Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 8

Aufgabe 1. Let T be a theory such that for all models \mathfrak{M} and \mathfrak{N} of T and all $n \in \mathbb{N}$, if $\bar{a} \in M^n$ and $\bar{b} \in N^n$ satisfy the same quantifier-free formulas (in \mathfrak{M} and \mathfrak{N} respectively), then they satisfy the same formulas. Show that T has quantifier elimination.

Hint: Given a formula $\varphi(x)$, consider the set

 $\Phi(x) = \{\psi(x) : \psi(x) \text{ is quantifier-free and } T \models \varphi(x) \to \psi(x)\}$

and show that $T \cup \Phi(x) \models \varphi(x)$.

- Aufgabe 2. 1. Let $(K, 0, +, -, 1, \cdot)$ be an algebraically closed field. Show that every subset of K^1 definable with parameters is finite or has finite complement.
 - 2. Let $(R, 0, +, -, 1, \cdot, <)$ be a real closed ordered field. Show that every subset of R^1 definable with parameters is a finite union of singletons and open intervals of the form (a, b) with $a, b \in R \cup \{-\infty, +\infty\}$.

Definition. Let \mathfrak{M} be a structure and A a subset of M. A formula $\varphi(x) \in L(A)$ is called *algebraic* if $\varphi(\mathfrak{M})$ is finite. An element $a \in M$ is algebraic over A if it realises an algebraic L(A)-formula. The *(model-theoretic)* algebraic closure of A, $\operatorname{acl}(A)$, is the set of all elements of M algebraic over A. The definable closure of A, $\operatorname{acl}(A)$, is the set of all elements b of M such that the singleton $\{b\}$ is definable in \mathfrak{M} by an L(A)-formula.

Aufgabe 3. Let K be a model of ACF, of RCF or of DCF_0 and let A be a subset K. Prove that the model-theoretic algebraic closure of A is

- 1. (ACF) the algebraic closure of the subfield generated by A,
- 2. (RCF) the relative algebraic closure of the subfield generated by A,
- 3. (DCF_0) the algebraic closure of the differential field generated by A.

Aufgabe 4. Let K be a model of ACF_0 , ACF_p for p > 0, of RCF or of DCF_0 and let A be a subset of K. Prove that the definable closure of A is

- 1. (ACF_0) the subfield generated by A,
- 2. (ACF_p) the perfect hull of the subfield generated by A (the *perfect hull* of a subfield k of K is given by $\{a \in K : a^{p^n} \in k \text{ for some } n \in \mathbb{N}\}$),
- 3. (RCF) the relative algebraic closure of the subfield generated by A,
- 4. (DCF_0) the differential subfield generated by A.

⁰http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/