Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 4

Aufgabe 1. Let \mathfrak{A} be an *L*-structure and $(\mathfrak{A}_i)_{i\in I}$ a chain of elementary substructures of \mathfrak{A} . Show that $\bigcup_{i\in I}\mathfrak{A}_i$ is an elementary substructure of \mathfrak{A} .

Aufgabe 2. A class C of *L*-structures is *finitely axiomatisable* if it is the class of models of a finite theory. Show that C is finitely axiomatisable if and only if both C and its complement form an elementary class.

Aufgabe 3. Show that the class of connected graphs is not an elementary class. A graph (V, R) is a set V with a symmetric, irreflexive binary relation R. It is connected if for any $x, y \in V$ there is $n \in \mathbb{N}$ and a sequence of elements $x_0 = x, \ldots, x_n = y$ such that $(x_{i-1}, x_i) \in R$ for $i = 1, \ldots, n$.

Aufgabe 4. Let T be an L_{Ring}-theory containing Field. Show that:

1. If T has models of arbitrary large characteristic, then it has a model of characteristic 0.

2. The theory of fields of characteristic 0 is not finitely axiomatisable.

Aufgabe 5 (freiwillig). Find an example of structures \mathfrak{A} and \mathfrak{B} such that \mathfrak{A} is a substructure of \mathfrak{B} and \mathfrak{A} and \mathfrak{B} are elementarily equivalent, but \mathfrak{A} is not an elementary substructure of \mathfrak{B} .

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/