a complete L_{Ring} -theory containing Field, then T is not \aleph_0 -categorical.

Aufgabe 4. Show that for every n > 2 there is a countable complete theory with exactly n countable models.

Hint: Consider $(\mathbb{Q}, <, P_0, \ldots, P_{n-2}, c_0, c_1, \ldots)$, where the P_i form a partition of \mathbb{Q} into dense subsets and the c_i are an increasing sequence of elements of P_0 .)

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/