Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 3

Aufgabe 1. Two structures \mathfrak{A} and \mathfrak{B} are *partially isomorphic* if there is a non-empty set \mathcal{I} of isomorphisms between substructures of \mathfrak{A} and \mathfrak{B} with the *back-and-forth* property:

- 1. For every $f \in \mathcal{I}$ and $a \in A$ there is an extension of f in \mathcal{I} with a in its domain.
- 2. For every $f \in \mathcal{I}$ and $b \in B$ there is an extension of f in \mathcal{I} with b in its image.

Show that partially isomorphic structures are elementarily equivalent.

Hint: Show by induction on the complexity of φ that for all $f \in \mathcal{I}$ and all \bar{a} in the domain of f we have $\mathfrak{A} \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(f(\bar{a}))$.

Aufgabe 2. 1. Show that the usual ordering of \mathbb{R} is definable in the structure $(\mathbb{R}, 0, +, -, 1, \cdot)$.

- 2. Show that the usual multiplication is not definable in the structure $(\mathbb{R}, 0, +, -)$.
- 3. Let $L = \{c_i : i \in I\}$ be a language containing only constants and let \mathfrak{A} be an *L*-structure. Prove that the only subsets of A^1 definable in the structure \mathfrak{A} are of the form $\{c_{i_1}^{\mathfrak{A}}, \ldots, c_{i_m}^{\mathfrak{A}}\}$ or $A \setminus \{c_{i_1}^{\mathfrak{A}}, \ldots, c_{i_m}^{\mathfrak{A}}\}$ for some $m \in \mathbb{N}$ and $i_1, \ldots, i_m \in I$.

Aufgabe 3. Prove the Compactness Theorem (i.e. finitely satisfiable theories are consistent) using ultraproducts.

Hint: Let T be a finitely satisfiable theory. Consider the set I of all finite subsets of T. For every $\Delta \in I$ choose a model \mathfrak{A}_{Δ} . Find a suitable ultrafilter \mathcal{F} on I such that $\prod_{\Delta \in I} \mathfrak{A}_{\Delta}/\mathcal{F}$ is a model of T.

Aufgabe 4. Consider a class C of L-structures. Prove:

- 1. Let $\operatorname{Th}(\mathcal{C}) = \{ \varphi \mid \mathfrak{A} \models \varphi \text{ for all } \mathfrak{A} \in \mathcal{C} \}$ be the *theory of* \mathcal{C} . Then \mathfrak{M} is a model of $\operatorname{Th}(\mathcal{C})$ if and only if \mathfrak{M} is elementarily equivalent to an ultraproduct of elements of \mathcal{C} .
- 2. Show that C is an elementary class if and only if C is closed under ultraproducts and elementary equivalence.
- 3. Assume that \mathcal{C} is a class of finite structures containing only finitely many structures of size n for each $n \in \omega$. Then the infinite models of $\text{Th}(\mathcal{C})$ are exactly the models of

 $Th_{a}(\mathcal{C}) = \{ \varphi \mid \mathfrak{A} \models \varphi \text{ for all but finitely many } \mathfrak{A} \in \mathcal{C} \}.$

Hint for Part 1: We may assume that $C = \{\mathfrak{A}_i \mid i \in I\}$ is a set (why?). If \mathfrak{M} is a model of T, choose an ultrafilter \mathcal{F} on I which contains $\mathcal{F}_{\varphi} = \{i \in I \mid \mathfrak{A}_i \models \varphi\}$ for all $\varphi \in \mathrm{Th}(\mathfrak{M})$.

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/