Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 5

Aufgabe 1. Let $\mathfrak{A} = (\mathbb{R}, 0, <, f^{\mathfrak{A}})$, where f is a unary function symbol. Call an element $x \in \mathfrak{A}^* \succ \mathfrak{A}$ infinitesimal if $-\frac{1}{n} < x < \frac{1}{n}$ for all positive natural numbers n. Show that if $f^{\mathfrak{A}}(0) = 0$, then $f^{\mathfrak{A}}$ is continuous at 0 if and only if for any elementary extension \mathfrak{A}^* of \mathfrak{A} the map $f^{\mathfrak{A}^*}$ takes infinitesimal elements to infinitesimal elements.

Aufgabe 2. 1. Two functions $f, g : \mathbb{N} \to \mathbb{N}$ are almost disjoint if $f(n) \neq g(n)$ for almost all n. Show that there are 2^{\aleph_0} -many almost disjoint functions from \mathbb{N} to \mathbb{N} .

Hint: For every real r choose a sequence of rational numbers which converges to r.

2. Let \mathcal{F} be the set of all functions $\mathbb{N} \to \mathbb{N}$. Show that $(\mathbb{N}, f)_{f \in \mathcal{F}}$ has no countable proper elementary extension.

Hint: If e is a new element of an elementary extension and if f and g are almost disjoint, then f(e) and g(e) are different.

3. Let \mathbb{Q} be the ordered field of rational numbers. For every real r introduce two predicates P_r , R_r for $\{q \in \mathbb{Q} \mid q < r\}$ and $\{q \in \mathbb{Q} \mid r \leq q\}$. Show that $(\mathbb{Q}, P_r, Q_r)_{r \in \mathbb{R}}$ has no countable proper elementary extension.

Hint: Let \mathfrak{Q} be a proper elementary extension. Show first that \mathfrak{Q} contains a positive infinitesimal element e. Then show that for every $r \in \mathbb{R}$ there is an element q_r such that $P_r(q_r)$ and $Q_r(q_r + e)$ are true in \mathfrak{Q} .

- **Aufgabe 3.** 1. The theory of K-vector spaces Mod(K) (see subsection 3.3.3 in the Tent-Ziegler book) is κ -categorical for $\kappa > |K|$.
 - 2. Is $\mathsf{ACF}_p \aleph_0$ -categorical?

Aufgabe 4. Show that an $\forall \exists$ -sentence that holds in all finite fields is also true in all algebraically closed fields.

Hint: Use the facts that, for every p (prime or zero), the theory ACF_p is complete and that, for every prime p, ACF_p has a model which is the union of a chain of finite fields.

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/