Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 12

Aufgabe 1. By induction on n, using a non-principal ultrafilter on A, prove Ramsey's theorem:

Let A be an infinite set and n, k be positive integers. Let γ be a function from the set $[A]^n$ of nelement subsets of A into $\{1, \ldots, k\}$. Then there is an infinite subset B of A such that the restriction of γ to $[B]^n$ is a constant function.

Hint: Fix a non-principal ultrafilter \mathcal{U} on A. For each $s \in [A]^{n-1}$ choose c(s) such that $\{a \in A \mid \gamma(s \cup \{a\}) = c(s)\}$ belongs to \mathcal{U} . Construct a sequence a_0, a_1, \ldots of distinct elements such that $\gamma(s \cup \{a_i\}) = c(s)$ for all $s \in [\{a_0, \ldots, a_{i-1}\}]^{n-1}$. Apply the induction hypothesis to c restricted to $[\{a_0, a_1, \ldots\}]^{n-1}$.

Aufgabe 2. Show that a theory with a definable linear order of the universe (like DLO and RCF) cannot be κ -stable for any κ .

You may use the following fact: There is a linear ordering of bigger cardinality than κ which has a dense subset of cardinality κ (This is Exercise 8.2.8 in the Tent-Ziegler book).

Aufgabe 3. Show that the theory of an equivalence relation with two infinite classes has quantifier elimination and is ω -stable. Is it \aleph_1 -categorical?

Aufgabe 4. If \mathfrak{A} is κ -saturated, then all definable subsets are either finite or have cardinality at least κ .

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/